Applications du produit scalaire

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Applications du produit scalaire"

Transcription

1 pplications du produit scalaire I Relations métriques dans le triangle Soit un triangle BC. On note B = c, C = b et BC = a. On note BC, B BC et CB c b On note S l'aire du triangle BC 1) Relation d'l KSHI B a C BC² = BC = ( C B ) = C² C. B + B² or C. B = C B cos ( C ; B ) BC² = C² C B cos ( C ; B ) + B² soit a² = b² + c² b c cos c'est la relation d'l KSHI par permutation : b² = a² + b² - a b cos B et c² = a² + b² - a b cos Ĉ ) Théorème de la médiane Soit I le milieu de [BC] B² = ( I + IB )² = I² + I. IB + IB² C² = ( I + IC )² = I² + I. IC + IC² En ajoutant membre à membre, B² + C² = I² + I. IB + IB² + I² + I. IC + IC² B² + C² = I² + I.( IB + IC ) + IB² + IC² B² + C² = I² + 1 BC² avec IB + IC = 0 et IB = IC = 1 BC 3) utres relations Soit un triangle BC et H le projeté orthogonal de C sur [B]. 1

2 C H B S = 1 B CH Dans le triangle CH rectangle en H, CH = C sin D'où S = 1 B C sin Soit S = 1 bc sin Par permutation, S = bc sin = ac sin B = ac sinĉ En divisant tout par abc et en inversant, on obtient a b c abc sin ˆ sin Bˆ sin Cˆ S II Relations métriques dans le plan Soient, B et M trois points du plan. Soit I le milieu de [B]. 1) Transformation de M MB M MB ( MI I ) ( MI IB ) B MI I IB MI.( I IB ) MI B M MB MI ) Transformation de M MB M MB ( M MB ).( M MB ) ( MI I MI I ).( M MB ) MI. B B. IM 3) Transformation de M. MB M MB B. IM M. MB ( MI I ).( MI IB ) MI MI.( I IB ) I. IB

3 MI B M. MB MI B III Droite et produit scalaire 1) Equation d'une droite Toute droite du plan a pour équation cartésienne ax + by + c = 0 avec (a ; b) (0 ; 0). Cette droite a pour vecteur directeur V ( b ; a). Réciproquement l'ensemble des points M (x ; y) tels que ax + by + c = 0 avec (a;b) (0;0) est une droite de vecteur directeur V ( b ; a). ) Vecteur normal et équation de droite n M d Dire qu'un vecteur n est normal à une droite d signifie que n 0 et que la direction de n est orthogonale à celle de d. D est l'ensemble des points du plan tels que M. n = 0 Dans un repère orthonormal, si une droite d a pour équation de la forme ax + by + c = 0, (a ; b) (0;0) alors le vecteur n (a ; b) est normal à d. 3) Droites perpendiculaires Dans un repère orthonormal, soit (D) la droite d'équation ax + by + c = 0 et (D') la droite d'équation a'x + b'y + c' = 0. Dire que (D) et (D') sont perpendiculaires équivaut à dire que aa' + bb' = 0. IV Cercle et produit scalaire 1) Cercle de diamètre [B] Le cercle de diamètre [B] est l'ensemble des points M tels que M. MB 0. M 3

4 I B ) Equation d'un cercle en repère orthonormal Soit un cercle, M(x ; y) un point du cercle, I( x I ; cercle. L'ensemble des points M est tels que IM² = R² soit (x x I )² + (y y I )² = R² On peut aussi utiliser le fait que M. MB 0 V pplication à la trigonométrie 1) Formules d'addition Soit le cercle trigonométrique de centre O muni d'un repère ( O; i, j). Soit le point du cercle tel que ( i, O) = a Soit B le point du cercle tel que ( i, OB) = b y I ) le centre du cercle et R le rayon du a b B O Les coordonnées de sont (cos a ; sin a) Les coordonnées de B sont (cos b ; sin b) O. OB = cos a cos b + sin a sin b O. OB = O OB cos ( O ; OB ) = cos (a b) d'où cos (a b) = cos a cos b + sin a sin b si l'on change b en b, on obtient cos (a + b) = cos a cos b sin a sin b en posant sin (a b)= cos [ ab ( ) ] on obtient sin (a b) = sin a cos b sin b cos a si l'on change b en b, on obtient sin (a + b) = sin a cos b + sin b cos a 4

5 ) Formules de duplication Sin a = sin a cos a + sin a cos a = sin a cos a cos a = cos a cos a sina sin a = cos² a sin² a cos a = cos² a 1 = 1 sin² a (en utilisant sin² a + cos² a = 1) D'où cos ² acos 1 a et sin ² a 1 cos a 5

Applications du produit scalaire, cours, première S

Applications du produit scalaire, cours, première S Applications du produit scalaire, cours, première S F.Gaudon 9 juin 009 Tale des matières 1 Relations métriques dans le triangle 1.1 Théorème de la médiane.................................... 1. Théorème

Plus en détail

Première S chapitre 11 : Applications du produit scalaire

Première S chapitre 11 : Applications du produit scalaire SOMMAIRE XI. 1. VECTEUR NORMAL A UNE DROITE... THEOREME : VECTEUR DIRECTEUR... DEFINITION : VECTEUR NORMAL... THEOREME : DROITE ET VECTEUR NORMAL... EXERCICES :... 3 XI.. CARACTERISATION D UN CERCLE...

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE. I et

APPLICATIONS DU PRODUIT SCALAIRE. I et APPLICATIONS DU PRODUIT SCALAIRE Cours Première S 1 Calculs de longueurs 1) Théorème de la médiane Théorème 1 : Soit I le milieu du segment [ BC ] Alors BC AB + AC = AI + Démonstration : On a : AB = AB

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

Applications du produit scalaire.

Applications du produit scalaire. 1. Équations cartésiennes d'une droite... p2 2. Équations de cercles... p4 3. Compléments trigonométrie... p6 Copyright meilleurenmaths.com. Tous droits réservés (O ; i, j) est un repère orthonormal du

Plus en détail

On se place dans un repère orthonormé (O ; i, j ) du plan.

On se place dans un repère orthonormé (O ; i, j ) du plan. Première S Produit scalaire et applications Année scolaire 01/013 I) Produit scalaire et orthogonalité : On se place dans un repère orthonormé (O ; i, j ) du plan. 1) Définition analytique du produit scalaire

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

CHAPITRE 12 : Produit scalaire

CHAPITRE 12 : Produit scalaire CHAPITRE 12 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

Chapitre 13 Produit scalaire (2) Applications

Chapitre 13 Produit scalaire (2) Applications Chapitre 13 Produit scalaire (2) Applications Ex 1 Soit ABCD un losange de côté 5 avec AC=4. 1. Calculer la longueur BD. 2. Calculer les produits scalaires suivants : a. AB AC ; b. AB c. AB CD ; AD ; d.

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

I. Produit scalaire de deux vecteurs du plan

I. Produit scalaire de deux vecteurs du plan 1 ère S - Chapitre 12 : PRODUIT SCALAIRE I. Produit scalaire de deux vecteurs du plan 1. Vocabulaire Dans le plan muni d'un repère orthonormé, on considère les vecteurs u( x y) ( et v x ' y '). Le produit

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

Chap 13 Application du produit scalaire.

Chap 13 Application du produit scalaire. Chap 13 Application du produit scalaire. Table des matières I. Projeté orthogonal d un vecteur sur un axe... 1 II. Equations cartésiennes dans un repère orthonormé... 1 1. Equation cartésienne d une droite...

Plus en détail

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB.

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB. Produit scalaire. I. et expressions. 1) Norme d'un vecteur Une unité de longueur étant choisie, la norme d un vecteur u u AB AB. AB est la distance AB. On note Conséquences : équivaut à Pour tout nombre

Plus en détail

I. Vecteur normal à une droite

I. Vecteur normal à une droite pplications du produit scalaire I. Vecteur normal à une droite 1. Définition : n D u Dire que n ( n ) est un vecteur normal à D de vecteur directeur u signifie que n est orthogonal à u.. Caractérisation

Plus en détail

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition PRODUIT SCALAIRE I)Produit scalaire de deux vecteurs 1. Définition Définition : Si u et v sont deux vecteurs non nuls, on appelle produit scalaire de u par v, le réel noté u. v = u v cos( u, v) u. v défini

Plus en détail

PRODUIT SCALAIRE. , noté u.

PRODUIT SCALAIRE. , noté u. 1 PRODUIT SCLIRE I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur u et deux points et B tels que u B. La norme du vecteur u, notée u, est la distance B. ) Définition du produit

Plus en détail

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition Chapitre 10 Produit scalaire 10.1 Définition et expressions du produit scalaire 10.1.1 Définition Définition 18. u et v sont deux vecteurs du plan. Le produit scalaire de u par v, noté u. v est défini

Plus en détail

Chapitre 8 Produit scalaire

Chapitre 8 Produit scalaire Chapitre 8 Produit scalaire I. Produit scalaire 1) Norme d'un vecteur Soit u un vecteur du plan, et soit A et B deux points du plan tels que u= AB. La norme du vecteur u, notée u, est la longueur du segment

Plus en détail

7 Produit scalaire. 7.1 Norme d un vecteur. 7.2 Produit scalaire

7 Produit scalaire. 7.1 Norme d un vecteur. 7.2 Produit scalaire 7 Produit scalaire 7. Norme d un vecteur Définition : Pour tout vecteur la norme du vecteur æ u, notée Î æ u Î, est la longueur où et sont deux points tels que æ u = æ. Propriété :Si æ u est un vecteur

Plus en détail

Produit scalaire. Fiche 11 Produit scalaire Première S. Exercice 1 : On considère le triangle ABC donc on donne les dimensions : AB = 9 AC = 5 CB = 7

Produit scalaire. Fiche 11 Produit scalaire Première S. Exercice 1 : On considère le triangle ABC donc on donne les dimensions : AB = 9 AC = 5 CB = 7 Produit scalaire Exercice 1 : On considère le triangle donc on donne les dimensions : = 9 = 5 = 7 Déterminer les valeurs des produits scalaires suivants : 1. 2. 3. Exercice 2 : 1. Déterminer le produit

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3 Le produit scalaire Table des matières I) Définitions et propriétés 1 a) Norme d un vecteur............................................ 1 b) de deux vecteurs..................................... 1 c) Autres

Plus en détail

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire Lycée Louise Michel Gisors) 1S Corrigé QCM d auto-évaluation sur le produit scalaire Exercice 67 D après la formule du cours, u v = 1 u + v u v ). On applique avec u = AB et v = BC. 1 On obtient : AB BC

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications 1 Le produit scalaire et ses applications Table des matières 1 Définitions et propriétés 1.1 Définition initiale............................. 1. Définition dans un repère orthonormal................. 1.3

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Extension du produit scalaire à l espace

Extension du produit scalaire à l espace Extension du produit scalaire à l espace Table des matières 1 Rappel du produit scalaire dans le plan 2 1.1 Définitions.................................................. 2 1.2 Orthogonalité................................................

Plus en détail

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ).

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ). Chap 8 : Produit scalaire I. Définitions Rappels : Si u = AB alors u = AB. Si ; j est une base orthonormale et si u (x, y alors : On note AB ; AC l angle orienté délimité par les vecteurs AB u = x 2 +

Plus en détail

Applications du Produit Scalaire ( En première S )

Applications du Produit Scalaire ( En première S ) Applications du Produit Scalaire ( En première S ) Dernière mise à jour : Mercredi 1 Décembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 010-011) 1 J aimais et j aime encore les

Plus en détail

Produit dans le plan

Produit dans le plan Exercice ABC est un triangle isocèle de somme principal A et I le milieu du segment [BC]. H est le projeté orthogonal de I sur [AC] et J le milieu de [IH]. On cherche à établir que : AJ et BH sont orthogonales..

Plus en détail

CHAPITRE G: Produit scalaire dans l'espace

CHAPITRE G: Produit scalaire dans l'espace CHAPITRE G: Produit scalaire dans l'espace plan I - Rappels de première sur le produit scalaire dans le A) Dénitions et propriété Définition 1: - Si u et v sont deux vecteurs non nuls tel que u = AC. On

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté-angle géométrique.................................. 1.3 Projection orthogonale........................................

Plus en détail

Méthodes sur le produit scalaire

Méthodes sur le produit scalaire Méthodes sur le produit scalaire G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur le produit scalaire 10 juin 2007 1 / 32 1 connaître les différentes façons de calculer

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2017/2018 1 Définitions et propriétés Norme d un vecteur de deux vecteurs Autres expressions du produit scalaire 2 Symétrie

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE I. Calculs d'angles et de longueurs 1) Calculs d'angles Méthode : Déterminer un angle à l'aide du produit scalaire Vidéo https://youtu.be/ca_pw79ik9a. " Calculer la mesure

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h Première S DEVOIR SURVEILLE N 5 Mardi 5 mars 008 Durée : 1h Exercice 1 : (1,5 pts) Associer à chaque figure le bon calcul du produit scalaire de a) AB b) -AB c) 0 d) AB e) - AB AC (on ne demande pas ici

Plus en détail

Ch.8 : Produit scalaire

Ch.8 : Produit scalaire 1 e - programme 011 - mathématiques ch8 - cours Page 1 sur 7 (D après Hachte - Déclic 011 ch9) 1 PRODUIT SCALAIRE DE DEUX VECTEURS 11 Deux définitions géométriques équivalentes DÉFINITION 1 Ch8 : Produit

Plus en détail

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2 1S Corrigé DS n o 9 Durée :h Exercice 1 ( 5,5 points ) Dans un repère orthonormé du plan, on considère les points A(3; 1), B(; ) et C( ; 1). 1. Déterminer une équation de la droite (d 1 ), médiatrice de

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2016/2017 Première S ( Lycée du golfe de Saint Tropez) Produit scalaire Année 2016/2017 1 / 1 Première S ( Lycée du golfe de

Plus en détail

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C I Pour bien commencer I.1 Norme d un vecteur Une unité de longueur étant choisie, la norme d un vecteur u = AB est la longueur AB. Si u = 1, le vecteur u est dit unitaire. On note u = AB = AB. Conséquences

Plus en détail

BARYCENTRE, PRODUIT SCALAIRE

BARYCENTRE, PRODUIT SCALAIRE 1 re STI Ch04 : Barycentre et produit scalaire 006/007 BARYCENTRE, PRODUIT SCALAIRE Table des matières I Barycentre 1 I.1 Barycentre de deux points pondérés.............................. 1 I. Caratérisations

Plus en détail

1 Barycentre de deux points pondérées.

1 Barycentre de deux points pondérées. 1ère STI - Chapitre 7: Géométire Introduction Exercices de révision sur les vecteurs : 35, 37, 38 et 39 page 325. 1 Barycentre de deux points pondérées. 1.1 Présentation du problème. 2kg 5kg? 4kg 1kg On

Plus en détail

PRODUIT SCALAIRE. u. v = x x + y y. 2 et on notera parfois AB = AB . AB. est le projeté orthogonal de v sur la direction donnée par u.

PRODUIT SCALAIRE. u. v = x x + y y. 2 et on notera parfois AB = AB . AB. est le projeté orthogonal de v sur la direction donnée par u. PRODUIT SLIRE Exercice de motivation : est un triangle tel que = 4, = 3 et (, ) = 70. Problème : calculer. On ne peut pas utiliser le théorème de Pythagore car le triangle n'est pas rectangle. On 3 70

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal En mathématique, c est comme dans un roman policier ou un épisode de Columbo:

Plus en détail

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire Module 1 : Découverte du produit scalaire 1 ) Norme d un vecteur Définition : soit u un vecteur du plan et soient A et B deux points tels que : AB u La norme du vecteur u, notée u, est la distance AB Exemple

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Correction 1 1. En remarquant l égalité suivante : AC AB + BC On obtient les coordonnées du vecteur : AC Ä x + x ; y + y ä. On a : AB» x + y BC» x + y AC» (x + x ) + (y + y ) 3. Le théorème de Pythagore

Plus en détail

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire DERNIÈRE IMPRESSION LE 1 février 016 à 1: Le produit scalaire Table des matières 1 Définition et propriétés 1.1 Définition par la norme.......................... 1. Définition analytique...........................

Plus en détail

1. Mesure en radians d un angle géométrique 1) Définitions. Cercle trigonométrique :

1. Mesure en radians d un angle géométrique 1) Définitions. Cercle trigonométrique : 1. Mesure en radians d un angle géométrique 1) Définitions Cercle trigonométrique : Le plan est muni d un repère ( O, I, J) orthonormal. On appelle cercle trigonométrique le cercle C de centre O et de

Plus en détail

Systèmes de coordonnées

Systèmes de coordonnées 29 septembre 2009 Définition Dans( le plan ) muni d un repère orthonormal O ; i, j les coordonnées polaires d un point M(x, y) sont les nombres ρ et θ tels que : { ρ = ( OM θ = i, ) OM Théorème Si x 0

Plus en détail

Produit Scalaire. Site MathsTICE de Adama Traoré Lycée Technique Bamako

Produit Scalaire. Site MathsTICE de Adama Traoré Lycée Technique Bamako Produit Scalaire Site MathsTICE de dama Traoré Lycée Technique amako I- Norme d un vecteur 1 ) Définition : u étant un vecteur de représentant le bipoint (;), on appelle norme de u le nombre réel positif

Plus en détail

u v = u v cos( u, v = OA i OB = OA OB cos OA;OB et OA = OA Définition géométrique : Si H est le projeté orthogonal de B sur (OA), alors :

u v = u v cos( u, v = OA i OB = OA OB cos OA;OB et OA = OA Définition géométrique : Si H est le projeté orthogonal de B sur (OA), alors : 7/05/07 Chapiitre 13 : Géométriie dans ll espace Premiière Partiie :: Produiit Scallaiire I.. Rappels dans le l plan 11)) Difffféérreenntteess eexpprreessssi ioonnss 2)) Eqquuaatti ioonnss drrooi itteess

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Il y a de la géométrie dans l'espace au bac tous les ans. Dans tout ce chapitre, on se place dans un repère (O, ı, j, k ) orthonormal de l'espace. Introduction L'espace,

Plus en détail

CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE

CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE Cité scolaire Claude Monet - 1S6 Année scolaire 016-017 Mathématiques CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE Exercice 4 : Soit H le projeté orthogonal de O sur. La droite OH est alors une hauteur

Plus en détail

Chapitre VII. Produit scalaire. Activité introductive

Chapitre VII. Produit scalaire. Activité introductive Chapitre VII Produit scalaire VII1 VII11 Introduction Activité introductive EXERCICE I A, B, C sont trois points et a, b, c désignent respectivement les distances : BC ; CA ; AB Partie A Extension du théorème

Plus en détail

ORTHOGONALITE ET PRODUIT SCALAIRE DANS L ESPACE

ORTHOGONALITE ET PRODUIT SCALAIRE DANS L ESPACE ORTHOGONALITE ET PRODUIT SCALAIRE DANS L ESPACE I- Orthogonalité de droites et de plans 1. Droites orthogonales Définition Soit d 1 et d 2 deux droites de l espace. On dit que d 1 et d 2 sont orthogonales

Plus en détail

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs.

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs. Produit scalaire dans l espace L année dernière, nous avions vu le produit scalaire dans un espace de deux dimensions. Nous allons généraliser cette notion dans l espace à trois dimension. Je vais d abord

Plus en détail

Produit scalaire. VECTEURS POINTS ( u = AC = AB. avec H le projeté orthogonal de C sur (AB). [= ± AB AH car AB sont colinéaires] AC = AB AC cos BAC

Produit scalaire. VECTEURS POINTS ( u = AC = AB. avec H le projeté orthogonal de C sur (AB). [= ± AB AH car AB sont colinéaires] AC = AB AC cos BAC Produit scalaire I. Produit scalaire dans le plan (rappels de 1 ère S). def : 4 définitions équivalentes du produit scalaire : 1 u. v = u. v avec v le projeté orthogonal de v sur u. [= ± u v car u et v

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Vallon 2 février 2016 Vallon 2 février 2016 1 / 13 Table : 1 2 Produit scalaire et orthogonalité dans l espace 3 Equations cartésiennes d un plan 4 Positions relatives de droites et de plans Vallon 2 février

Plus en détail

Tronc Commun. Série 1 : Produit scalaire Exercice 1 :

Tronc Commun. Série 1 : Produit scalaire Exercice 1 : Série : Produit scalaire Exercice : Soit ABC un triangle, tel que : AB, et BC 3. Calculer cos ( B ) et montrer que : AB.. On considère le point M tel que : AM AB + 3 6 a. Calculer AM. b. Montrer que les

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Produit scalaire. 1 Produit scalaire et coordonnées. Dans toute la leçon, le plan est muni d un repère orthonormé.

Produit scalaire. 1 Produit scalaire et coordonnées. Dans toute la leçon, le plan est muni d un repère orthonormé. Produit scalaire Dans toute la leçon, le plan est muni d un repère orthonormé. Produit scalaire et coordonnées. Définition.. Soit x u et x v y y deux vecteurs. Le produit scalaire de u et v, noté u v,

Plus en détail

Exercices proposés : semaine n o 7

Exercices proposés : semaine n o 7 Prépa ATS Exercices proposés : semaine n o 7 I. Géométrie dans le plan 1 Soit ABC un triangle rectangle en A et H le pied de la hauteur issue de A. Montrer que : 1. BA 2 = BH BC 2. CA 2 = CH CB 3. AH 2

Plus en détail

Géométrie analytique

Géométrie analytique 8 décembre 2009 Théorème Dans( le plan muni d un repère orthonormal O; i, ) j, on considère une droite( passant par A et α de vecteur directeur u. β) Tout point M de cette droite est tel que : AM = t u,

Plus en détail

CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE. Solution. Il suffit de montrer l implication : AB = A' B' AA' = BB'.

CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE. Solution. Il suffit de montrer l implication : AB = A' B' AA' = BB'. CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE 1.1. Exercices traités. 1. VECTEURS DU PLAN. EXERCICE 1. Soient A,B,A',B' quatre points du plan. Établir que : AB = A' B' AA' = BB'. Solution. Il suffit de montrer

Plus en détail

BC = 3 4 AB ( BA 8

BC = 3 4 AB ( BA 8 1 e S - programme 011 mathématiques ch8 cahier élève Page 1 sur 6 Ch8 : Produit scalaire Exercice n A page 5 : Calcul vectoriel Reproduire la figure et compléter le texte On considère le triangle ABC donné

Plus en détail

5. Trigonométrie, produit scalaire, produit vectoriel, exercices

5. Trigonométrie, produit scalaire, produit vectoriel, exercices 5. Trigonométrie, produit scalaire, produit vectoriel, exercices 1. Soit un triangle ABC tel que AB =, BC = 4 et ÂBC = π 3. Déterminer AC.. Soit un triangle ABC tel que AB = 4, AC = 3. L angle BAC vaut

Plus en détail

Produit scalaire. Expressions et propriétés du produit scalaire

Produit scalaire. Expressions et propriétés du produit scalaire Produit scalaire 1ère STI2D I - Expressions et propriétés du produit scalaire 1 Définitions Le produit scalaire de deux vecteurs non nuls u et v, noté u v, est le nombre, u v = u. u.cos ( u, v. u v θ u

Plus en détail

I. Définition et propriétés du produit scalaire

I. Définition et propriétés du produit scalaire Leçon 9 : Définition et propriétés du produit scalaire dans le plan ; expression dans une base orthonormale. Application au calcul de distances et d angles. On se place au niveau du secondaire. CADRE :

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

PRODUIT SCALAIRE ET PRODUIT VECTORIEL DANS L'ESPACE EUCLIDIEN

PRODUIT SCALAIRE ET PRODUIT VECTORIEL DANS L'ESPACE EUCLIDIEN PRODUIT SCLIRE ET PRODUIT VECTORIEL DNS L'ESPCE EUCLIDIEN vant toutes choses, nous avons besoin dans ce chapitre d'orienter l'espace, c'est-à-dire distinguer les deux types de repères suivants : K K Repère

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Géométrie dans le plan et dans l'espace

Géométrie dans le plan et dans l'espace Géométrie dans le plan et dans l'espace I Rappels sur le barycentre éfinition Soit {( i ; a i )} 1 i n, un système de n points pondérés. Si la somme des coefficients a i est non nulle, on appelle barycentre

Plus en détail

1.I.2 - Chap. 03 Géométrie élémentaire du plan 1 / 5. du plan : Exercices

1.I.2 - Chap. 03 Géométrie élémentaire du plan 1 / 5. du plan : Exercices 1.I.2 - Chap. 03 Géométrie élémentaire du plan 1 / 5 Géométrie élémentaire du plan : Exercices Exercice 1 On munit le plan d un repère orthonormal direct R = (O; #» ı, #» j ). On note A le point de coordonnées

Plus en détail

H. DERFOUL Janvier _-

H. DERFOUL Janvier _- H DERFOUL Janvier 018 -_- wwwformacourscom - Pré requis & Mise à niveau - Mathématiques du Secondaire - Page 1 Sommaire Chapitre 0 3 Pré-requis et mise à niveau 3 Partie VI 3 Exercices 3 Contrôle des connaissances

Plus en détail

Produit scalaire dans l'espace et applications, cours, terminale S

Produit scalaire dans l'espace et applications, cours, terminale S Produit scalaire dans l'espace et applications, cours, terminale S F.Gaudon 27 avril 2017 Table des matières 1 Distance dans un repère orthonormé de l'espace 2 2 Produit scalaire dans l'espace 2 3 Orthogonalité

Plus en détail

Contrôle du vendredi (45 minutes) 1 ère S1. 3 ) Démontrer que l ensemble C d équation cartésienne x y x 4y

Contrôle du vendredi (45 minutes) 1 ère S1. 3 ) Démontrer que l ensemble C d équation cartésienne x y x 4y 1 ère S1 Contrôle du vendredi 17--015 (5 minutes) Prénom et nom : Note : / 0 Dans les deux exercices, le plan est muni d un repère orthonormé, i, j 3 ) Démontrer que l ensemble C d équation cartésienne

Plus en détail

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239 Seconde : Géométrie plane page 1 Géométrie plane Pour reprendre contact n o 1-2 - 3 p 239 I. Droites et points remarquables du triangle (A) Hauteurs Définition 1 Une hauteur est une droite passant par

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

Chapitre 3 GEO 2. Produit scalaire

Chapitre 3 GEO 2. Produit scalaire Chapitre 3 GEO Produit scalaire À la fin de ce td, vous devez être capale de : Calculer le produit scalaire de deux vecteurs : à l aide des normes et d un angle ; à l aide d une projection orthogonale

Plus en détail

Produit scalaire. v =

Produit scalaire. v = Produit scalaire Le produit scalaire est un outils très puissant utilisé sur des vecteurs. Il permet notamment de montrer que deux vecteurs sont perpendiculaire. Il est très souvent utilisé en physique.

Plus en détail

Mathématiques en première S Produit scalaire dans le plan

Mathématiques en première S Produit scalaire dans le plan Mathématiques en première S Produit scalaire dans le plan Table des matières 1 Introduction 1 2 Définitions du produit scalaire de deux ecteurs du plan 2 3 Propriétés du produit scalaire 3 4 Orthogonalité

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

Chapitre 6 Géométrie élémentaire dans le plan

Chapitre 6 Géométrie élémentaire dans le plan I - Terminologie Chapitre 6 Géométrie élémentaire dans le plan Notations. Le sens trigonométrique munit le plan d'une orientation. Étant donnés deux vecteurs non nuls du plan u, v, on note ( u, v ) l'angle

Plus en détail

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire Un peu d'histoire Le produit scalaire est une notion de géométrie euclidienne découverte tardivement par Camille Jordan (1838 1922). Né à Lyon, cet élève de l'école polytechnique entre major avec la note

Plus en détail