Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation

Dimension: px
Commencer à balayer dès la page:

Download "Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation"

Transcription

1 Complex Event Processing Traitement de flux de données en temps réel Romain Colle R&D Project Manager Quartet FS Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 1

2 Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion Création de données 5 exabytes de données (5*10 18 octets) créées par jour Générées par les utilisateurs (youtube, twitter,...) Générées par des actions (vente e-commerce,...) Générées automatiquement (RFID, GPS,...) Comment les exploiter au mieux? 2

3 Exploitation des données BI Business Intelligence (informatique décisionelle): aide à la décision en utilisant les données de l entreprise Basée sur des outils d OLAP (cf cours précédent) Permet de prendre des décisions «informées»: Connaissance de son stock Connaissance de la situation logistique Connaissance de la valeur de mon portefeuille d actions Exploitation des données Data Mining Data mining est l extraction de connaissances à partir de larges volumes de données Informatique + statistique Utilisation «prédictive» pour prévoir le futur grace au passé Applications Relation client Maintenance préventive Optimisation des ventes 3

4 Exploitation des données - CEP Le but est d analyser des flux de données et d en déduire des événements plus complexes Analyse des flux de données Détection et corrélation des événements importants Déduction d événements complexes Agir en conséquence Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 4

5 Impossible d afficher l image. 1/9/2013 Complex Event Processing - How does it work? INPUT STREAM OUTPUT STREAM Alert New Event (message) Example: Filtering Correlations Basic calculations Speed of the car If speed > 50 km/h and Trajectory of the car Tyre pressure Trajectory change and Tyre pressure drops by 50% Action Airbag Exploitation des données - CEP Les déductions se font à l aide d un ensemble de transformations et traitements sur les flux entrants Filtrage / projection Aggrégation Jointure 5

6 Exploitation des données - CEP Traitement des données en temps réel, «au fil de l eau» Applications Trading algorithmique Détection de fraude (carte de crédit) Analyse des médias sociaux CEP Trading algorithmique High Frequency Trading (HFT) Prises de décisions complexes et passages d ordres avant toute réaction humaine Market making (sell/bid), arbitrage, : 73% des ordres par HFT sur les actions aux USA Facteur important du «flash crash» de

7 CEP Online Gaming Surveillance des données générées par les utilisateurs Avatars, communications,... Gestion de l intérêt du joueur S adapter à sa progression, son niveau,... Surveillance de l activité en ligne Optimisation des publicités et promotions Optimisation des transactions en ligne CEP Détection de fraude Détection de paiements frauduleux Comparaison avec des années de données historiques Détection de transactions inhabituelles Détection de comportements frauduleux Le but est de prévenir la fraude alors qu elle est en train de se produire Traitement temps réel extrêmement performant 7

8 Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion Polling Flux de données - Réception Notify pull Push 8

9 Flux de données - Réception Polling Interroger le service toutes les N secondes pour récupérer la valeur courante ou les nouvelles données Très gourmant en ressources: la requête doit être réexécutée toutes les N secondes et comparée avec son résultat précédent Peut être amélioré si le service peut fournir un «diff» lors de chaque interrogation Notify-pull Flux de données - Réception Le client enregistre sa requête au niveau du service Le service notifie le client lorsque de nouvelles données sont disponibles Le client requête le serveur pour récupérer les nouvelles données Plus efficace que le polling, évites les aller-retours inutiles Pas toujours vrai si le serveur notifie le client lorsque de nouvelles données apparaissent «à côté» de la requête Très efficace si la quantité de nouvelles données récupérées lors de chaque requête est importante 9

10 Flux de données - Réception Push Le client enregistre sa requête au niveau du service Le service envoie au client les nouvelles données au fil de l eau Très efficace, évite tout aller-retour après la souscription Le serveur peut «batcher» les nouvelles données si la fréquence d apparition est trop élevée Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 10

11 Traitement des flux Les données entrantes passent à travers un réseau d opérateurs Les données sortantes (s il y en a) correspondent au résultat du «complex processing» Modélisation et représentation par un système de «boites et flêches» (boxes and arrows) Traitement des flux Médias sociaux Analyse des tweets sur Apple et Samsung suite à la sortie des nouveaux IPhone et Galaxy S Recherche des mots apparaissant le plus souvent avec Apple et Samsung Filtrage des tweets Découpage des phrases en mots => Création de nouveaux flux Aggrégation de flux sur une fenêtre de temps 11

12 Traitement des flux Médias sociaux Filter Split Agg. Top 3 OUT Contains Apple On words Sum over 30mn Group by words Dupli cate Tweets Filter Split Agg. Top 3 OUT Contains Samsung On words Sum over 30mn Group by words Modélisation d un flux de données Un flux de données est une séquence de tuples t = (a 1,a 2,a 3,...,a n ) Le schéma du flux est la description des différents attributs des tuples: a 1,a 2,a 3,...,a n Les données du flux sont des éléments (tuples) ayant des valeurs pour chacun des attributs du flux 12

13 Modélisation d un flux de données Exemple: flux de ventes de voitures chez un concessionnaire Schéma: (date, marque, modèle, couleur, prix) Flux de données: t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, )... Différents opérateurs d un moteur CEP Filter Applique des conditions sur les différents attributs d un tuple Le flux de sortie a le même schéma que le flux d entrée mains ne contient qu un sous-ensemble des tuples entrants Exemple t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, ) t1 = (01/12/2012, Peugeot, 407, bleue, ) t3 = (06/12/2012, Citroen, C5, noire, ) Prix >

14 Différents opérateurs d un moteur CEP Projection Projette les tuples vers un sous-ensemble des attributs du flux entrant Le schéma du flux de sortie est un sous-ensemble des attributs du schéma du flux entrant Exemple t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, ) t1 = (Peugeot, 407) t2 = (Renault,Twingo) t3 = (Citroen, C5) Projection = (Marque,Modèle) Différents opérateurs d un moteur CEP Sort Trie les tuples du flux entrant selon un ordre défini sur la valeur des attributs Le flux de sortie a le même schéma que le flux d entrée, mais l ordre des tuples est différent Exemple t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, ) t1 = (04/12/2012, Renault,Twingo, blanche, ) t2 = (01/12/2012, Peugeot, 407, bleue, ) t3 = (06/12/2012, Citroen, C5, noire, ) Sort by price 14

15 Différents opérateurs d un moteur CEP Sort Un tri ne peut se faire sur l ensemble des tuples d un flux Comment trier un flux infini d éléments? Stockage trop important pour un flux fini Doit être fait sur une fenêtre glissante de temps (e.g. 10 dernières minutes) d événements (e.g derniers tuples) Pour une fenêtre de taille n, les n+1 derniers éléments sont gardés dans un «buffer» en mémoire Ejecte et émet dans le flux sortant le plus petit élément du buffer lorsqu il devient plein Opérateur sort - Exemple D.J. Abadi et al.: Aurora: a new model and architecture for data stream management 15

16 Différents opérateurs d un moteur CEP Aggregate Application d une fonction d aggrégation (sum, min, max, avg,...) et d un «group by» sur le flux de tuples entrant Le schéma du flux de sortie contient les attributs du group by, ainsi que la valeur de l attribute aggrégé Exemple t1 = (01/12/2012, Peugeot, 407, noire, ) t2 = (04/12/2012, Peugeot, 307,noire, ) t3 = (06/12/2012, Citroen, C5, bleue, ) t1 = (Peugeot, noire, ) t2 = (Citroen, bleue, ) Sum(price) group by make,color Différents opérateurs d un moteur CEP Aggregate Comme le tri, l aggrégation ne peut se faire sur l ensemble du flux L aggrégation se fait sur une fenêtre glissante Pour une fenêtre d une heure, les éléments reçus durant cette heure sont gardés en mémoire ainsi que les aggrégats pour chaque groupe existant Lorsque l heure est terminée, les aggrégats sont émis dans le flux de sortie et la mémoire est ré-initialisée 16

17 Opérateur aggregate - Exemple D.J. Abadi et al.: Aurora: a new model and architecture for data stream management Moteur CEP - Stockage des données Certaines fonctions ne nécessitent pas de stockage Filter Projection... Fenêtre glissante de temps/éléments pour les autres Sort Aggregate Join... 17

18 Moteur CEP - Stockage des données Implémentation d une fenêtre glissante LinkedList (Deque) Les éléments sont ajoutés à la fin de la liste Lorsque la liste est pleine, on enlève l élément du début: il est sorti de la fenêtre glissante Ces opérations sont en O(1) pour une liste chaînée Nécessite de maintenir la taille de la liste dans une variable pour être efficace (O(n) sinon) Moteur CEP - Stockage des données Implémentation d une fenêtre glissante Tableau «circulaire» de taille n Maintient d un index i pour la prochaine insertion Commence à 0 et augmente après chaque insertion Recommence à 0 à la fin du tableau Lorsqu un élément est inséré à la place d un autre, l ancien élément sort de la fenêtre glissante Dès que le tableau a été rempli une première fois 18

19 Moteur CEP - Stockage des données Somme courante sur une fenêtre de n éléments La fenêtre glissante est maintenue à l aide d une des techniques précedentes Lorsqu un élément est reçu, il est inséré dans la fenêtre et sa valeur est ajoutée à la somme courante Si l insertion a éjecté un ancien élément de la fenêtre, la valeur de cet ancien élément est soustraite à la somme courante Moteur CEP - Stockage des données Max courant sur une fenêtre de n éléments Implémentation naïve : garder les n derniers éléments en mémoire et recalculer le max lorsqu il sort de la fenêtre Peut mieux faire Garder les «sommets» décroissants de la fenêtre 19

20 Moteur CEP - Stockage des données Max courant sur une fenêtre de 10 éléments U1 1 U2 2 U3 3 U4 U4 5 U2 U1 6 U3 U2 7 U4 U3 U3 U4 U5 11 U1 12 U U Max list Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 20

21 Conclusion CEP est une technologie encore nouvelle Très présente pour les traitements «simples» de flux de données avec très faible latence Donne de bons résulats CEP est une technologie qui a ses limites Pas de stockage de données donc pas de contexte ni historique Les traitements sont encore assez simples Faible dimensionalité Convergence du CEP, OLAP et Data Mining ActivePivot! Fondée en 2005 Développe et commercialise ActivePivot R&D à Paris, Services à Paris, Londres, NY et Singapour CEI Supélec et stage tous les ans depuis

22 Thank you for your attention To know more about Quartet FS Please visit: 22

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Historique. Streaming et VOD. Client / Serveur ou P2P? Optimisations. Conclusion. TONGUET / GONZALEZ 20/11/2009 La Vidéo à la demande

Historique. Streaming et VOD. Client / Serveur ou P2P? Optimisations. Conclusion. TONGUET / GONZALEZ 20/11/2009 La Vidéo à la demande Historique Streaming et VOD Client / Serveur ou P2P? Optimisations Conclusion En septembre 1994 : Cambridge Interactive TV trial Service VOD sur le Cambridge Cable Network Accessible pour 250 foyers et

Plus en détail

IdR Trading et Microstructure CA Cheuvreux. Charles-Albert Lehalle

IdR Trading et Microstructure CA Cheuvreux. Charles-Albert Lehalle IdR Trading et Microstructure CA Cheuvreux Charles-Albert Lehalle 2010-2014 Crédit Agricole Cheuvreux Kepler Cheuvreux L objectif de cette IdR «trading et microstructure des marchés» est de stimuler la

Plus en détail

Systèmes de Fichiers

Systèmes de Fichiers Systèmes de Fichiers Hachage et Arbres B Serge Abiteboul INRIA February 28, 2008 Serge Abiteboul (INRIA) Systèmes de Fichiers February 28, 2008 1 / 26 Systèmes de fichiers et SGBD Introduction Hiérarchie

Plus en détail

Lotus Notes Traveler 8.5.2. GUIDE DE SURVIE http://traveler.gouv.nc/servlet/traveler

Lotus Notes Traveler 8.5.2. GUIDE DE SURVIE http://traveler.gouv.nc/servlet/traveler Lotus Notes Traveler 8.5.2 GUIDE DE SURVIE http://traveler.gouv.nc/servlet/traveler Le service http://traveler.gouv.nc/servlet/traveler issu de la technologie IBM «Lotus Notes Traveler» est une application

Plus en détail

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Mémoires 2010-2011 www.euranova.eu MÉMOIRES ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Contexte : Aujourd hui la plupart des serveurs d application JEE utilise des niveaux de cache L1

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

TP Bases de données réparties

TP Bases de données réparties page 1 TP Bases de données réparties requêtes réparties Version corrigée Auteur : Hubert Naacke, révision 5 mars 2003 Mots-clés: bases de données réparties, fragmentation, schéma de placement, lien, jointure

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Algorithmes de tri. 1 Introduction

Algorithmes de tri. 1 Introduction Algorithmes de tri L objectif de ce document est de présenter plusieurs algorithmes classiques de tri. On commence par présenter chaque méthode de manière intuitive, puis on détaille un exemple d exécution

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

Comment rendre un site d e-commerce intelligent

Comment rendre un site d e-commerce intelligent Comment rendre un site d e-commerce intelligent Alexei Kounine CEO +33 (0) 6 03 09 35 14 alex@tastehit.com Christopher Burger CTO +49 (0) 177 179 16 99 chris@tastehit.com L embarras du choix Donner envie

Plus en détail

Cours No 10 - Conclusion et perspectives

Cours No 10 - Conclusion et perspectives B. Amann - Cours No 10 - Conclusion et perspectives 1 Slide 1 Cours No 10 - Conclusion et perspectives Gestion de contenus Web La gestion de contenus Web est possible grâce à des technologies complémentaires

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Administration, monitoring des services

Administration, monitoring des services IBM Software Group Administration, monitoring des services Véronique Kaçar, Consultant Tivoli, IBM France 2005 IBM Corporation Les Services : des ressources à gérer - Analyser et optimiser les services

Plus en détail

Optimisations des SGBDR. Étude de cas : MySQL

Optimisations des SGBDR. Étude de cas : MySQL Optimisations des SGBDR Étude de cas : MySQL Introduction Pourquoi optimiser son application? Introduction Pourquoi optimiser son application? 1. Gestion de gros volumes de données 2. Application critique

Plus en détail

La gestion des processus humain et documentaires / Session Number Pascale Vincent Manager Tech Sales IBM ECM

La gestion des processus humain et documentaires / Session Number Pascale Vincent Manager Tech Sales IBM ECM La gestion des processus humain et documentaires / Session Number Pascale Vincent Manager Tech Sales IBM ECM 2 Le constat Les processus d entreprise ne sont rien d autre qu un enchaînement de prises de

Plus en détail

SQL Server 2012 - SQL, Transact SQL Conception et réalisation d'une base de données

SQL Server 2012 - SQL, Transact SQL Conception et réalisation d'une base de données Le modèle relationnel 1. Introduction 9 2. Rappels sur le stockage des données 9 2.1 Les différentes catégories de données 10 2.1.1 Les données de base 10 2.1.2 Les données de mouvement 10 2.1.3 Les données

Plus en détail

Guide de démarrage rapide avec DataStudio Online Edition

Guide de démarrage rapide avec DataStudio Online Edition Guide de démarrage rapide avec DataStudio Online Edition Introduction Ce document vient en complément des films de démonstration disponibles sur le site web de data. L ETL ETL est un sigle qui signifie

Plus en détail

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le Qui je suis Innovation Utilisation des réseaux sociaux pour le data mining Business & Decision Françoise Soulié Fogelman francoise.soulie@outlook.com Atos KDD_US CNAM Séminaire de Statistique appliquée

Plus en détail

Cours de Community Management Master 2 CAWEB

Cours de Community Management Master 2 CAWEB Cours proposé le 17 décembre 2014 Cours de Community Management Master 2 CAWEB Chargé d enseignement : Max Schleiffer, consultant social media Notre Programme 19/11 : Présentation du métier de Community

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1

Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1 Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1 Plan Généralités Langage de Définition des (LDD) Langage de Manipulation

Plus en détail

ELOECM Conference2015

ELOECM Conference2015 ELOECM Conference2015 Dématérialisation de courriers ELO DocXtractor Florent Melchers Consultant Projet et Avant-vente f.melchers@elo-digital.fr Intérêt d une solution de dématérialisation Nos clients

Plus en détail

Oracle Database 10g: Les fondamentaux du langage SQL I

Oracle Database 10g: Les fondamentaux du langage SQL I Oracle University Appelez-nous: +33 (0) 1 57 60 20 81 Oracle Database 10g: Les fondamentaux du langage SQL I Durée: 3 Jours Description Ce cours offre aux étudiants une introduction à la technologie de

Plus en détail

" # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! "##$ % &!

 # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! ##$ % &! "# $ %%& ' ( )*+, '()*+,'+''-++.+/0112134+1.50*406 "##$ %& 8CC "#$%& ' ( )* +,-./ 0 123 456+7 3 7-55-89.*/ 0 +3 *+:3 ;< =3 3-3 8 0 23 >-8-3 >5? //*/*0;* @A: *53,,3 / * $/ >B+? - 5, 2 34*56 7 /+#** //8

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 8 Introduction à OLAP 8.1. Présentation de la semaine Le modèle OLAP (Online Analytical Processing) est un modèle quasiomniprésent en intelligence

Plus en détail

Website Express Créer un site professionnel avec Orange

Website Express Créer un site professionnel avec Orange Website Express Créer un site professionnel avec Orange mars 2015 Safiétou Ndao Ndiaye Sommaire Présentation... 3 Description du service... 3 Configuration requise... 4 Consignes... 4 Pour bien démarrer...

Plus en détail

Introduction. Le contrôle de flux. Environnement

Introduction. Le contrôle de flux. Environnement Introduction Protocoles apparaissant dans la couche liaison de données ou dans la couche transport Différences suivant les cas dues au Texte Le contrôle de flux et la récupération des erreurs Temps de

Plus en détail

Créer un compte personnel ou professionnel Pearltrees

Créer un compte personnel ou professionnel Pearltrees Créer un compte personnel ou professionnel Pearltrees Introduction: Pearltrees est un service gratuit qui permet de découvrir, collecter, classer et partager des pages web, des images, des notes et/ou

Plus en détail

Gérer ma boutique en ligne

Gérer ma boutique en ligne Gérer ma boutique en ligne Ma boutique en ligne Objectif : L onglet Ma boutique en ligne vous permet de gérer votre boutique en ligne. Vous pouvez modifier le contenu de la boutique, ajouter des catégories,

Plus en détail

Documentation utilisateur MyGed. Documentation MyGed / Utilisation de MyGed Entreprise

Documentation utilisateur MyGed. Documentation MyGed / Utilisation de MyGed Entreprise Documentation MyGed / Utilisation de MyGed Entreprise 1 SOMMAIRE 1 Le classement...4 1.1 Le classement depuis une panière...4 1.2 Le traitement par lot...6 1.3 Classement depuis l explorateur Windows...7

Plus en détail

Datawarehouse. C. Vangenot

Datawarehouse. C. Vangenot Datawarehouse C. Vangenot Plan Partie 1 : Introduction 1. Objectifs 2. Qu'est ce qu'un datawarehouse? 3. Pourquoi ne pas réutiliser les BD? Partie 2 : Implémentation d'un datawarehouse ROLAP MOLAP HOLAP

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

BOOSTEZ MAITRISEZ. votre business en ligne. la qualité de vos données

BOOSTEZ MAITRISEZ. votre business en ligne. la qualité de vos données 3 BOOSTEZ votre business en ligne MAITRISEZ la qualité de vos données J accélère drastiquement le temps de mise en ligne d un nouveau site et je m assure de la qualité de marquage Mon site évolue constamment

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

Projet ROSES. Livrable no D1.1. D1.1 Fonctionnalités d'un système ROSES

Projet ROSES. Livrable no D1.1. D1.1 Fonctionnalités d'un système ROSES Projet ROSES Programme MDCO Edition 2007 Livrable no D1.1 Fonctionnalités d'un système ROSES Identification Acronyme du projet Numéro d'identification de l'acte attributif ROSES Coordonnateur Paris 6 ANR

Plus en détail

1 re. Se documenter automatiquement grâce aux réseaux sociaux. séquence pédagogique L1.2 L1.4 L2.2 L4.2. 3 e trimestre. Consigne 1

1 re. Se documenter automatiquement grâce aux réseaux sociaux. séquence pédagogique L1.2 L1.4 L2.2 L4.2. 3 e trimestre. Consigne 1 Se documenter automatiquement grâce aux réseaux sociaux Nom :... Prénom :... Date :... Validez les items du B2i! L1.2 L1.4 L2.2 L4.2 PAYS DE LA LOIRE Consigne 1 (Travail en groupe possible) De plus en

Plus en détail

Documentation du serveur de jeu

Documentation du serveur de jeu Documentation du serveur de jeu Introduction Ce document décrit le rôle de notre serveur de jeu et les fonctionnalités qu il fournit à l application Android. Nous détaillerons aussi l architecture et les

Plus en détail

Projet ROSES Programme MDCO Edition 2007. Livrable no D1.2 Architecture d un Système ROSES centralisé

Projet ROSES Programme MDCO Edition 2007. Livrable no D1.2 Architecture d un Système ROSES centralisé Projet ROSES Programme MDCO Edition 2007 Livrable no D1.2 Architecture d un Système ROSES centralisé Identification Acronyme du projet Numéro d'identification de l'acte attributif ROSES ANR-07-MDCO-011-01

Plus en détail

CONFERENCE TECHNOM AIDE IBM

CONFERENCE TECHNOM AIDE IBM Conférence Big Data CONFERENCE TECHNOM AIDE IBM Le BIG DATA : le nouveau pétrole de la société. En présence de : Christophe MENICHETTI (spécialiste BIG DATA chez IBM) JN. SCHNEIDER et F. WEYGAND (professeurs

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

GUIDE Outlook Version du 17 novembre 2010

GUIDE Outlook Version du 17 novembre 2010 GUIDE Outlook Version du 17 novembre 2010 Table des matières Qu est-ce qu Outlook?... 2 1. Découverte de l interface d Outlook... 2 2 Description de la liste des dossiers.... 3 3. Description des types

Plus en détail

Requêtes S.Q.L. 1 Création des requêtes sous ACCESS

Requêtes S.Q.L. 1 Création des requêtes sous ACCESS Activité 15 Requêtes S.Q.L. Objectif Interroger une base de données avec des requêtes SQL. Fiche de savoir associée Ressource à utiliser Csi1Projets.pdf (Dossier 4) B.1.1.b. 1 En cliquant sur l'objet "Requêtes"

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Problématiques dans trading à haute fréquence

Problématiques dans trading à haute fréquence Extrait de la présentation de Charles-Albert Lehalle, Atelier Trading & Micro-structure, Collège de France, 10 Décembre 2008. mdang@cheuvreux.com Recherche Quantitative, Séminaire de la finance, VNFinance

Plus en détail

Comparaison Entre la technologie «TAG» et l analyse de fichiers logs

Comparaison Entre la technologie «TAG» et l analyse de fichiers logs Comparaison Entre la technologie «TAG» et l analyse de fichiers logs Laurent Patureau Co-fondateur d IDfr Editeur de Wysistat 16, Boulevard Winston CHURCHILL 25 000 BESANCON Tel : 03 81 48 03 05 Fax :

Plus en détail

Bases de données cours 2 Éléments d algèbre relationnelle. Catalin Dima

Bases de données cours 2 Éléments d algèbre relationnelle. Catalin Dima Bases de données cours 2 Éléments d algèbre relationnelle Catalin Dima Qu est-ce qu une algèbre? Algèbre : ensemble de domaines et d opérations. Exemple : les nombres (naturels, réels, complexes). Leurs

Plus en détail

Web dynamique. Techniques, outils, applications. (Partie C)

Web dynamique. Techniques, outils, applications. (Partie C) Web dynamique Techniques, outils, applications (Partie C) Nadir Boussoukaia - 2006 1 SOMMAIRE 1. MySQL et PHP (20 min) 2. SQL (petits rappels) (20 min) 2 MySQL et PHP Synthèse 3 MySQL et PHP SGBD MySQL

Plus en détail

Analyse de données électroniques et intelligence d affaires

Analyse de données électroniques et intelligence d affaires Analyse de données électroniques et intelligence d affaires Valoriser les données internes et externes 3 avril 2014 Ordre du jour UNE INTRODUCTION À L ANALYSE DE DONNÉES Analyse de données et l intelligence

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Systèmes de gestion de bases de données

Systèmes de gestion de bases de données Systèmes de gestion de bases de données Exécution de requêtes: mod ele d exécution P. Rigaux Cnam, dépt. informatique May 6, 2015 PR (Cnam, dépt. info) Systèmes de gestion de bases de données May 6, 2015

Plus en détail

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Université Ibn Zohr Faculté des Sciences Juridiques, Économiques et Sociales Exposé sous le thème : Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Plan : Introduction : L

Plus en détail

Cours #4 Introduction aux bases de données

Cours #4 Introduction aux bases de données IFT-6800, Automne 2015 Cours #4 Introduction aux bases de données Louis Salvail André-Aisenstadt, #3369 salvail@iro.umontreal.ca Pourquoi les bases de données Des applications nécessitent l organisation

Plus en détail

Management des Systèmes d Information

Management des Systèmes d Information Spécialité Réseaux (RES) UE: Management des systèmes d'information [mnsi, NI303] M2IRT 2012 1 ère année Management des Systèmes d Information Unité 2 - Les principaux types de SI dans l entreprise Gilles

Plus en détail

TD 5- PRISE EN MAIN DE L OUTIL ACCESS 2007

TD 5- PRISE EN MAIN DE L OUTIL ACCESS 2007 TD 5- PRISE EN MAIN DE L OUTIL ACCESS 2007 Rappels SGBDR : Un SGBDR est un Système de Gestion de Bases de Données Relationnel'. Access est un Système de Gestion'. C'est un logiciel, et en aucun cas, il

Plus en détail

GED MARKETING. Page 1 sur 18

GED MARKETING. Page 1 sur 18 GED MARKETING I. Présentation du produit... 2 II. Page principale de l application... 3 L arbre... 3 Le menu... 4 La fenêtre de navigation... 4 III. La recherche de documents... 4 Rechercher tous les documents...

Plus en détail

Compte-rendu d atelier L EMAILING DANS SIRIUS

Compte-rendu d atelier L EMAILING DANS SIRIUS Compte-rendu d atelier L EMAILING DANS SIRIUS I. Principes et pré-requis A. De l usage de l Emailing Principe de fonctionnement : serveur d Emailing hébergé par Alcion mutualise les Emailings des clients.

Plus en détail

NIMBUS TRAINING. Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription. Objectifs. Publics. Durée. Pré-requis

NIMBUS TRAINING. Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription. Objectifs. Publics. Durée. Pré-requis Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription A partir des retours d expérience, et des préconisations des éditeurs, présenter les facteurs clés de succès et les bonnes pratiques

Plus en détail

BASES DE DONNÉES AVANCÉES

BASES DE DONNÉES AVANCÉES L3 Informatique Option : ISIL BASES DE DONNÉES AVANCÉES RAMDANI MED U-BOUIRA M. R A M D A N I @ U N I V - B O U I R A. D Z P E R S O. L I V E H O S T. F R Cours 5 : Evaluation et optimisation des requêtes

Plus en détail

Rank, l outil de la visibilité web

Rank, l outil de la visibilité web Rank, l outil de la visibilité web Développé par le pôle R&D de la société Brioude Internet, Rank a pour vocation de nous aider à suivre le positionnement d un site et de ses concurrents. Il ne s agit

Plus en détail

2 Présentation générale de l application MSSanté mobilité

2 Présentation générale de l application MSSanté mobilité Sommaire 1 Objet de la note... 4 2 Présentation générale de l application MSSanté mobilité... 4 3 Présentation fonctionnelle... 5 3.1 Cinématique d enrôlement du terminal mobile... 5 3.1.1 Ajout d un appareil

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

Guide d utilisation du service OLRAS

Guide d utilisation du service OLRAS Guide d utilisation du service OLRAS Table des matières Guide d utilisation du service OLRAS... 1 Identification et niveaux d accès... 3 La barre des menus... 4 Affichage des plannings de livraisons, préparations

Plus en détail

La gestion informatique des points de vente

La gestion informatique des points de vente La gestion informatique des points de vente Newsletter SOLSYS Détail et Caisse, version 3.2.20, disponible depuis le 13 Juillet 2015. Nouveautés Solsys Caisse : Option de saisie de quantités décimales.

Plus en détail

Nouvelles caractéristiques: Problèmes résolus: Plus

Nouvelles caractéristiques: Problèmes résolus: Plus Nouvelles caractéristiques: La possibilité de configurer la connexion à travers un proxy a été ajoutée dans les options générales de configuration du logiciel. Les types de proxy admis sont: SOCKS v4,

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Cours No 8 - Entrepôt de données XML

Cours No 8 - Entrepôt de données XML B. Amann - Cours No 8 - Entrepôt de données XML 1 Slide 1 Cours No 8 - Entrepôt de données XML Système d information et Web Le Web Slide 2 applications ad hoc recherche manuelle navigation mises à jour

Plus en détail

PROMOT (PRESTADESK ONLINE MONEY TRANSFER)

PROMOT (PRESTADESK ONLINE MONEY TRANSFER) LOGICIEL DE TRANSFERT D ARGENT POUR LES AGENCES ET LA MICROFINANCE PROMOT PRESTADESK ONLINE MONEY TRANSFER MONEY TRANSFER SOFTWARE- REMITTANCE SYSTEM A PROPOS : Dénomination du logiciel Version du logiciel

Plus en détail

Piloter vos activités métier avec le BAM. Jean-Marc Langé

Piloter vos activités métier avec le BAM. Jean-Marc Langé Piloter vos activités métier avec le BAM Jean-Marc Langé Qu est-ce que le BAM? Le BAM (Business Activity Monitoring) consiste à agréger, analyser et présenter en temps réel des informations sur les activités,

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014 Recherche et Diffusion de l Information dans les Réseaux Philippe Robert Le 8 avril 2014 Présentation Présentation Directeur de recherche à l INRIA Responsable de l équipe de recherche Réseaux, Algorithmes

Plus en détail

L ecoute, Le service, l echange,

L ecoute, Le service, l echange, L ecoute, Le service, l accompagnement, L assistance, l echange, la formation, le partenariat Acquérir nos solutions, ce n est pas seulement obtenir un outil informatique, c est également accéder à de

Plus en détail

MYXTRACTION. 2009 La Business Intelligence en temps réel

MYXTRACTION. 2009 La Business Intelligence en temps réel MYXTRACTION 2009 La Business Intelligence en temps réel Administration Qui sommes nous? Administration et management des profils Connecteurs Base des données Gestion des variables et catégories de variables

Plus en détail

Formation DEV4 : SQL - Conception & Mise en Oeuvre

Formation DEV4 : SQL - Conception & Mise en Oeuvre Synopsis Formation DEV4 : SQL - Conception & Mise en Oeuvre Le SQL (Structured Query Language) est le langage standard de manipulation de données. À ce titre, il est le pilier fondamental de la base PostgreSQL,

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Kit de survie sur les bases de données

Kit de survie sur les bases de données Kit de survie sur les bases de données Pour gérer un grand nombre de données un seul tableau peut s avérer insuffisant. On représente donc les informations sur différentes tables liées les unes aux autres

Plus en détail

Des solutions aujourd hui pour l entreprise de demain

Des solutions aujourd hui pour l entreprise de demain L optimisation de la stratégie commerciale avec la solution S-DMS de Scantech Bénéfices clients Commerciaux, merchandisers, livreurs et recouvreurs opèrent sur le terrain avec comme principal outil de

Plus en détail

Sujet Projets 2 nd Semestre

Sujet Projets 2 nd Semestre Sujet Projets 2 nd Semestre Seuls les appels systèmes vus en cours sont autorisés. L usage d autres fonctions doit impérativement être validé par l enseignant. La date d ouverture pour l assignation de

Plus en détail

SQL : Dans les articles précédents vous avez acquis

SQL : Dans les articles précédents vous avez acquis Fiche technique SQL : les sous-requêtes Les bases de données sont très utilisées dans les applications Web. La création, l interrogation et la manipulation des données de la base sont réalisées en SQL.

Plus en détail

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star... 1 Manipulation de données avec SAS Enterprise Guide et modélisation

Plus en détail

SQL Serveur 2012+ Programme de formation. France Belgique Suisse - Canada. Formez vos salariés pour optimiser la productivité de votre entreprise

SQL Serveur 2012+ Programme de formation. France Belgique Suisse - Canada. Formez vos salariés pour optimiser la productivité de votre entreprise SQL Serveur 2012+ Programme de formation France Belgique Suisse - Canada Microsoft Partner Formez vos salariés pour optimiser la productivité de votre entreprise Dernière mise à jour le : Avril 2014 Des

Plus en détail

ERP & Processus. lacreuse@unistra.fr

ERP & Processus. lacreuse@unistra.fr ERP & Processus Métiers lacreuse@unistra.fr Processus : «Système d activités qui utilise des ressources pour transformer des éléments d entrée en résultat» Iso9000 Approche par processus Axes de modélisation

Plus en détail

Dossier I Découverte de Base d Open Office

Dossier I Découverte de Base d Open Office ETUDE D UN SYSTEME DE GESTION DE BASE DE DONNEES RELATIONNELLES Définition : Un SGBD est un logiciel de gestion des données fournissant des méthodes d accès aux informations. Un SGBDR permet de décrire

Plus en détail

Le langage SQL Rappels

Le langage SQL Rappels Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

To PIM or not to PIM? Managing your Product Catalog

To PIM or not to PIM? Managing your Product Catalog To PIM or not to PIM? Managing your Product Catalog Sébastien LIEUTAUD VP Sales & Marketing Programme Le marché du PIM en pleine (r)évolution! To PIM or not to PIM: Objectifs, réalisation et bénéfices

Plus en détail

Espace Numérique de Travail «Ste-Vé» : Mode d emploi à l usage des élèves

Espace Numérique de Travail «Ste-Vé» : Mode d emploi à l usage des élèves Espace Numérique de Travail «Ste-Vé» : Mode d emploi à l usage des élèves Afin d utiliser l ENT dans les meilleures conditions, voici quelques informations qui pourraient se révéler utiles. Remarque préliminaire

Plus en détail

Notice d utilisation de l application mobile

Notice d utilisation de l application mobile Notice d utilisation de l application mobile L'application GEONIMO Tracking vous permet de suivre en temps réel sur votre mobile les déplacements de vos chiens équipés d un collier de repérage GPS GEONIMO.

Plus en détail

MANUEL D UTILISATION DE TVAL TRADE

MANUEL D UTILISATION DE TVAL TRADE MANUEL D UTILISATION DE TVAL TRADE 1. ACCÈS À VOTRE ESPACE CLIENT 2. MON COMPTE 2.1 PORTEFEUILLE 2.2 RELEVÉ 2.3 CHANGER LE MOT DE PASSE 2.4 MES ORDRES 3. RESUMÉ DU MARCHÉ 4. DONNÉES DU MARCHÉ 4.1 MESSAGES

Plus en détail

Un client Twitter aux fonctions multiples sur son ordinateur : Tweetdeck

Un client Twitter aux fonctions multiples sur son ordinateur : Tweetdeck Un client Twitter aux fonctions multiples sur son ordinateur : Tweetdeck TweetDeck ajoute des fonctionnalités intéressantes à l application Twitter classique : la gestion des flux par colonne permet d'avoir

Plus en détail

Cours BOXI R3 Infoview

Cours BOXI R3 Infoview DIRECTION DE LA FORMATION ORGANISATION ET GESTION INFORMATIQUE DE LA FORMATION EPFL-VPAA-DAF-OGIF Bâtiment BP Station 16 CH 1015 Lausanne Tél. : E-mail : Site web: +4121 693.48.08 statistiques.formation@epfl.ch

Plus en détail

Enquêtes online par LimeSurvey2

Enquêtes online par LimeSurvey2 SMCS Plateforme technologique de Support en Méthodologie et Calcul Statistique de l UCL Consultance : de l avis à l analyse entière Formation : aux logiciels et méthodes Documentation Outils statistiques

Plus en détail

Hébergée dans le cloud, notre solution est un logiciel-service (SaaS) entièrement géré par NUXIT :

Hébergée dans le cloud, notre solution est un logiciel-service (SaaS) entièrement géré par NUXIT : NUXIT PREMIUM MAIL Nuxit Premium Mail est une solution performante et sécurisée pour vos besoins de messagerie. Hébergée dans le cloud, notre solution est un logiciel-service (SaaS) entièrement géré par

Plus en détail

ETL. Extract, Transform, Load

ETL. Extract, Transform, Load ETL Extract, Transform, Load Plan Introduction Extract, Transform, Load Démonstration Conclusion Plan Introduction Extract, Transform, Load Démonstration Conclusion Identification Problématique: Quoi?

Plus en détail

Rudiments SQL pour Oracle BDA_RCS

Rudiments SQL pour Oracle BDA_RCS Rudiments SQL pour Oracle BDA_RCS 08-11-2014 1 La base de données Gestion des commandes 08-11-2014 2 Les noms de colonnes sont volontairement simplifiés 3 Ajout de nouvelles colonnes dans des tables qui

Plus en détail