Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole
|
|
- Géraldine Flavie Boutin
- il y a 2 ans
- Total affichages :
Transcription
1 Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine. Document 1 En 2008, la surface agricole utilisée (SAU) était de hectares dont hectares en mode de production biologique. Document 2 Partie A 1. D après le document 2, la part de la surface en mode de production biologique dans la SAU est de 2, 12% en En utilisant le document 1, justifier par un calcul cette information. 2. Calculer le pourcentage d évolution de la surface en mode de production biologique entre 2007 et Ce pourcentage sera arrondi à 0,01%. Partie B On a représenté, sur l annexe, partie B, à rendre avec la copie, le nuage de points représentant la série statistique (x j ; y i ). 1. À l aide de la calculatrice, donner une équation de la droite d ajustement affine de y en x obtenue par la méthode des moindres carrés. Les coefficients seront arrondis à Tracer cette droite dans le repère fourni sur l annexe, partie B.
2 3. À l occasion d un TPE, un groupe d élèves a trouvé sur une autre page du site qu en 2009 et en 2010, les parts de la surface en mode de production biologique dans la SAU sont respectivement 2,46% et 3,09%. L ajustement affine précédent est-il adapté à ces nouvelles données? Partie C Pour la suite de ce TPE, les élèves ont modélisé à l aide d un logiciel l évolution de la part de surface en mode de production biologique dans la SAU sur la période de 2001 à 2012 par la fonction f définie sur l intervalle [1; 12] par : f(x) = 0,0096x 3 0,1448x 2 + 0,7132x + 0,813 Cet ajustement est représenté sur l annexe, partie C. Dans cette question, toute trace de recherche, même incomplète, ou d initiative même fructueuse, sera prise en compte dans l évaluation. Le Grenelle de l environnement s est fixé comme objectif d avoir 6% de la SAU en mode de production biologique en Selon ce modèle, peut-on espérer que cet objectif soit atteint?
3 Exercice 2 Spé : 5 points Une région se divise en deux zones : une zone A à proximité d une grande agglomération, une zone B à proximité de la mer. Chaque année, 20% des habitants de la zone A partent habiter dans la zone B pour avoir un meilleur cadre de vie, et 5% des habitants de la zone B partent habiter dans la zone A pour se rapprocher de leur lieu de travail. On sait de plus qu en 2010, 40% de la population habitait en zone A. On suppose que le nombre total d habitants de la région reste constant au cours du temps. Pour tout entier naturel n, l état probabiliste correspondant à l année n est défini par la matrice ligne P n = (a n b n ), où a n et b n désignent respectivement les proportions d habitants des zones A et B. 1. Déterminer la matrice ligne P 0 de l état initial. 2. Représenter la situation par un graphe probabiliste de sommets A et B. 3.a. Écrire la matrice de transition M de ce graphe en respectant l ordre alphabétique des sommets. 3.b. Donner la répartition de la population en Dans la question suivante, on considère la matrice ligne P = (a b) où a et b sont deux nombres réels tels que +b = 1. 4.a. Déterminer a et b pour que P = PM. 4.b. Les infrastructures de la zone B permettent d accueillir au maximum 75% de la population. Lors d un conseil municipal, le maire affirme qu il va falloir prévoir de nouvelles infrastructures. A-t-il raison? Exercice 2 : 5 points La Fédération e-commerce et Vente à Distance (FEVAD) a effectué en octobre 2010 une enquête auprès de 719 acheteurs à distance âgés de 18 ans et plus. Sur le questionnaire proposé, ces personnes ont été interrogées sur le nombre de familles de produits (vêtements, informatique, loisirs,...) achetés à distance au cours des 12 derniers mois. L étude statistique a permis d obtenir les informations suivantes :
4 Parmi les acheteurs de 1 à 2 familles de produits, 45 % sont retraités. Parmi les acheteurs de 3 à 4 produits, 25 % sont retraités. Le responsable des ventes tire un questionnaire au hasard, chacun ayant la même probabilité d être tiré. On note : A l évènement : «Le questionnaire tiré est celui d un acheteur de 1 à 2 familles de produits.» B l évènement : «Le questionnaire tiré est celui d un acheteur de 3 à 4 familles de produits.» C l évènement : «Le questionnaire tiré est celui d un acheteur de 5 familles de produits ou plus.» R l évènement : «Le questionnaire tiré est celui d un retraité.» 1. Traduire les données de l énoncé à l aide d un arbre. 2.a. Calculer la probabilité P(A R). 2.b. Déterminer la probabilité de l évènement: «Le questionnaire tiré est celui d un retraité acheteur de 3 à 4 familles de produits.» 2.c. On sait de plus que 21,7% des acheteurs interrogés sont des retraités. Vérifier que P(C R) = 0, Le responsable des ventes décide de lancer une campagne publicitaire dès lors que le pourcentage de retraités parmi les acheteurs de 5 familles de produits ou plus est inférieur à 8 %. Quelle décision prendra-t-il?
5 Exercice 3 : 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des questions posées, une seule des quatre réponses est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n est demandée. Une réponse exacte rapporte 1 point, une réponse fausse ou l absence de réponse ne rapporte ni n enlève aucun point. On a représenté ci-dessous, dans le plan muni d un repère orthogonal, la courbe représentative C d une fonction f définie et dérivable sur l intervalle ]0; 6]. Le point A(1; 4) appartient à la courbe C. La tangente en A à la courbe C est parallèle à l axe des abscisses. On note f la fonction dérivée de la fonction f. 1. Le nombre dérivé de la fonction f en 1 est égal à: a. 4 b. 0 c. 2 d. 1
6 2. Sur l intervalle ]0; 6], l inéquation f (x) 0 admet comme ensemble de solutions : a. ]0; 1] b. ]0; 6] c. [1; 6] d. [4; 9] 5 3. On pose = f (x)dx. On peut affirmer que : 3 a. 12 < I < 13 b. 0 < I < 2 c. 5 < I < 8 d. 2 < I < 0 4. On appelle F une primitive de la fonction f sur l intervalle ]0; 6]. L expression de F peut être : a. F(x) = 1 2 x2 + 2x + 1 b. F(x) = x c. F(x) = 1 2 x2 + 2x + ln x d. F(x) = 2x + ln(x) Exercice 4 : 6 points Le bénéfice en milliers d euros que réalise une entreprise lorsqu elle fabrique et vend x centaines d objets (pour x compris entre 0 et 6) est donné par : f(x) = (200x 300)e x Alix a affiché sur l écran de sa calculatrice la courbe représentative de la fonction f sur l intervalle [0 ; 6 ].
7 Partie A : objectif «réaliser un bénéfice maximal» L écran ne permet pas à Alix de déterminer le bénéfice maximal. Il décide donc d étudier la fonction f sur l intervalle [0 ; 6 ]. On admet que cette fonction est dérivable sur l intervalle [0; 6]. On désigne par f la fonction dérivée de la fonction f. 1. Établir que, pour tout nombre réel x de l intervalle [0; 6], f (x) = ( x)e x 1 2. Dresser le tableau de variation de la fonction f sur l intervalle [0; 6]. 3. En déduire le nombre d objets à vendre pour réaliser un bénéfice maximal. Quel est ce bénéfice maximal en euros? (Donner la réponse arrondie à l euro). 4. Proposer un réglage de la fenêtre graphique permettant de visualiser le maximum de la fonction f. Partie B: objectif «ne pas vendre à perte» 1. Au vu du graphique obtenu par Alix, à partir de combien d objets l entreprise ne vend-elle pas à perte? 2. Démontrer que sur l intervalle [1 ; 2] l équation f(x) = 0 admet une unique solution notée α.
8 3. Donner une valeur approchée de α à 10 2 près. 4. Préciser le nombre d objets à partir duquel l entreprise ne vend pas à perte.
Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.
BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice
Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord
Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.
Baccalauréat ES Amérique du Nord 30 mai 2013
Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,
Bac ES La Réunion juin 2009
Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Baccalauréat STMG Polynésie 17 juin 2014
Baccalauréat STMG Polynésie 17 juin 2014 Durée : 3 heures EXERCICE 1 Cet exercice est un Q.C.M. 4 points Pour chaque question posée, quatre réponses sont proposées parmi lesquelles une seule est correcte.
Corrigé du baccalauréat STMG Métropole 18 juin 2015
orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle
PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité
PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,
SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3
BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément
Baccalauréat STG Mercatique Centres étrangers juin 2007
Baccalauréat STG Mercatique Centres étrangers juin 2007 EXERCICE 1 6 points En 2003, une étude est réalisée sur un échantillon représentatif de la population française composé de 1 500 individus. La première
Baccalauréat ES La Réunion 19 juin 2009
Baccalauréat ES La Réunion 9 juin 9 EXERCICE points Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces réponses est exacte. Aucune
Baccalauréat STMG Antilles Guyane / 18 juin 2015
Exercice 1 Durée : 3 heures Baccalauréat STMG Antilles Guyane / 18 juin 2015 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de la question
BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES
BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément
Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord
Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;
Baccalauréat blanc nº1 - ES - décembre 2011
Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et
Exercice 1 Métropole juin 2014 5 points
Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,
BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)
BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat
Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.
TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la
Baccalauréat CGRH Antilles Guyane 13 septembre 2013 Correction
Durée : 2 heures Baccalauréat CRH Antilles uyane 3 septembre 203 Correction EXERCICE 7 points Un concessionnaire automobile s est spécialisé dans la vente de deux types de véhicules uniquement : les coupés
Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban
Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une
Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord
Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
BACCALAURÉAT GÉNÉRAL Hiver 2015
BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de
Baccalauréat ES Pondichéry 21 avril 2016
Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des
Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés
Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Épreuve de mathématiques Terminale ES 200 minutes
Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.
Baccalauréat S Asie 18 juin 2013
Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation
Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire
Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30
Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry
Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.
Baccalauréat ES Polynésie 7 juin 2013
Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte
Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)
Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses
BACCALAURÉAT GÉNÉRAL
BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des
En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :
Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant
Correction Baccalauréat STMG Antilles Guyane 18 juin 2015
Durée : 3 heures Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 EXECICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de
Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S
Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations
Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production
Mercredi 24 Juin 2015
BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures
BACCALAURÉAT GÉNÉRAL
BACCALAURÉAT GÉNÉRAL SESSION 2010 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 7 pages numérotées de 1 à 7 dont une page en annexe à rendre avec la copie. L
Commun à tous les candidats
BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques
BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.
BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance
T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015
T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,
«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES
«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique
Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012
Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications
Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion
Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion A. P. M. E. P. ÉPREUVE OBLIGATOIRE Durée : 3 heures Coefficient : 2 Exercice 1 7 points Les parties A et B de cet exercice
B A C C A L A U R E A T G E N E R A L
B A C C A L A U R E A T G E N E R A L SESSION 2006 MATHÉMATIQUES SERIE : ES DUREE DE L EPREUVE: 3 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages dont feuille ANNEXE L utilisation d une calculatrice
Baccalauréat ES Amérique du Nord 4 juin 2009
Baccalauréat ES Amérique du Nord 4 juin 009 EXERCICE 4 points Commun à tous les candidats Cet exercice constitue un questionnaire à choix multiples. Les questions sont indépendantes les unes des autres.
BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L
BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques
Baccalauréat SMS 2001 L intégrale de juin à novembre 2001
Baccalauréat SMS 001 L intégrale de juin à novembre 001 Antilles Guyane juin 001............................... 3 La Réunion juin 001.................................... 5 Métropole juin 001.....................................
Baccalauréat ES Nouvelle-Calédonie 2 mars 2015
Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On
Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction
Baccalauréat STG CGRH Métropole 3 septembre 202 Correction La calculatrice est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, trois réponses sont proposées,
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
BACCALAURÉAT TECHNOLOGIQUE
BACCALAURÉAT TECHNOLOGIQUE SESSION 014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL STS DURÉE DE L ÉPREUVE : heures COEFFICIENT : 3 Ce sujet comporte 5 pages numérotées de 1
Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015
Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x
SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES
SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet
(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné.
Eercice / 5 points Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 0 % de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique.
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Annales de baccalauréat STG - Statistiques
Annales de baccalauréat STG - Statistiques Exercice 1 Pondichery - 2011 Voici la cote ARGUS d une voiture d occasion : Année de mise en circulation 2009 2008 2007 2006 2005 2004 Âge de la voiture en année
«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE
«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE LIBAN 2014 On considère la fonction f définie sur l intervalle [0 ; 5] par f(x) = x+1+e
Baccalauréat ST2S Polynésie 16 juin 2014 correction
Baccalauréat STS Polynésie 6 juin 0 correction EXERCICE 8 points On présente dans un tableau, extrait d une feuille de calcul, le nombre de cartes SIM (carte électronique permettant d utiliser un réseau
Correction du bac blanc CFE Mercatique
Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009
BACCALAURÉAT TECHNOLOGIQUE Session 2011
BACCALAURÉAT TECHNOLOGIQUE Session 2011 Épreuve : MATHÉMATIQUES Série SCIENCES ET TECHNOLOGIES DE LA GESTION Spécialités : Mercatique (coefficient : 3) Comptabilité et finance d entreprise (coefficient
Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction
Baccalauréat SG Mercatique Polynésie 8 juin 2012 Correction La calculatrice (conforme à la circulaire N o 99-186 du 16-11-99) est autorisée. EXERCICE 1 4 points Cet exercice est un questionnaire à choix
Brevet de technicien supérieur Comptabilité et gestion des organisations
Comptabilité et gestion des organisations Lycée Cassini Exercice 1 11 points A. Étude d une fonction Soit f la fonction définie sur l intervalle [1 ; 14] par x+ 1 ln x f (x)=. x 1. a. Démontrer que. pour
Baccalauréat L spécialité Métropole La Réunion septembre 2008
Baccalauréat L spécialité Métropole La Réunion septembre 2008 L usage d une calculatrice est autorisé Ce sujet ne nécessite pas de papier millimétré 3 heures EXERCICE 1 4 s Un magasin de matériels informatiques
SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES
SESSION 011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : heures Coefficient : Dès que le sujet lui
Baccalauréat STG Mercatique Polynésie 10 juin 2011
Baccalauréat STG Mercatique Polynésie 0 juin 0 La calculatrice (conforme à la circulaire N 99-86 du 6--99) est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). 4 points Pour
Baccalauréat ES Polynésie juin 2008
Baccalauréat ES Polynésie juin 2008 Exercice 1 4 points Le plan est muni d un repère orthonormal. Soient f une fonction définie et dérivable sur l ensemble R des nombres réels et C sa courbe tracée ci-contre.
Un corrigé de l épreuve de mathématiques du baccalauréat blanc
Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l
Baccalauréat S Métropole 21 juin 2011
Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,
Baccalauréat ES Antilles Guyane juin 2009
Baccalauréat ES Antilles uyane juin 2009 EXERCICE PARTIE A : aucune justification n est demandée 4 points Cette partie est un questionnaire à choix multiples. Pour chacune des questions, trois réponses
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Baccalauréat ES Nouvelle-Calédonie novembre 2007
accalauréat S Nouvelle-alédonie novembre 007 XRI points ommun à tous les candidats Soit f une fonction définie et dérivable sur l intervalle ]0 ; [, strictement croissante sur l intervalle ]0 ; ] et strictement
BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Baccalauréat SMS 2008 L intégrale de juin à septembre 2008
Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Métropole juin 2008..................................... 3 La Réunion 18 juin 2008................................. 6 Polynésie juin 2008......................................
Baccalauréat L Enseignement de spécialité Asie Juin 2010
Baccalauréat L Enseignement de spécialité Asie Juin 2010 EXERCICE 1 Il s agit de remplir la grille suivante dont chaque case blanche doit contenir exactement un chiffre (entre 0 et 9). 1. Pour y parvenir,
Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015
Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il
BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L
BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques
Baccalauréat ST2S Antilles Guyane juin 2013 Correction
Baccalauréat ST2S Antilles Guyane juin 2013 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre d abonnements au service de téléphonie mobile en France entre fin 2001 et fin 2009, exprimé
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements
Baccalauréat ES Amérique du Sud novembre 2006
Baccalauréat S mérique du Sud novembre 2006 XI 1 ommun à tous les candidats Un hôpital est composé de trois services : service de soins, service de soins B, service de soins. On s intéresse aux prises
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé
Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 2012 France métropolitaine - Antilles - Guyane - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Option : Toutes Durée : 2 heures Matériel(s)
Corrigé Bac ES Spécialité Maths Antilles Guyane 2011
Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats
Corrigé du baccalauréat ES Asie 19 juin 2014
Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe
Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués
Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L
BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques
Exercices de révision
Exercices de révision EXERCICE 1 Le site (imaginaire) «www.musordi.net» propose aux internautes de télécharger des titres de musique sur leur ordinateur. Son offre commerciale pour un trimestre est la
Baccalauréat ES 2009. L intégrale de mars à décembre 2009
Baccalauréat ES 2009 L intégrale de mars à décembre 2009 Pour un accès direct cliquez sur les liens bleus Pondichéry 16 avril 2009................................. 3 Amérique du Nord mai 2009.............................
Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.
Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******
Terminale ES BAC blanc N 1 ( janvier 2014)
Terminale ES BAC blanc N 1 ( janvier 2014) Epreuve de mathématiques N anonymat :... Durée : 3 heures Calculatrice autorisée Exercice 1 ( pour tous les candidats ) Cet exercice est un QCM Une seule bonne
Baccalauréat STG CGRH Polynésie corrigé
EXERCICE 1 Baccalauréat STG CGRH Polynésie corrigé 8 points Le tableau ci-dessous donne les dépenses, en millions d euros, des ménages en France de 2000 à 2009 pour les programmes audio-visuels. cinéma
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Bac Blanc de Mathématiques Correction Durée : 3 heures
Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est
BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S
BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Série ST2S Durée de l épreuve : 2 heures Coefficient : 3 Une feuille de papier millimétré est fournie au candidat Les calculatrices électroniques de
T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014
T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de