en sciences de l ingénieur

Dimension: px
Commencer à balayer dès la page:

Download "en sciences de l ingénieur"

Transcription

1 Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire avec plusieurs implémentations et la programmation non linéaire particulièrement détaillée compte tenu de la grande variété d algorithmes existants ; Pierre Borne Dumitru Popescu Florin-Gheorghe Filip Dan Stefanoiu RECHERCHE TECHNOLOGIE APPLICATIONS Sy s t èmes Aut oma t is és - la programmation dynamique avec divers exemples d application ; - les réseaux de Hopfield ; - l optimisation en identification des systèmes ; - l optimisation des systèmes dynamiques avec notamment l application à la commande des processus, l optimisation des systèmes de grandes dimensions et des systèmes d information. Didactique, cet ouvrage propose des références permettant au lecteur d approfondir les diverses méthodes traitées. Lorsque les algorithmes étudiés le permettent, sans trop agrandir les présentations, des exemples d implémentation sont proposés pour certains algorithmes. Les auteurs Pierre Borne est professeur de classe exceptionnelle, ingénieur IDN, docteur en automatique et docteur ès sciences physiques. Dumitru Popescu est professeur en contrôle automatique et l optimisation des systèmes dynamiques. Florin-Gheorghe Filip est chercheur en informatique appliquée et systèmes d aide à la décision. Dan Stefanoiu est professeur dans les domaines du traitement du signal et de l identification des systèmes. Optimisation en sciences de l ingénieur Optimisation en sciences de l ingénieur méthodes exactes Pierre Borne Dumitru Popescu Florin-Gheorghe Filip Dan Stefanoiu Z(7ic7e6-CDIJHI(

2 Pierre BORNE Florin G. FILIP Dumitru POPESCU Dan STEFANOIU Optimisation en sciences de l ingénieur Méthodes exactes Hermès 2012

3 Cet ouvrage à été élaboré avec le support du projet européen FP7 ERRIC (Empowering Romanian Research on Intelligent Information Technology), contrat FP7-REGPOT /

4 Table de matières Avant propos XIII 1. PROGRAMMATION LINÉAIRE Objectif de la programmation linéaire Position du problème Méthode de Lagrange Algorithme du simplexe Principe Mise sous forme simpliciale Passage d une forme simpliciale à une autre Résumé de l algorithme du simplexe Exemple de mise en oeuvre Programmation linéaire appliquée à l optimisation d allocation de ressources Domaines d utilisation Allocation de ressources pour la publicité Position du problème Mise en équation sous forme d un problème de programmation linéaire Optimisation d une découpe de rouleaux de papier Position du problème Formulation du problème Mise sous forme de programme linéaire d un problème de commande optimale Position du problème Mise sous forme d un programme linéaire PROGRAMMATION NON LINÉAIRE Position du problème de la programmation non linéaire Conditions de Karush-Kuhn-Tucker Algorithme général de recherche Étapes principales Calcul de la direction de recherche Calcul du pas d avancement 30

5 II Optimisation en sciences de l ingénieur Méthodes exactes 2.4. Méthodes monovariables Méthode de Coggin (d interpolation polynomiale) Méthode de la Section d or Méthodes multivariables Méthodes de recherche directe Méthodes de recherche (directe) linéaire Méthodes de recherche (directe) évolutive 44 A. Méthode de Nelder-Mead (du simplexe) 47 B. Méthode de Box (du complexe) Méthodes de gradient Méthode de Cauchy (du gradient) Méthode de Newton-Raphson (de l approximation quadratique) Méthode de Gauss-Newton Méthodes de Fletcher-Powell (à métrique variable) Méthodes de Fletcher-Reeves (des gradients conjugués) Méthodes de Rosen (des gradients projetés) PROGRAMMATION DYNAMIQUE Principe de la programmation dynamique Position du problème Problème décisionnel Équation récurrente d optimalité Cas particuliers Problème stationnaire à horizon infini Problème à horizon non fixé Problème à horizon aléatoire Prise en compte de contraintes de type somme Loi d évolution aléatoire Initialisation lorsque l état final est imposé Cas où les informations nécessaires ne sont pas toujours accessibles Exemples Optimisation d un trajet Problème du contrebandier RÉSEAUX DE HOPFIELD Structure 111

6 Table de matières III 4.2. Réseaux de Hopfield dynamiques continus Problème général Application au problème du voyageur du commerce Optimisation par réseau de Hopfield basée sur le recuit simulé Méthode déterministe Méthode stochastique OPTIMISATION DANS L IDENTIFICATION DES SYSTÈMES Principe de l identification optimale Formulation des problèmes d identification optimale Problème général Formulation basée sur la Théorie de l optimisation Formulation basée sur la Théorie de l estimation (statistique) Modèles usuels d identification Modèle général Classe des modèles E/S rationnels (RES) Classe des modèles autorégressives (ARMAX) Classe des modèles d état Méthode des moindres carrés de base Solution de type MMC Interprétation géométrique de la solution de type MMC Consistance de la solution de type MMC Exemple de mise en œuvre de la MMC pour un modèle ARX Méthodes des moindres carrés modifiées Retrouver la consistance perdue MMC étendue Méthode des variables instrumentales Méthode de minimisation de l erreur de prédiction Principe et algorithme de base Mise en œuvre de la MMEP pour des modèles ARMAX Convergence et consistance des estimations de type MMEP Méthodes adaptatives d identification optimale Paradigme précision-adaptabilité Version adaptative de base de la MMC Version adaptative de base de la MVI 173

7 IV Optimisation en sciences de l ingénieur Méthodes exactes Versions adaptatives à fenêtre des MMC et MVI Algorithmes à fenêtre exponentielle Algorithmes à fenêtre rectangulaire OPTIMISATION DES SYSTÈMES DYNAMIQUES Méthodes variationnelles Variation d une fonctionnelle Minimisation sans contraintes Variation le long de la trajectoire Conditions au premier ordre Intégrales premières de l équation d Euler Conditions de Weierstrass-Erdmann Équations canoniques de Hamilton Équations de Hamilton Équations de Hamilton-Jacobi Conditions au second ordre Condition de Weierstrass Condition de Legendre Minimisation en présence de contraintes Application à la commande optimale d un processus continu, principe du maximum Formulation Exemples de mise en oeuvre Commande en temps minimum Course de vitesse Commande à consommation minimale Commande quadratique Principe du maximum, cas discret Principe de la commande optimale à base de critères quadratiques Conception de la commande LQ Commande LQ à horizon fini Commande LQ à horizon infini Robustesse de la commande LQ Filtrage optimal Prédicteur de Kalman-Bucy Filtre de Kalman-Bucy Stabilité des estimateurs de Kalman-Bucy Robustesse des estimateurs de Kalman-Bucy 223

8 Table de matières V 6.7. Conception de la commande LQG Problèmes d optimisation liés aux critères linéaires quadratiques Problème de la commande optimale par retour d état Problème de la stabilisation quadratique Problème de la commande optimale par retour de sortie OPTIMISATION DES SYSTÈMES DE GRANDES DIMENSIONS Caractéristiques des problèmes complexes d optimisation Techniques de décomposition Problèmes à structure bloc diagonale Algorithme de Ritter pour des POL Algorithme de Rosen pour des POL Algorithme de Rosen pour des PONL Algorithme de Benders pour des PONL Problèmes séparables au niveau du critère et des contraintes Coordination par multiplicateurs de Lagrange Coordination par modèle Coordination mixte Techniques de pénalisation Technique de la pénalisation externe Technique de la pénalisation interne Technique de la pénalisation étendue OPTIMISATION ET SYSTÈMES D INFORMATION Aperçu d ensemble Facteurs d influence dans la construction des systèmes informatiques Approches Sélection des outils informatiques Difficultés d implémentation et d utilisation Évaluation Conclusions 282 BIBLIOGRAPHIE 283

9 Avant propos Ce livre a pour objet la présentation des principales méthodes exactes d optimisation statique et dynamique. Il a été conçu dans le cadre du projet européen ERRIC et réalisé en coopération entre enseignants chercheurs de France et de Roumanie. De façon à ne pas alourdir la présentation, les démonstrations ne sont le plus souvent pas présentées, seules quelques indications relatives aux principes d établissement des divers algorithmes proposés étant données avec ajout de références permettant au lecteur intéressé d approfondir les diverses méthodes présentées. Lorsque les algorithmes étudiés le permettent, sans trop agrandir les présentations, des exemples d implémentation sont proposés. Parmi les méthodes décrites figurent : la programmation linéaire avec diverses implémentations ; la programmation non linéaire, chapitre particulièrement important compte tenu de la grande variété d algorithmes existants ; la programmation dynamique avec divers exemples d application ; les réseaux de Hopfield ; l optimisation en identification des systèmes ; l optimisation des systèmes dynamiques avec notamment l application à la commande des processus ; l optimisation des systèmes de grandes dimensions ; l optimisation et les systèmes d information. Les techniques d optimisation pour les problèmes difficiles mettant en œuvre des métaheuristiques et l approche stochastique et sous-optimale seront traitées dans un autre ouvrage. Les auteurs Lille et Bucarest Juillet 2012

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Quelques perspectives pour la programmation mathématique en commande robuste

Quelques perspectives pour la programmation mathématique en commande robuste Quelques perspectives pour la programmation mathématique en commande robuste P. Apkarian, D. Arzelier, D. Henrion, D. Peaucelle UPS - CERT - LAAS-CNRS Contexte de la commande robuste 2 Théorie de la complexité

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Présentation de l épreuve

Présentation de l épreuve MÉTHODO Présentation de l épreuve 1. Programme de l arrêté du 22 décembre 2006 DURÉE DE L ENSEIGNEMENT ÉPREUVE N 11 CONTRÔLE DE GESTION (à titre indicatif) : 210 heures 18 crédits européens 1. Positionnement

Plus en détail

MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION

MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION Résumé de la formation Type de diplôme : MASTER 1 et 2 Domaine ministériel : Sciences Mention : Mathématiques et applications Présentation Le master 1 est

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ HEURISTIQUES D'OPTIMISATION Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ D'après Patrick Siarry, LiSSi, Univ. de Paris-Est Créteil MÉTA-HEURISTIQUES Du grec : méta :au-delà,

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Quelques axes de développement méthodologique en optimisation géométrique de formes aérodynamiques dans un contexte MDO

Quelques axes de développement méthodologique en optimisation géométrique de formes aérodynamiques dans un contexte MDO Quelques axes de développement méthodologique en optimisation géométrique de formes aérodynamiques dans un contexte MDO J.-A. Désidéri, INRIA Sophia Antipolis, desideri@sophia.inria.fr 16 Mars 2004 On

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Commande Optimale. B. Bayle. Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV. Commande Optimale 1

Commande Optimale. B. Bayle. Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV. Commande Optimale 1 Commande Optimale B. Bayle Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV Commande Optimale 1 Plan du cours Objectifs Problématique de commande optimale Méthodes et limitations Intérêt pratique

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Atelier 1 de Mathématiques

Atelier 1 de Mathématiques Atelier 1 de Mathématiques lundi 9 juillet 2012-10h45-12h30 Présents : CHAMOIN Françoise (Rennes), COUOT Cécile (La Rochelle), DELPIERRE Alain (Béthune), DERVIEUX Martine (Lyon), FRANCOIS Pierre (Strasbourg),

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Cours et applications

Cours et applications MANAGEMENT SUP Cours et applications 3 e édition Farouk Hémici Mira Bounab Dunod, Paris, 2012 ISBN 978-2-10-058279-2 Table des matières Introduction 1 1 Les techniques de prévision : ajustements linéaires

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

COMMANDE PAR RETOUR ACCELEROMETRIQUE APPLICATION A UN ROBOTS CARTESIENS 3 AXES. Frédéric Colas

COMMANDE PAR RETOUR ACCELEROMETRIQUE APPLICATION A UN ROBOTS CARTESIENS 3 AXES. Frédéric Colas SEPRO R O B O T I Q U E COMMANDE PAR RETOUR ACCELEROMETRIQUE APPLICATION A UN ROBOTS CARTESIENS 3 AXES Frédéric Colas ERT CEMODYNE (int. 1022) - ENSAM 8, Bd Louis XIV 59046 Lille Cedex barre@lille.ensam.fr

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

Optimisation de plans de financement immobiliers

Optimisation de plans de financement immobiliers Optimisation de plans de financement immobiliers ~ Frédéric GARDI 03/07/2007 Présentation du problème Plan/solution de financement : assemblage/mix de produits Pour chaque prêt du plan : son montant, sa

Plus en détail

Optimisation des transitions de phases de vol pour un drone capable de vol stationnaire et de vol en translation rapide

Optimisation des transitions de phases de vol pour un drone capable de vol stationnaire et de vol en translation rapide Damien Poinsot 1/6 Optimisation des transitions de phases de vol pour un drone capable de vol stationnaire et de vol en translation rapide Damien POINSOT Directeur(s) de thèse : Caroline Bérard et Alain

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Modèle de Heston Pricing d options européennes et calibration G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Projet de département IMI En partenariat avec Natexis 21 juin

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Draft. Introduction à la Plateforme Dynare. Jean-Paul K. Tsasa Vangu. Mars 2, 2012; updated

Draft. Introduction à la Plateforme Dynare. Jean-Paul K. Tsasa Vangu. Mars 2, 2012; updated Jean-Paul K. Tsasa Vangu Laboratoire d analyse-recherche en économie quantitative (Atelier Laréq) Mars 2, 2012; updated Qu est-ce que Dynare? Dynare est un logiciel qui permet de simuler et d estimer les

Plus en détail

Pour un socle de la licence de MATHEMATIQUES

Pour un socle de la licence de MATHEMATIQUES Pour un socle de la licence de MATHEMATIQUES Société Mathématique de France Société de Mathématiques Appliquées et Industrielles Société Française de Statistique Contexte général Afin d éviter de trop

Plus en détail

Plan. Contexte : SCM. Décision incertaine et logistique : Grille typologique

Plan. Contexte : SCM. Décision incertaine et logistique : Grille typologique Décision incertaine et logistique : Grille typologique Animateurs : S. Durieux, P. Genin, C. Thierry durieux@ifma.fr thierry@univ-tlse2.fr patrick.genin@supmeca.fr JD MACS 2009, Angers, 19-20 Novembre

Plus en détail

Table des matières. iii

Table des matières. iii Table des matières 1 Prise en main 1 1.1 Démarrageetaide... 1 1.2 Calculatrice... 4 1.3 Ponctuation,commentaires,interruption... 6 1.4 Variables... 6 1.5 Gestiondelamémoire... 7 1.6 Répertoiredetravail...

Plus en détail

CONVENTION DE PARTENERIAT pour LA MISE EN PLACE D UN DOUBLE DIPLOME

CONVENTION DE PARTENERIAT pour LA MISE EN PLACE D UN DOUBLE DIPLOME Rédigé par LB & DS CONVENTION DE PARTENERIAT pour LA MISE EN PLACE D UN DOUBLE DIPLOME entre l Université Lille 1 Sciences et Technologies (USTL1) FRANCE & l Université «Politehnica» de Bucarest (UPB)

Plus en détail

1 Contrôle des connaissances 2010/2011

1 Contrôle des connaissances 2010/2011 1 Contrôle des connaissances 2010/2011 Remarque préliminaire On s attachera dans la rédaction à être aussi précis que possible. Ainsi, lors de l écriture de chaque problème d optimisation et de chaque

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Communiqué de presse

Communiqué de presse Les services préventifs avancés de GF AgieCharmilles augmentent la capacité de vos machines pour plus de succès Cinq nouveaux services préventifs avancés viennent compléter les Customer Services de GF

Plus en détail

Remerciements. Partie 1 Algèbre linéaire 1

Remerciements. Partie 1 Algèbre linéaire 1 Table des matières Préface Remerciements xix xxi Partie 1 Algèbre linéaire 1 1 Compléments d algèbre linéaire 3 I Rappels du cours de première année.......................... 3 I.1 Famille dans un espace

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Fiche de lecture de : Kotler & Dubois, Marketing Management

Fiche de lecture de : Kotler & Dubois, Marketing Management Fiche de lecture de : Kotler & Dubois, Marketing Management Résumé de la fiche de lecture Marketing management, rédigé par Philip Kotler (professeur de marketing à la Northwestern University) et par Bernard

Plus en détail

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale,

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, PROGRESSION SPIRALÉE Page 1/10 Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, série scientifique et série économique et sociale, précise que : " Les

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Problème du voyageur de commerce par algorithme génétique

Problème du voyageur de commerce par algorithme génétique Problème du voyageur de commerce par algorithme génétique 1 Problème du voyageur de commerce Le problème du voyageur de commerce, consiste en la recherche d un trajet minimal permettant à un voyageur de

Plus en détail

Analyse d un système de freinage récupératif d un véhicule électrique

Analyse d un système de freinage récupératif d un véhicule électrique Analyse d un système de freinage récupératif d un véhicule électrique Par Mohamed Amine Bey, Gabriel Georges, Pascal Jacq, Doha Hadouni, Roxane Duroux, Erwan Scornet, Encadré par Alexis Simonnet 1 Compréhension

Plus en détail

ENSPS 3A ISAV Master ISTI AR. J. Gangloff

ENSPS 3A ISAV Master ISTI AR. J. Gangloff Commande prédictive ENSPS 3A ISAV Master ISTI AR J. Gangloff Plan 1.Introduction / Historique 2.Modélisation du système 3.Fonction de coût 4.Équations de prédiction 5.Commande optimale 6.Exemples 7.Réglage

Plus en détail

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008) Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser

Plus en détail

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham Exposé: la technique de simulation MONTE-CARLO Présenté par : Elmalki Hajar Bourkkadi Salmane Alla Taoufiq Benabdenbi Ilham Encadré par : Prof. Mohamed El Merouani Le plan Introduction Définition Approche

Plus en détail

Optimisation du trafic au sol sur les grands aéroportsa

Optimisation du trafic au sol sur les grands aéroportsa Optimisation du trafic au sol sur les grands aéroportsa Plan Contexte Simulations accélérées du trafic au sol Optimisation des séquences d'avions sur les pistes Résolution des conflits au roulage Applications

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

Comment calculer les contributions de chaque mois à la mortalité annuelle par accident?

Comment calculer les contributions de chaque mois à la mortalité annuelle par accident? Comment calculer les contributions de chaque mois à la mortalité annuelle par accident? Le débat sur les conséquences de l affaiblissement du permis à points par un amendement à la LOPPSI2, qui double

Plus en détail

téléphone sur l'exposition de la tête»

téléphone sur l'exposition de la tête» «Analyse statistique de l'influence de la position du téléphone sur l'exposition de la tête» A.Ghanmi 1,2,3 J.Wiart 1,2, O.Picon 3 1 Orange Labs R&D 2 WHIST LAB (http://whist.institut-telecom.fr), 3 Paris

Plus en détail

Épreuve n 11 : contrôle de gestion

Épreuve n 11 : contrôle de gestion Épreuve n 11 : contrôle de gestion Nature : épreuve écrite portant sur l étude d une ou de plusieurs situations pratiques et/ou un ou plusieurs excercices et/ou une ou plusieurs questions. Durée : 4 heures.

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

DataHighDim. ACI «Masse de Données» - 2003. Analyse exploratoire et discriminante de données en grande dimension

DataHighDim. ACI «Masse de Données» - 2003. Analyse exploratoire et discriminante de données en grande dimension ACI «Masse de Données» - 2003 DataHighDim Analyse exploratoire et discriminante de données en grande dimension Anne Guérin-Dugué Laboratoire CLIPS Grenoble UJF, CNRS UMR 5524 Communication Langagière et

Plus en détail

Devenir ingénieur par la filière Fontanet

Devenir ingénieur par la filière Fontanet Devenir ingénieur par la filière Fontanet 02 Arts et Métiers ParisTech, une Grande École d Ingénieurs Créée en 1780, l École Nationale Supérieure d Arts et Métiers a formé plus de 85 000 ingénieurs qui

Plus en détail

MASTER DE MATHÉMATIQUES DE POITIERS. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

MASTER DE MATHÉMATIQUES DE POITIERS. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE MASTER DE MATHÉMATIQUES DE POITIERS. SPÉCIALITÉ : MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Responsables Marc Arnaudon, professeur des universités, responsable de la formation et des relations avec

Plus en détail

LE POINT SUR LES MATHÉMATIQUES DANS LES BTS RENTRÉE 2003

LE POINT SUR LES MATHÉMATIQUES DANS LES BTS RENTRÉE 2003 LE POINT SUR LES MATHÉMATIQUES DANS LES BTS RENTRÉE 00 ) LES PROGRAMMES a) Le cadre général L arrêté du 8 juin 00 comporte trois annexes, notamment l annexe donnant l intégralité des modules permettant

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant Mathématiques et Applications 57 Modèles aléatoires Applications aux sciences de l'ingénieur et du vivant Bearbeitet von Jean-François Delmas, Benjamin Jourdain 1. Auflage 2006. Taschenbuch. xxv, 431 S.

Plus en détail

Planification des salles opératoires avec durées d interventions aléatoires

Planification des salles opératoires avec durées d interventions aléatoires Planification des salles opératoires avec durées d interventions aléatoires Mehdi LAMIRI, Xiaolan XIE, Alexandre DOLGUI et Frédéric GRIMAUD Centre Ingénierie et santé Centre Génie Industriel et Informatique

Plus en détail

2.1. Les stades d évolution de la fonction de Supply Chain Management 7 2.2. L intégration horizontale des fonctions de l entreprise 12

2.1. Les stades d évolution de la fonction de Supply Chain Management 7 2.2. L intégration horizontale des fonctions de l entreprise 12 Table des matières Avant-propos 3 Introduction 1. L entreprise et l environnement financier...5 2. Le concept traditionnel...6 2.1. Les stades d évolution de la fonction de Supply Chain Management 7 2.2.

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Raisonnement symbolique et géométrique pour la robotique mobile

Raisonnement symbolique et géométrique pour la robotique mobile Introduction à la réunion finale Raisonnement symbolique et géométrique pour la robotique mobile J. Guitton, J.L. Farges Control Architectures of Robots - Bourges - 30 mai 2008 1 Plan Introduction Vers

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

PARTIE I MÉTHODES STANDARDS EN OPTIMISATION DÉPARTEMENT GÉNIE MATHÉMATIQUE ET MODÉLISATION 4ÈME ANNÉE, 2012-2013. Aude RONDEPIERRE & Pierre WEISS

PARTIE I MÉTHODES STANDARDS EN OPTIMISATION DÉPARTEMENT GÉNIE MATHÉMATIQUE ET MODÉLISATION 4ÈME ANNÉE, 2012-2013. Aude RONDEPIERRE & Pierre WEISS DÉPARTEMENT GÉNIE MATHÉMATIQUE ET MODÉLISATION 4ÈME ANNÉE, 2012-2013. PARTIE I MÉTHODES STANDARDS EN OPTIMISATION NON LINÉAIRE DÉTERMINISTE Aude RONDEPIERRE & Pierre WEISS Table des matières 1 Introduction

Plus en détail

Préface à l édition française

Préface à l édition française Table des matières Préface à l édition française III Chapitre 1 La compétitivité des opérations 1 1. Qu est-ce qu un processus? 3 1.1. Les processus imbriqués 4 2. Qu est-ce que le management des opérations?

Plus en détail

Contrôle dynamique des risques. La protection de votre portefeuille contre les risques de baisse

Contrôle dynamique des risques. La protection de votre portefeuille contre les risques de baisse Contrôle dynamique des risques La protection de votre portefeuille contre les risques de baisse Le Centre Européen d Entreprises et d Innovation, Nice - France, 2015 Nous concilions sécuritéet performance

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

INGENIEURS STATISTICIENS ECONOMISTES (ISE)

INGENIEURS STATISTICIENS ECONOMISTES (ISE) INGENIEURS STATISTICIENS ECONOMISTES (ISE) L UNITE DE FORMATION INGENIEUR STATISTICIEN ECONOMISTE (ISE) Objectifs de la formation Les Ingénieurs Statisticiens Economistes sont appelés à prendre place parmi

Plus en détail

MASTER (LMD) MODELISATION, OPTIMISATION, COMBINATOIRE ET ALGORITHME

MASTER (LMD) MODELISATION, OPTIMISATION, COMBINATOIRE ET ALGORITHME MASTER (LMD) MODELISATION, OPTIMISATION, COMBINATOIRE ET ALGORITHME RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine ministériel : Sciences, Technologies, Santé Mention : INFORMATIQUE Spécialité

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

M2-OSIL Mémoire Thématique-Présoutenance le 02.12.2009. Ayse Sena Eruguz

M2-OSIL Mémoire Thématique-Présoutenance le 02.12.2009. Ayse Sena Eruguz M2-OSIL Mémoire Thématique-Présoutenance le 02.12.2009 Ayse Sena Eruguz 1 Plan Introduction Présentation de la Problématique Facteurs de Modélisation Modèles de Localisation-Allocation Applications Méthodes

Plus en détail

Eco-conception de maisons à énergie positive

Eco-conception de maisons à énergie positive MEXICO Rencontres 2015, Clermont-Ferrand 06 octobre 2015 Eco-conception de maisons à énergie positive Mots-clés : Optimisation multicritère, algorithme génétique, fronts de Pareto Thomas RECHT : thomas.recht@mines-paristech.fr

Plus en détail

FACULTE DE L'INFORMATIQUE

FACULTE DE L'INFORMATIQUE FACULTE DE L'INFORMATIQUE Présentation : La faculté a créé en 1992, au nom de l institut lis pour les sciences informatiques, ou la création de l institut est lie à l association lit de bienfaisance qui

Plus en détail