Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3"

Transcription

1 Le produit scalaire Table des matières I) Définitions et propriétés 1 a) Norme d un vecteur b) de deux vecteurs c) Autres expressions du produit scalaire ) Expression analytique du produit scalaire ) En fonction l angle des vecteurs II) s du produit scalaire a) Symétrie et bilinéarité b) Orthogonalité III)Application du produit scalaire 3 a) Calculer de longueurs et des angles ) Théorème de Pythagore généralisé ) Théorème de la médiane b) Equation cartésienne de cercle c) Trigonométrie ) Les formules d addition ) Les formules de duplication

2 I) Définitions et propriétés a) Norme d un vecteur Définition Soit u un vecteur du plan, et soit A etb deux points du plan tel que u = AB La norme du vecteur u, est la longueur du segment [AB]. On a : u = = AB AB. Dans un repère orthonormé, si ) x u a pour coordonnées alors y u = x + y Si u et v sont deux vecteurs du plan. Pour tout nombre réel k, on a k u = k u ; u + v u + v Inégalité triangulaire); u =0 u = 0. Calculer une norme dans un repère orthonormé Soit A ; ) et B 1 ; ) deux points dans un repère orthonormé O, ı, ) j. Soit u le vecteur dont un représentant est le vecteur AB. Calculer les normes des vecteurs u, u et 3 u. b) de deux vecteurs Définition Soit u et v deux vecteurs du plan. On appelle produit scalaire de u et v noté u v le nombre réel défini par : 1 ) u v = u + v u v. Remarque : Page 1/5

3 C Soit A, B et C trois points du plan tels que u = AB et v = AC on a : u v 1 u v = AB AC = AB + AC BC ). v u B A c) Autres expressions du produit scalaire 1) Expression analytique du produit scalaire Théorème Dans un repère orthonormé, si u a pour coordonnées u v = xx + y y ) x et v a pour coordonnées y x y ) alors Carré scalaire Pour tout u on a : u u = u = u ) En fonction l angle des vecteurs Si u et v sont deux vecteurs non nuls alors u v = u v cos u, v ) Remarque : Dans la pratique, on utilise une mesure θ de l angle géométrique associé aux vecteurs u et v. II) s du produit scalaire a) Symétrie et bilinéarité u, v et w étant des vecteurs du plan et k étant un nombre réel. k u ) v = u k v )=k u v ); u + v ) w = u w + v w ; u v + w )= u v + u w. Page /5

4 Egalités remarquables u et v étant des vecteurs du plan et k étant un nombre réel. u + v ) = u + u v + v soit u + v = u + u v + v ; u v ) = u u v + v soit u v = u u v + v. b) Orthogonalité Définition u = AB et v = CD étant deux vecteurs non nuls, dire que u et v sont orthogonaux signifie que les droites AB) et CD) sont perpendiculaires. Par convention, le vecteur nul 0 est orthogonal à tous les autres vecteurs. caractéristique Dire que deux vecteurs sont orthogonaux équivaut à dire que u v = 0. AB) CD) AB CD = 0 III) Application du produit scalaire a) Calculer de longueurs et des angles 1) Théorème de Pythagore généralisé Théorème ABC est un triangle quelconque. BC = AB + AC AB AC cos BAC) Démonstration D après la relation de Chasles BC = BA + AC = AC AB Donc BC = AC AB ) = Page 3/5

5 ) Théorème de la médiane Théorème ABC est un triangle quelconque, I est le milieu de [BC]. La longueur de la médiane AI vérifie : AB + AC = MI + BC b) Equation cartésienne de cercle Le plan est rapporté à un repère orthonormé. Une équation cartésienne du cercle de centre Ωa;b) et de rayon R est x a) + y b) = R c) Trigonométrie 1) Les formules d addition Quels que soient les nombres a et b : cosa b)=cos a cosb+ sin a sinb et sina b)=sin a cosb cos a sinb cosa+ b)=cos a cosb sin a sinb et sina+ b)=sin a cosb+ cos a sinb Démonstration Démonstration J B Dans le repère O; OI, ) OJ, les vecteurs OA et OB ont pour coordonnées respec- O b a A I tives : OA ) cos a sin a et OB ) cosb sinb Pour établir la première formule, il suffit d écrire le produit scalaire OA OB de ) deux façons différentes en remarquant que l angle OA ; OB vaut b a. Page 4/5

6 ) Les formules de duplication Quels que soient les nombres a et b : cosa= cos a sin a et sina= sin a cos a cosa= cos a 1 et cosa= 1 sin a cos a= 1+cosa et sin a= 1 cosa Page 5/5

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2017/2018 1 Définitions et propriétés Norme d un vecteur de deux vecteurs Autres expressions du produit scalaire 2 Symétrie

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2016/2017 Première S ( Lycée du golfe de Saint Tropez) Produit scalaire Année 2016/2017 1 / 1 Première S ( Lycée du golfe de

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB.

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB. Produit scalaire. I. et expressions. 1) Norme d'un vecteur Une unité de longueur étant choisie, la norme d un vecteur u u AB AB. AB est la distance AB. On note Conséquences : équivaut à Pour tout nombre

Plus en détail

CHAPITRE 12 : Produit scalaire

CHAPITRE 12 : Produit scalaire CHAPITRE 12 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

CHAPITRE 13 : Produit scalaire

CHAPITRE 13 : Produit scalaire CHAPITRE 13 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C I Pour bien commencer I.1 Norme d un vecteur Une unité de longueur étant choisie, la norme d un vecteur u = AB est la longueur AB. Si u = 1, le vecteur u est dit unitaire. On note u = AB = AB. Conséquences

Plus en détail

On se place dans un repère orthonormé (O ; i, j ) du plan.

On se place dans un repère orthonormé (O ; i, j ) du plan. Première S Produit scalaire et applications Année scolaire 01/013 I) Produit scalaire et orthogonalité : On se place dans un repère orthonormé (O ; i, j ) du plan. 1) Définition analytique du produit scalaire

Plus en détail

I. Produit scalaire de deux vecteurs du plan

I. Produit scalaire de deux vecteurs du plan 1 ère S - Chapitre 12 : PRODUIT SCALAIRE I. Produit scalaire de deux vecteurs du plan 1. Vocabulaire Dans le plan muni d'un repère orthonormé, on considère les vecteurs u( x y) ( et v x ' y '). Le produit

Plus en détail

Chapitre 8 Produit scalaire

Chapitre 8 Produit scalaire Chapitre 8 Produit scalaire I. Produit scalaire 1) Norme d'un vecteur Soit u un vecteur du plan, et soit A et B deux points du plan tels que u= AB. La norme du vecteur u, notée u, est la longueur du segment

Plus en détail

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition Chapitre 10 Produit scalaire 10.1 Définition et expressions du produit scalaire 10.1.1 Définition Définition 18. u et v sont deux vecteurs du plan. Le produit scalaire de u par v, noté u. v est défini

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE. I et

APPLICATIONS DU PRODUIT SCALAIRE. I et APPLICATIONS DU PRODUIT SCALAIRE Cours Première S 1 Calculs de longueurs 1) Théorème de la médiane Théorème 1 : Soit I le milieu du segment [ BC ] Alors BC AB + AC = AI + Démonstration : On a : AB = AB

Plus en détail

Chapitre 13 Produit scalaire (2) Applications

Chapitre 13 Produit scalaire (2) Applications Chapitre 13 Produit scalaire (2) Applications Ex 1 Soit ABCD un losange de côté 5 avec AC=4. 1. Calculer la longueur BD. 2. Calculer les produits scalaires suivants : a. AB AC ; b. AB c. AB CD ; AD ; d.

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

PRODUIT SCALAIRE. , noté u.

PRODUIT SCALAIRE. , noté u. 1 PRODUIT SCLIRE I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur u et deux points et B tels que u B. La norme du vecteur u, notée u, est la distance B. ) Définition du produit

Plus en détail

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert Leçon n 17 : Produit scalaire Présentation : Célia Giraudeau Questions : Léon Habert Lundi 5 Mars 2018 Prérequis Géométrie plane et dans l espace Angles Vecteurs Repère orthonormé On note E un espace vectoriel

Plus en détail

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire Un peu d'histoire Le produit scalaire est une notion de géométrie euclidienne découverte tardivement par Camille Jordan (1838 1922). Né à Lyon, cet élève de l'école polytechnique entre major avec la note

Plus en détail

1 Barycentre de deux points pondérées.

1 Barycentre de deux points pondérées. 1ère STI - Chapitre 7: Géométire Introduction Exercices de révision sur les vecteurs : 35, 37, 38 et 39 page 325. 1 Barycentre de deux points pondérées. 1.1 Présentation du problème. 2kg 5kg? 4kg 1kg On

Plus en détail

Chap 13 Application du produit scalaire.

Chap 13 Application du produit scalaire. Chap 13 Application du produit scalaire. Table des matières I. Projeté orthogonal d un vecteur sur un axe... 1 II. Equations cartésiennes dans un repère orthonormé... 1 1. Equation cartésienne d une droite...

Plus en détail

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire DERNIÈRE IMPRESSION LE 1 février 016 à 1: Le produit scalaire Table des matières 1 Définition et propriétés 1.1 Définition par la norme.......................... 1. Définition analytique...........................

Plus en détail

Chapitre 3 GEO 2. Produit scalaire

Chapitre 3 GEO 2. Produit scalaire Chapitre 3 GEO Produit scalaire À la fin de ce td, vous devez être capale de : Calculer le produit scalaire de deux vecteurs : à l aide des normes et d un angle ; à l aide d une projection orthogonale

Plus en détail

Applications du Produit Scalaire ( En première S )

Applications du Produit Scalaire ( En première S ) Applications du Produit Scalaire ( En première S ) Dernière mise à jour : Mercredi 1 Décembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 010-011) 1 J aimais et j aime encore les

Plus en détail

Produit scalaire. 1 Produit scalaire et coordonnées. Dans toute la leçon, le plan est muni d un repère orthonormé.

Produit scalaire. 1 Produit scalaire et coordonnées. Dans toute la leçon, le plan est muni d un repère orthonormé. Produit scalaire Dans toute la leçon, le plan est muni d un repère orthonormé. Produit scalaire et coordonnées. Définition.. Soit x u et x v y y deux vecteurs. Le produit scalaire de u et v, noté u v,

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Programme selon les sections : - formules de trigonométrie, produit scalaire dans le plan : toutes sections - produit scalaire dans l espace : ST2A, S - vecteur normal : S Pré-requis : Vecteurs

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

5. Trigonométrie, produit scalaire, produit vectoriel, exercices

5. Trigonométrie, produit scalaire, produit vectoriel, exercices 5. Trigonométrie, produit scalaire, produit vectoriel, exercices 1. Soit un triangle ABC tel que AB =, BC = 4 et ÂBC = π 3. Déterminer AC.. Soit un triangle ABC tel que AB = 4, AC = 3. L angle BAC vaut

Plus en détail

Ch.8 : Produit scalaire

Ch.8 : Produit scalaire 1 e - programme 011 - mathématiques ch8 - cours Page 1 sur 7 (D après Hachte - Déclic 011 ch9) 1 PRODUIT SCALAIRE DE DEUX VECTEURS 11 Deux définitions géométriques équivalentes DÉFINITION 1 Ch8 : Produit

Plus en détail

Chapitre VII. Produit scalaire. Activité introductive

Chapitre VII. Produit scalaire. Activité introductive Chapitre VII Produit scalaire VII1 VII11 Introduction Activité introductive EXERCICE I A, B, C sont trois points et a, b, c désignent respectivement les distances : BC ; CA ; AB Partie A Extension du théorème

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Produit scalaire, cours, première S

Produit scalaire, cours, première S Produit scalaire, cours, première S F.Gaudon 2 mai 2016 Table des matières 1 Norme d'un vecteur 2 2 Produit scalaire 2 3 Orthogonalité de vecteurs 4 4 Produit scalaire et projection orthogonale 4 5 Propriétés

Plus en détail

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition PRODUIT SCALAIRE I)Produit scalaire de deux vecteurs 1. Définition Définition : Si u et v sont deux vecteurs non nuls, on appelle produit scalaire de u par v, le réel noté u. v = u v cos( u, v) u. v défini

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE

PRODUIT SCALAIRE DANS L ESPACE PRODUIT SCALAIRE DANS L ESPACE Géométrie - Chapitre 4 Table des matières I Norme d un vecteur de l espace 2 I 1 s.............................................. 2 I 2 Norme et distance.........................................

Plus en détail

BARYCENTRE, PRODUIT SCALAIRE

BARYCENTRE, PRODUIT SCALAIRE 1 re STI Ch04 : Barycentre et produit scalaire 006/007 BARYCENTRE, PRODUIT SCALAIRE Table des matières I Barycentre 1 I.1 Barycentre de deux points pondérés.............................. 1 I. Caratérisations

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications 1 Le produit scalaire et ses applications Table des matières 1 Définitions et propriétés 1.1 Définition initiale............................. 1. Définition dans un repère orthonormal................. 1.3

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté-angle géométrique.................................. 1.3 Projection orthogonale........................................

Plus en détail

Mathématiques Devoir Surveillé 2

Mathématiques Devoir Surveillé 2 Mathématiques Devoir Surveillé Durée h0 - Calculatrices et documents interdits 7 décembre 08 Exercice Dans cet exercice, O, OI, OJ est un repère orthonormé.. Rappeler la dénition d'un repère orthonormé.

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

Chapitre 8 Produit scalaire.

Chapitre 8 Produit scalaire. Chapitre 8 Produit scalaire I - Définitions équivalentes Origine du produit scalaire (Physique) Le travail d une force : W AB ( = Calculer le travail de la force F 1 d intensité 3 et le travail de la force

Plus en détail

Chapitre 10 - Produit scalaire dans l espace - Barycentre Page 1/??

Chapitre 10 - Produit scalaire dans l espace - Barycentre Page 1/?? Chapitre 10 - Produit scalaire dans l espace - Barycentre 1 Produit scalaire dans le plan 1.1 Expressions et propriétés du produit scalaire Si les vecteurs u et v sont deux vecteurs colinéaires Définition

Plus en détail

PRODUIT SCALAIRE DANS V 2

PRODUIT SCALAIRE DANS V 2 I) RAPPELLE 1) Définition du produit scalaire. 1.1 Mesure algébrique : PRODUIT SCALAIRE DANS V Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs x M et x N

Plus en détail

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition :

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition : LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES 1) La mesure algébrique 1.1 Définition et propriétés Définition : Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs

Plus en détail

1 tana tanb. 2 cosp + cosq = 2cos cos. cosp cosq = 2sin sin. sinp + sinq = 2sin cos Les deux premières formules sont à connaître.

1 tana tanb. 2 cosp + cosq = 2cos cos. cosp cosq = 2sin sin. sinp + sinq = 2sin cos Les deux premières formules sont à connaître. sin(a + B) = sina cosb + cosa sinb cos(a + B) = cosa cosb sina sinb tana + tanb tan(a + B) = 1 tana tanb cos(a B) + cos(a + B) cosa cosb = 2 cos(a B) cos(a + B) sina sinb = 2 sin(a + B) + sin(a B) sina

Plus en détail

2. Trigonométrie. 1. Le cercle trigonométrique. Définition 1 : Le cercle trigonométrique de centre O est celui

2. Trigonométrie. 1. Le cercle trigonométrique. Définition 1 : Le cercle trigonométrique de centre O est celui Soit. Trigonométrie. Le cercle trigonométrique un repère du plan Sens direct. Cercle trigonométrique Définition : Le cercle trigonométrique de centre O est celui qui a pour rayon et qui est muni d un sens

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal En mathématique, c est comme dans un roman policier ou un épisode de Columbo:

Plus en détail

Cours de Première S /Produit scalaire. E. Dostal

Cours de Première S /Produit scalaire. E. Dostal Cours de Première S /Produit scalaire E. Dostal mars 016 Table des matières 11 Produit scalaire 11.1 Définition............................................. 11. Expression analytique......................................

Plus en détail

Produit scalaire. v =

Produit scalaire. v = Produit scalaire Le produit scalaire est un outils très puissant utilisé sur des vecteurs. Il permet notamment de montrer que deux vecteurs sont perpendiculaire. Il est très souvent utilisé en physique.

Plus en détail

CHAPITRE 9 : Produit scalaire

CHAPITRE 9 : Produit scalaire CHAPITRE 9 : Produit scalaire 1 Produit scalaire, propriétés de calcul et orthogonalité... 2 1.1 Notion de produit scalaire de deux vecteurs... 2 1.2 Un cas simple : les deux vecteurs sont colinéaires...

Plus en détail

Applications du produit scalaire

Applications du produit scalaire pplications du produit scalaire I Relations métriques dans le triangle Soit un triangle BC. On note B = c, C = b et BC = a. On note BC, B BC et CB c b On note S l'aire du triangle BC 1) Relation d'l KSHI

Plus en détail

Chapitre 10 : Le Produit Scalaire

Chapitre 10 : Le Produit Scalaire Chapitre 10 : Le Produit Scalaire A) Définitions et cas particuliers 1) Rappels a) Norme d'un vecteur La norme d'un vecteur est sa longueur. Par exemple, la norme du vecteur AB la longueur AB, ou encore

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

CHAPITRE G: Produit scalaire dans l'espace

CHAPITRE G: Produit scalaire dans l'espace CHAPITRE G: Produit scalaire dans l'espace plan I - Rappels de première sur le produit scalaire dans le A) Dénitions et propriété Définition 1: - Si u et v sont deux vecteurs non nuls tel que u = AC. On

Plus en détail

Produit scalaire. 1. Introduction p1 2. Produit scalaire p6. Copyright meilleurenmaths.com. Tous droits réservés

Produit scalaire. 1. Introduction p1 2. Produit scalaire p6. Copyright meilleurenmaths.com. Tous droits réservés 1. Introduction p1 2. p6 Copyright meilleurenmaths.com. Tous droits réservés 1. Introduction Le plan est orienté, une unité de longueur est fixée, l'unité de mesure des angles est le radian. (O ; i, j)

Plus en détail

Applications du produit scalaire.

Applications du produit scalaire. 1. Équations cartésiennes d'une droite... p2 2. Équations de cercles... p4 3. Compléments trigonométrie... p6 Copyright meilleurenmaths.com. Tous droits réservés (O ; i, j) est un repère orthonormal du

Plus en détail

Mathématiques en première S Produit scalaire dans le plan

Mathématiques en première S Produit scalaire dans le plan Mathématiques en première S Produit scalaire dans le plan Table des matières 1 Introduction 1 2 Définitions du produit scalaire de deux ecteurs du plan 2 3 Propriétés du produit scalaire 3 4 Orthogonalité

Plus en détail

QCM chapitre 6 (cf. p. 198 du manuel) Pour bien commencer

QCM chapitre 6 (cf. p. 198 du manuel) Pour bien commencer QCM chapitre 6 (cf. p. 198 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice 1. Soit le triangle ABC rectangle en A ci-dessous. On a alors : Réponses

Plus en détail

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ).

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ). Chap 8 : Produit scalaire I. Définitions Rappels : Si u = AB alors u = AB. Si ; j est une base orthonormale et si u (x, y alors : On note AB ; AC l angle orienté délimité par les vecteurs AB u = x 2 +

Plus en détail

Exercices Les nombres complexes ENONCES. DECLIC TS 2012.

Exercices Les nombres complexes ENONCES. DECLIC TS 2012. Exercices Les nombres complexes ENONCES DECLIC TS 0 ) N 8 page 8 Déclic TS Pour tout nombre complexe z, on définit le polynôme ( ) ( ) ( ) ) a) Calculer P ( ) b) Déterminer deux réels et P z = z + z +

Plus en détail

1 ère S Le plan muni d un repère orthonormé

1 ère S Le plan muni d un repère orthonormé ère S Le plan muni d un repère orthonormé I. Expression analytique du produit scalaire ) Remarque préliminaire Dans tout le chapitre, O, i, est un repère orthonormé du plan P c est-à-dire vérifiant les

Plus en détail

I. Définition et propriétés du produit scalaire

I. Définition et propriétés du produit scalaire Leçon 9 : Définition et propriétés du produit scalaire dans le plan ; expression dans une base orthonormale. Application au calcul de distances et d angles. On se place au niveau du secondaire. CADRE :

Plus en détail

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs.

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs. Produit scalaire dans l espace L année dernière, nous avions vu le produit scalaire dans un espace de deux dimensions. Nous allons généraliser cette notion dans l espace à trois dimension. Je vais d abord

Plus en détail

1 Produit scalaire de deux vecteurs

1 Produit scalaire de deux vecteurs Exposé 34 : Définitions et propriétés du produit scalaire dans le plan; expression dans une base orthonormale. Application au calcul de distances et d angles. Prérequis 1 : -Notion de distance entre points

Plus en détail

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h Première S DEVOIR SURVEILLE N 5 Mardi 5 mars 008 Durée : 1h Exercice 1 : (1,5 pts) Associer à chaque figure le bon calcul du produit scalaire de a) AB b) -AB c) 0 d) AB e) - AB AC (on ne demande pas ici

Plus en détail

I. Vecteur normal à une droite

I. Vecteur normal à une droite pplications du produit scalaire I. Vecteur normal à une droite 1. Définition : n D u Dire que n ( n ) est un vecteur normal à D de vecteur directeur u signifie que n est orthogonal à u.. Caractérisation

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE.

PRODUIT SCALAIRE DANS L ESPACE. PRODUIT SCALAIRE DANS L ESPACE. I. Produit scalaire dans l espace : 1) Repères orthonormés de l espace : Un repère (O ; I ; J ; K) de l espace est orthonormé lorsque les droites (OI), (OJ) et (OK) sont

Plus en détail

Géométrie 1 GEOMETRIE ELEMENTAIRE DU PLAN

Géométrie 1 GEOMETRIE ELEMENTAIRE DU PLAN Géométrie chap 1 1/7 Géométrie 1 GEOMETRIE ELEMENTAIRE DU PLAN On considère le plan orienté, noté, muni d une unité de longueur 1 VECTEURS DU PLAN 11 Définitions Définition 1 : Dans le plan, deux bipoints

Plus en détail

7 Produit scalaire. 7.1 Norme d un vecteur. 7.2 Produit scalaire

7 Produit scalaire. 7.1 Norme d un vecteur. 7.2 Produit scalaire 7 Produit scalaire 7. Norme d un vecteur Définition : Pour tout vecteur la norme du vecteur æ u, notée Î æ u Î, est la longueur où et sont deux points tels que æ u = æ. Propriété :Si æ u est un vecteur

Plus en détail

Ch.5èTrigonométrie. 1ere S. LFA / Première S mathématiques Mme MAINGUY 1. I. Mesure des angles orientés de vecteurs 1/ cercle trigonométrique

Ch.5èTrigonométrie. 1ere S. LFA / Première S mathématiques Mme MAINGUY 1. I. Mesure des angles orientés de vecteurs 1/ cercle trigonométrique LFA / Première S mathématiques Mme MAINGUY 1 Ch.5èTrigonométrie 1ere S I. Mesure des angles orientés de vecteurs 1/ cercle trigonométrique définition le cercle trigonométrique de centre O est celui qui

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

H. DERFOUL Janvier _-

H. DERFOUL Janvier _- H DERFOUL Janvier 018 -_- wwwformacourscom - Pré requis & Mise à niveau - Mathématiques du Secondaire - Page 1 Sommaire Chapitre 0 3 Pré-requis et mise à niveau 3 Partie VI 3 Exercices 3 Contrôle des connaissances

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Classe de terminale Du collège au lycée : Fiche de géométrie

Classe de terminale Du collège au lycée : Fiche de géométrie Classe de terminale Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Vallon 2 février 2016 Vallon 2 février 2016 1 / 13 Table : 1 2 Produit scalaire et orthogonalité dans l espace 3 Equations cartésiennes d un plan 4 Positions relatives de droites et de plans Vallon 2 février

Plus en détail

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire Module 1 : Découverte du produit scalaire 1 ) Norme d un vecteur Définition : soit u un vecteur du plan et soient A et B deux points tels que : AB u La norme du vecteur u, notée u, est la distance AB Exemple

Plus en détail

MATHEMATIQUES. Produit scalaire et applications : sujet d entraînement 1 (corrigé) AD 2

MATHEMATIQUES. Produit scalaire et applications : sujet d entraînement 1 (corrigé) AD 2 Lycée Louise Michel (Gisors) Première S MATHEMATIQUES Produit scalaire et applications : sujet d entraînement 1 (corrigé) Exercice 1 1. On utilise la relation de Chasles. AC =. Calcul de AC BD. AB + BC

Plus en détail

1. Produit scalaire dans le plan

1. Produit scalaire dans le plan Produit scalaire 1. Produit scalaire dans le plan 1.1 Définition Soit u et v deux vecteurs non nuls du plan. Ce n est pas une multiplication Le produit scalaire de u par v noté u. v est le nombre défini

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan CH 1 Géométrie : 3 ème Sciences Septembre 009 A LAATAOUI Produit scalaire dans le plan 1 ) PRODUIT SCALAIRE A) DEFINITION Ce n est pas une multiplication Soit u et v deux vecteurs non nuls du plan Le produit

Plus en détail

@ Dans l espace personne ne vous entend crier *

@ Dans l espace personne ne vous entend crier * @ Dans l espace personne ne vous entend crier * A/ Droites et plans de l espace : incidence et parallélisme. I/ Positions relatives de droites et de plans. 1/ Deux droites. d 1 et d 2 sont sécantes d 1

Plus en détail

Produit scalaire. Sommaire CHAPITRE. Partie A (s3) 2

Produit scalaire. Sommaire CHAPITRE. Partie A (s3) 2 CHAPITRE Produit scalaire Sommaire Partie A (s Rappels de première................................................... Produit scalaire par normes et angle. Produit scalaire par projection orthogonale.

Plus en détail

Mathématique et Mécanique de Base

Mathématique et Mécanique de Base Mathématique et Mécanique de Base Pauline GERUS - Leila LEFEVBRE - Violaine SEVREZ Licence 1 STAPS BMC 51 2009-2010 Définition Repère = zone de référence Etablit en fonction des objectifs On choisit une

Plus en détail

Dans un repère orthonormé de l espace, si un vecteur u a pour coordonnées

Dans un repère orthonormé de l espace, si un vecteur u a pour coordonnées Chapitre n 16 Géométrie dans l espace (3) I. Etension du produit scalaire à l espace 1. Norme d un vecteur de l espace Définition 1 : On considère un vecteur u de l espace, A et B deu points de l espace

Plus en détail

Trigonométrie. 1 Cercle trigonométrique : cosinus et sinus. 1.1 Le cercle trigonométrique et angles orientés. 1.2 Relation de Chasles.

Trigonométrie. 1 Cercle trigonométrique : cosinus et sinus. 1.1 Le cercle trigonométrique et angles orientés. 1.2 Relation de Chasles. Trigonométrie 1 Cercle trigonométrique : cosinus us 1.1 Le cercle trigonométrique et angles orientés Définition : Soit un repère orthonormal (,I,J. n appelle cercle trigonométrique, le cercle de centre

Plus en détail

Chapitre 1 : Les nombres complexes.

Chapitre 1 : Les nombres complexes. Chp. Chapitre : Les nombres complexes. I. L ensemble IC et le plan complexe.. Introduction des nombres complexes. Motivation : résoudre x² + = On considère un nombre imaginaire noté i tel que i² = - Définition

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés..................................... Formules de trigonométrie.......................................

Plus en détail

Repères et coordonnées. a) repérage sur une droite Choisir un repère sur une droite, c est se donner deux points distincts O et I de,

Repères et coordonnées. a) repérage sur une droite Choisir un repère sur une droite, c est se donner deux points distincts O et I de, I Repères et coordonnées a) repérage sur une droite Choisir un repère sur une droite, c est se donner deux points distincts O et I de, pris dans cet ordre. O est l origine du repère. Posons alors OI =

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

Chapitre : Produit scalaire

Chapitre : Produit scalaire I) Norme d'un vecteur Chapitre : Produit scalaire Exemple Lequel des vecteurs suivants est le "plus grand"? Pour comparer des vecteurs, on introduit un nouvel outil appelé norme : Définition (norme d'un

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Correction 1 1. En remarquant l égalité suivante : AC AB + BC On obtient les coordonnées du vecteur : AC Ä x + x ; y + y ä. On a : AB» x + y BC» x + y AC» (x + x ) + (y + y ) 3. Le théorème de Pythagore

Plus en détail

Applications du produit scalaire, cours, première S

Applications du produit scalaire, cours, première S Applications du produit scalaire, cours, première S F.Gaudon 9 juin 009 Tale des matières 1 Relations métriques dans le triangle 1.1 Théorème de la médiane.................................... 1. Théorème

Plus en détail