Mécanisme d essuie glace Bosch

Dimension: px
Commencer à balayer dès la page:

Download "Mécanisme d essuie glace Bosch"

Transcription

1 1- Montrer que V ( 3/ 0) 0,5 m/ s 30 mm On mesure sur le document réponses : O mes = 30 mm L échelle est de 1/ 2 donc O reelle = = 42mm 2π V ( 3/ 0) = O Ω (3/ 0) = = 0.5 m/ s 60 V ( 3/ 0) = 0.5 m/ s

2 V ( 3/ 0) 2- Tracer sur le document réponses 1, V ( 3/ 0) On considérera pour cela que la rotation de 3/0 se fait dans le sens trigonométrique. L échelle pour la construction des vitesses adoptée sera de 10 cm pour 0,5 m/s. V ( 3/ 0) = 0.5 m / s V ( 3/ 0) ( M) est donc représentée par un vecteur de 10 cm

3 V ( 43/ / 0) 3- Déterminer une droite sur laquelle se trouve 40. V ( 3/ 0) = V ( 4 / 0) 40 donc 40 ( V ( 4 / 0)) donc 40 ( M )

4 V ( 3/ 0) V ( 4 / 0) 4- En vous intéressant au solide 6, déterminer une droite sur laquelle se trouve est aligné avec 56 et 64 d après le théorème des 3 CR alignés. Or, de manière évidente, nous avons : E et Donc 54 est sur la droite (E)

5 V ( 3/ 0) V ( 4 / 0) 5- En vous intéressant au solide 7, déterminer une autre droite sur laquelle se trouve est aligné avec 57 et 74 Or, de manière évidente, nous avons : 57 D et 74 C Donc 54 est sur la droite (DC) En déduire alors la position eacte de ( DC) ( E)

6 V ( 3/ 0) 6- Déterminer une seconde droite sur laquelle doit se trouver N et par le théorème des 3 CR, nous savons que les points 40, 50, 54 sont alignés. Donc 40 est sur la droite ( 54 N) l aide des questions précédentes en déduire la position de 40. ( N) ( M )

7 V ( 3/ 0) V ( 4 / 0) 8- Déterminer graphiquement : V ( D 4/ 0) V ( D 4/0) D Equiprojectivité entre et D dans le mvt 4/0 V ( D 4 / 0) V ( D 4 / 0)

8 V ( 3/ 0) 9- Déterminer graphiquement V ( D 5/ 0) V ( D 4/0) = V ( D 4/5) + V ( D 5/0) V( D 4/5) V ( D 5/0) est orthogonale à ( 45 D). est orthogonale à ( 50 D)=(ND) V ( D 5 / 0) V ( D 4 / 5) V ( D 5/0) est représentée par un vecteur de 3.6 cm V ( D 5/ 0) = m s donc 0.18 / 54 V ( D 5 / 0) V ( D 4 / 0) 50 V ( D 4 / 5)

9

10 Norme de la vitesse de rotation du balancier 5 par rapport au repère carter fie 0 Ω (5 / 0) en deg/s ( 1000) ND mes = 25mm donc ND réel = 35mm La courbe simulée donne, en t=0.1 s, la valeur donc V ( E 5/ 0) = NE Ω (5/ 0) = 0.18 m/ s Temps (s) Ω(5/0) 300 deg / s 50 tr / min

11 Position angulaire du balancier 5 par rapport au repère carter fie L amplitude est d environ 150.

12 Etude de la sortie du porte balai et de son balai par rapport au balancier Porte balai 14 alancier 5 C iellette 19 N Pignon 9 Carter 0

13 Paramétrage : u bâti 0 est associé le repère ( N,,, z) u balancier 5 est associe le repère ( N,,, z) 5 5 β = (, ) = (, ) 5 5 u pignon 9, on associe le repère (,,, z) 9 9 γ = (, ) = (, ) la biellette 19 est associée le repère = r C = L C = λ avec r = 40 mm avec L = 72 mm ( C,,, z) δ = (, ) = (, ) alancier 5 C N Porte balai 14 iellette 19 Pignon 9 Carter 0

14 1- Tracer les trois figures planes de changement de base. Le vecteur orthogonal à toutes ces figures est le vecteur z β β 9 2- Compléter le schéma cinématique en 3D γ γ δ δ {5} Porte balai 14 N C alancier 5 C iellette 19 N {0} {9} Carter 0 Pignon 9

15 β 9 γ β γ δ 3- partir de l hpothèse de roulement sans glissement en du pignon par rapport au carter, déterminer la relation liant γɺ à ɺ β = V ( 9/ 0) 0 V ( 9/5) + V ( 5/ 0) = 0, R 0 et R 9. V ( 9/5) = V ( 9/5) + Ω (9/5) = R γ z = R γ δ V ( 5/0) = V ( N 5/0) + N Ω (5/0) = R β z = R β R donc on en déduit : 9 γ + R 0 β = 0 soit finalement R γ = R 0 β Porte balai 14 alancier 5 C iellette 19 Carter 0 N Pignon 9

16 Le cahier des charges impose que l amplitude de variation de β, notée β soit de Quel doit être, sur l amplitude totale du mouvement, le nombre de tours réalisés par le pignon 9 par rapport au balancier 5? Le porte balai 14 fait 1 aller et retour par tour de pignon 9. Or, pour 1 balaage aller de pare-brise, le porte balai doit effectuer 2 allers et retours. Le pignon 9 doit donc faire 2 tours par rapport au balancier 5 sur l amplitude totale du mouvement. l est dans la position l est dans la position π γ = 2 π γ = 2 à droite, à gauche et en haut du pare brise au «coins» supérieurs du pare brise. Porte balai 14 alancier 5 C iellette 19 N Carter 0 Pignon 9

17 5- Montrer alors qu il faut nécessairement que R9=10 mm. R R γ = 0 La relation s intègre en γ = β car les amplitudes sont positives R R 0 β 9 9 or : β 150 β = 150 et γ = 720 donc : R9 = R0 = 48 = 10 mm γ 720 Porte balai 14 alancier 5 C iellette 19 N Carter 0 Pignon 9

18 6- Lorsque β = 0, que doit alors valoir γ? Lorsque β = 0, nous nous situons en haut du pare-brise donc il faut que γ = 90 Déterminer alors l équation de γ en fonction de β La relation R R γ = ( ) 0, s intègre alors en γ t = β( t) 90 R R 0 β 9 9 Porte balai 14 alancier 5 C iellette 19 N Carter 0 Pignon 9

19 7- Déterminer les trois valeurs de, notées β < β < β β pour lesquelles le porte balai est complètement rentré par rapport au balancier. γ R = ( t) 0 β( t) 90 R9 β0 = 75 β1 = 0 β = 75 2 β Déterminer les 2 valeurs de, notées β < β pour lesquelles le porte balai est complètement sorti par rapport au balancier. β3 = 37.5 β = Porte balai 14 alancier 5 C iellette 19 N Carter 0 Pignon 9

20 9- Par un bouclage géométrique, déterminer deu relations scalaires faisant intervenir λ, r, L, γ et δ β β 9 γ γ δ δ l suffit pour cela d écrire : soit en projection dans + C + C = 0 r 9 + L 19 λ 5 = 0 r cosγ Lsinδ = 0 ( 5, 5, z) rsinγ + Lcosδ λ = 0 Porte balai 14 alancier 5 C iellette 19 N Carter 0 Pignon 9

21 10- Déterminer l epression de en fonction de r, L et λ γ D après la question précédente : Compte tenu du fonctionnement, la bielle reste en fonctionnement avec un ae proche de si bien que l on a toujours r cosγ Lsinδ = 0 rsinγ + Lcosδ λ = 0 cosδ > 0 (1) (2) 2 2 r 2 On a alors : cosδ = 1 sin δ = 1 cos γ avec (1) 2 L = + r avec (2) L 2 λ rsinγ L 1 cos2γ 2 Porte balai 14 alancier 5 C iellette 19 N Carter 0 Pignon 9

22 11- Donner les deu valeurs etrêmes de λ, et faire les applications numériques. Les deu valeurs etrêmes de λ sont obtenues pour π γ = 2 et π γ = 2 On obtient alors : λ λ ma min = r + L = 112mm = r + L = 32mm Porte balai 14 alancier 5 C iellette 19 N Carter 0 Pignon 9

23 12- Dessiner la trajectoire des points C1 et C2 lors : d un mécanisme traditionnel sans mécanisme de sortie du porte balai par rapport au balancier du mécanisme osch N Le mécanisme osch permet, d avoir une surface d essuage du pare brise améliorée

Découvrir le système objet de l étude. Utiliser un logiciel de simulation

Découvrir le système objet de l étude. Utiliser un logiciel de simulation Lycée PE MARTIN TP N 6 durée : 2h CENTRE D INTERET : CI.5 : transmission de puissance, transformation de mouvement MECANISME D ESSUIE GLACE BOSCH TP de découverte. Application - mise en œuvre de savoirs/savoir-faire.

Plus en détail

Étude statique du tire bouchon

Étude statique du tire bouchon Méthodologie MP1 Étude statique Tire-bouchon Étude statique du tire bouchon On s intéresse à l aspect statique du mécanisme représenté en projection orthogonale sur la figure 1. Le tire bouchon réel est

Plus en détail

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES L1 Page 41 Institut Supérieur des Etudes Technologique de Nabeul Département de Génie Mécanique EXAMEN DE MECANIQUE GENERALE Année universitaire

Plus en détail

Etude de la transformation de mouvement «Bielle-Manivelle» 1) FONCTIONS RÉALISÉES PAR LE LOGICIEL...2 2) CRÉATION DU MÉCANISME...2 3) ANALYSE...

Etude de la transformation de mouvement «Bielle-Manivelle» 1) FONCTIONS RÉALISÉES PAR LE LOGICIEL...2 2) CRÉATION DU MÉCANISME...2 3) ANALYSE... Découverte du logiciel Mecaplan pour SolidWorks Page 1/9 Mecaplan pour SolidWorks Bielle Manivelle Piston Bâti Etude de la transformation de mouvement «Bielle-Manivelle» 1) FONCTIONS RÉALISÉES PAR LE LOGICIEL....2

Plus en détail

Analyse cinématique du mécanisme d essuie-glace Bosch

Analyse cinématique du mécanisme d essuie-glace Bosch Analyse cinématique du mécanisme d essuie-glace Bosch 1. Présentation du support d étude Les essuies glace-centraux (un seul balai) existent depuis longtemps. Le principal inconvénient est d avoir une

Plus en détail

DISPOSITIF D ESSUIE-GLACE DE LA RENAULT SCENIC II

DISPOSITIF D ESSUIE-GLACE DE LA RENAULT SCENIC II EXAMEN GMP 120 Session de Mai 2013 - Durée 2 heures Aucun document autorisé Calculatrice autorisée Documents fournis : Présentation du support d étude (p.1&2) Travail à réaliser (p.3&4) Tableau des liaisons

Plus en détail

CINEMATIQUE GRAPHIQUE 2D Polycopié sans trous

CINEMATIQUE GRAPHIQUE 2D Polycopié sans trous Cours ENSIS MEC101 Mécanique des systèmes et des milieux déformables CINEMTIQUE GRPHIQUE 2D Polycopié sans trous 1/20 I) MOUVEMENT D'UN SOLIDE 1.1. Solide du point de vue cinématique Un mécanisme est composé

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

Exercice 1 : DIRECTION ASSISTÉE ELECTRIQUE DE RENAULT TWINGO

Exercice 1 : DIRECTION ASSISTÉE ELECTRIQUE DE RENAULT TWINGO TD 20 - Loi Entrée-Sortie à l'aide d'un produit scalaire constant de deux vecteurs d orientation Page 1/6 Exercice 1 : DIRECTION ASSISTÉE ELECTRIQUE DE RENAULT TWINGO (Selon le concours CCP 2004 filière

Plus en détail

BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel

BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité génie électronique Étude des Systèmes Techniques Industriels SYSTÈME DE DISTRIBUTION AUTOMATIQUE DE BOISSONS CHAUDES ES 7600 NECTA-WITTENBORG.

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

STI2D : Enseignements Technologiques Transversaux

STI2D : Enseignements Technologiques Transversaux 1) Notion de moment d une force : Les effets d une force sur un solide dépendent de la position de la force par rapport au corps. Pour traduire avec précision les effets d une force, il est nécessaire

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

Corrigé Exercice 1 : ROBOT 2 AXES.

Corrigé Exercice 1 : ROBOT 2 AXES. TD 11 corrigé - Cinématique graphique - Composition des vecteurs vitesses Page 1/8 Corrigé Exercice 1 : ROBOT 2 AXES. Question 1 : Tracer les trajectoires TB 2/1, TA 1/0 et TB 1/0. Le mouvement de 2/1

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

FICHES D AIDE POUR L UTILISATION DU LOGICIEL

FICHES D AIDE POUR L UTILISATION DU LOGICIEL FICHES D AIDE POUR L UTILISATION DU LOGICIEL MECA 3D Travailler avec Méca 3D Effectuer un calcul mécanique Simuler le mouvement d un mécanisme Afficher une courbe de résultats Ajouter un effort (force

Plus en détail

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.

Plus en détail

ASCENCEUR INTRUMENTE

ASCENCEUR INTRUMENTE LYCEE EUGENE LIVET NANTES ASCENCEUR INTRUMENTE CI6 : Chaînes de solides indéformables L objet de ce TP est de modéliser et d analyser le comportement du mécanisme de verrouillage de la porte de l ascenseur

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

CONCOURS POUR LE RECRUTEMENT DE :

CONCOURS POUR LE RECRUTEMENT DE : CONCOURS POUR LE RECRUTEMENT DE : Techniciens supérieurs de la météorologie de première classe, spécialité «instruments et installations» (concours interne et externe). ***************** SESSION 205 *****************

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

LÈVE-PERSONNE ORIOR MISE EN SITUATION.

LÈVE-PERSONNE ORIOR MISE EN SITUATION. LÈVE-PERSONNE ORIOR MISE EN SITUATION. Le lève-personne ORIOR permet de transférer en toute sécurité dans le cadre d un usage domestique une personne à mobilité réduite d un support à un autre, d un lit

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter.

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Veuillez visionner le document sur la formation en ligne. Corniche : objet technique à dessiner. Plaçons

Plus en détail

MOBILITE ET HYPERSTATISME

MOBILITE ET HYPERSTATISME MOBILITE ET HPERSTATISME 1- Objectifs : Le cours sur les chaînes de solides nous a permis de déterminer le degré de mobilité et le degré d hyperstatisme pour un mécanisme donné : m = Nc - rc et h = Ns

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon :

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : Jeanniard Sébastien Lemaître Guillaume TP n 1 : Théorème de Shannon Modulation de fréquence 1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : 1.3 Etude de la fréquence

Plus en détail

Dispositif d essuie-glace de la Renault Scenic II

Dispositif d essuie-glace de la Renault Scenic II S si Dispositif d essuie-glace de la Renault Scenic II TD 1. Présentation du dispositif Introduction Les essuie-glaces sont des raclettes en caoutchouc, montées sur des bras actionnés par un moteur électrique,

Plus en détail

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide 1 Équations du e degré Résoudre dans R les équations suivantes : 1 3 5 = 0 5 + = 0 3 + 6 = 0 4 6 + 9 = 0 5 ( 3) = ( 1) 6 ( )( + 3) = ( )(4 + 1) Équations avec changements de variable Résoudre dans R les

Plus en détail

Analyse fonctionnelle. 2-Etude cinématique Pied (1) = {1,3} Bras (2) = {2, }

Analyse fonctionnelle. 2-Etude cinématique Pied (1) = {1,3} Bras (2) = {2, } GMP 0 Janvier 202 EXMEN GMP 0 Session de Janvier 202- Durée 2 heures ucun document autorisé Calculatrice autorisée Documents fournis : Dessin d ensemble et nomenclature format 4 à l échelle :2 Documents

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

La Rivière Situations Connexes. Arc de cercle. Voir. Courbe. Voir. Sur la sphère. Voir. Retour au Menu La Rivière

La Rivière Situations Connexes. Arc de cercle. Voir. Courbe. Voir. Sur la sphère. Voir. Retour au Menu La Rivière Arc de cercle Voir Courbe Voir Sur la sphère Voir Retour au Menu La Rivière Rivière en arc de cercle La rivière est un arc de cercle : Retour au Menu des Rivière en arc de cercle Expérience : Expérimenter

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Corrigé Exercice 1 : DIFFÉRENTES CONFIGURATIONS D UN TRAIN ÉPICYCLOÏDAL.

Corrigé Exercice 1 : DIFFÉRENTES CONFIGURATIONS D UN TRAIN ÉPICYCLOÏDAL. TD 22 corrigé - Loi E-S pour les réducteurs et multiplicateurs de vitesse à train épicycloïdal Page / CORRIGÉ EXERCICE : DIFFÉRENTES CONFIGURATIONS D UN TRAIN ÉPICYCLOÏDAL.... CORRIGÉ EXERCICE 2 : TRAINS

Plus en détail

Notion de fonction. Résolution graphique Fonction affine

Notion de fonction. Résolution graphique Fonction affine Eercices 6 décembre 0 Notion de fonction. Résolution graphique Fonction affine Eercice Représentation d une fonction Parmi les courbe suivantes, quelles sont celles qui ne sont pas des représentations

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES FERME-PORTE (ou «groom») Un «groom» est un système hydro-mécanique de fermeture automatique de porte. Description du fonctionnement La figure montre le dispositif

Plus en détail

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

1) PRESENTATION...2 2) CONSTITUTION...3 3) MECANISME DE COMMANDE EN ROTATION ALTERNATIVE DU BALANCIER 5 / BATI FIXE 0...5

1) PRESENTATION...2 2) CONSTITUTION...3 3) MECANISME DE COMMANDE EN ROTATION ALTERNATIVE DU BALANCIER 5 / BATI FIXE 0...5 Dossier technique Essuie-glace Bosch de Mercedes Page 1/6 Essuie-glace Mercedes 1) PRESENTATION...2 2) CONSTITUTION...3 3) MECANISME DE COMMANDE EN ROTATION ALTERNATIVE DU BALANCIER 5 / BATI FIXE 0....5

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter

Plus en détail

Projet Calcul. Étude d'un système: Essuie-glace Renault Scénic

Projet Calcul. Étude d'un système: Essuie-glace Renault Scénic Gaillard Olivier Projet Calcul Semestre 5 Morisse Quentin Projet Calcul Étude d'un système: Essuie-glace Renault Scénic Table des matières I. Rappels sur le système étudié... 3 A. Présentation du système...

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

Laboratoire N 3. Etude des machines asynchrones triphasées à cage d écureuil

Laboratoire N 3. Etude des machines asynchrones triphasées à cage d écureuil Chapitre 3 Laboratoire N 3 Etude des machines asynchrones triphasées à cage d écureuil 1. But du travail L étude des machines asynchrones à cage d écureuil. 2. Les indications pour l exécution du travail

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4 SOAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Prouit ou comoment e eux torseurs 4 2.2 Torseurs élémentaires 4 2.2.1 Torseur couple 4 2.2.2 Torseur

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Bac GM 2006 Métropole Essuie glace de SCENIC CORRIGE 1 ère Partie

Bac GM 2006 Métropole Essuie glace de SCENIC CORRIGE 1 ère Partie ac GM 2006 Métropole Essuie glace de SCENIC CORRIGE 1 ère Partie Question 2 : Liaison 6/24 : contact cylindre cylindre avec appui sur un épaulement, le maintien en position est assuré par sertissage. Question

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

Utilisation du logiciel CATIA V5. Exemple d assemblage Le système bielle-piston

Utilisation du logiciel CATIA V5. Exemple d assemblage Le système bielle-piston Utilisation du logiciel CATIA V5 Exemple d assemblage Le système bielle-piston Ce scénario vous permettra de vous familiariser avec le module Assembly Design. L assemblage que vous allez réaliser est représenté

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

S2I. La robotique au service du handicap

S2I. La robotique au service du handicap I Introduction S2I PSI 4 heures Calculatrices autorisées La robotique au service du handicap 2010 Les avancées technologiques récentes des actionneurs électriques ont permis le développement du champ d

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

D.A.E. DIRECTION ASSISTEE ELECTRIQUE DE TWINGO

D.A.E. DIRECTION ASSISTEE ELECTRIQUE DE TWINGO Lycée Chevalier d Eon - Tonnerre D.A.E. DIRECTION ASSISTEE ELECTRIQUE DE TWINGO MODULE 1 Station de mesure Calculateur Régime Capteur de couple Capteur de Vitesse Prise diagnostique MODULE 4 Diagnostic

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Etude des performances du système d'ouverture de porte automatique de TGV

Etude des performances du système d'ouverture de porte automatique de TGV Etude des perforances du systèe d'ouverture de porte autoatique de TGV (D après Centrale-Supelec MP 28) On s intéresse aux perforances du systèe d ouverture de porte du TGV dont on donne une description

Plus en détail

Devoir maison numéro 03 Première S

Devoir maison numéro 03 Première S Devoir maison numéro 03 Première S Conseils pour ces vacances : Se reposer durant la première semaine, puis se mettre à travailler régulièrement et de plus en plus jusqu à la rentrée Pour ceux qui ont

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Classe de problèmes-cao : Concevoir, analyser, résoudre et communiquer à l aide de la CAO

Classe de problèmes-cao : Concevoir, analyser, résoudre et communiquer à l aide de la CAO Classe de problèmes-cao : Concevoir, analyser, résoudre et communiquer à l aide de la CAO Compétence ingénieur : Concevoir une pièce en 3D à partir d un plan 2D LYCÉE CARNOT (DIJON), 2015-2016 Germain

Plus en détail

Calcul de la distance de la Lune par parallaxe

Calcul de la distance de la Lune par parallaxe Calcul de la distance de la Lune par parallaxe La Lune au 5 ème jour Sommaire Feuille de route p.3 I) Introduction 1) La Lune dans l Histoire p.4 2) Parallaxe de la Lune p.4 II) Expérience 1) Mise en situation

Plus en détail

Exercice 1 : 3 points

Exercice 1 : 3 points BACCALAUREAT PROFESSIONNEL MAINTENANCE de VEHICULES AUTOMOBILES MATHEMATIQUES (15 points) Exercice 1 : 3 points PARTIE 1 : Détermination du diamètre de la roue La géométrie des trains roulants, désigne

Plus en détail

Le Système de Récupération de l Energie Cinétique (SREC)

Le Système de Récupération de l Energie Cinétique (SREC) Concours EPITA 011 Epreuve de Sciences Industrielles pour l ingénieur Le Système de Récupération de l Energie Cinétique (SREC) Tous documents interdits Calculatrice autorisée Durée : h L augmentation de

Plus en détail

B = (R 2 + (x x c ) 2 )

B = (R 2 + (x x c ) 2 ) PHYSQ 126: Champ magnétique induit 1 CHAMP MAGNÉTIQUE INDUIT 1 But Cette expérience 1 a pour but d étudier le champ magnétique créé par un courant électrique, tel que décrit par la loi de Biot-Savart 2.

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

1) Quel est le tarif le plus avantageux pour un spectateur assistant à :

1) Quel est le tarif le plus avantageux pour un spectateur assistant à : http://maths-sciences.fr EXERCICES SUR LES FONCTIONS Eercice 1 Un club de football propose trois tarifs d entrée au stade : Tarif A : sans abonnement, le spectateur paye 8 par match. Tarif B : avec un

Plus en détail

Suspension arrière de la Voxan 1000 V2 ROADSTER

Suspension arrière de la Voxan 1000 V2 ROADSTER Partie 1 Suspension arrière de la Voxan 1000 V2 ROADSTER On utilise pour cela un modèle simplifié plan. 1.1. Colorié le document 1 pour faire apparaître les différentes classes d équivalence. 1.2. Réaliser

Plus en détail