Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation

Dimension: px
Commencer à balayer dès la page:

Download "Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation"

Transcription

1 Complex Event Processing Traitement de flux de données en temps réel Romain Colle R&D Project Manager Quartet FS Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 1

2 Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion Création de données 5 exabytes de données (5*10 18 octets) créées par jour Générées par les utilisateurs (youtube, twitter,...) Générées par des actions (vente e-commerce,...) Générées automatiquement (RFID, GPS,...) Comment les exploiter au mieux? 2

3 Exploitation des données BI Business Intelligence (informatique décisionelle): aide à la décision en utilisant les données de l entreprise Basée sur des outils d OLAP (cf cours précédent) Permet de prendre des décisions «informées»: Connaissance de son stock Connaissance de la situation logistique Connaissance de la valeur de mon portefeuille d actions Exploitation des données Data Mining Data mining est l extraction de connaissances à partir de larges volumes de données Informatique + statistique Utilisation «prédictive» pour prévoir le futur grace au passé Applications Relation client Maintenance préventive Optimisation des ventes 3

4 Exploitation des données - CEP Le but est d analyser des flux de données et d en déduire des événements plus complexes Analyse des flux de données Détection et corrélation des événements importants Déduction d événements complexes Agir en conséquence Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 4

5 Impossible d afficher l image. 1/9/2013 Complex Event Processing - How does it work? INPUT STREAM OUTPUT STREAM Alert New Event (message) Example: Filtering Correlations Basic calculations Speed of the car If speed > 50 km/h and Trajectory of the car Tyre pressure Trajectory change and Tyre pressure drops by 50% Action Airbag Exploitation des données - CEP Les déductions se font à l aide d un ensemble de transformations et traitements sur les flux entrants Filtrage / projection Aggrégation Jointure 5

6 Exploitation des données - CEP Traitement des données en temps réel, «au fil de l eau» Applications Trading algorithmique Détection de fraude (carte de crédit) Analyse des médias sociaux CEP Trading algorithmique High Frequency Trading (HFT) Prises de décisions complexes et passages d ordres avant toute réaction humaine Market making (sell/bid), arbitrage, : 73% des ordres par HFT sur les actions aux USA Facteur important du «flash crash» de

7 CEP Online Gaming Surveillance des données générées par les utilisateurs Avatars, communications,... Gestion de l intérêt du joueur S adapter à sa progression, son niveau,... Surveillance de l activité en ligne Optimisation des publicités et promotions Optimisation des transactions en ligne CEP Détection de fraude Détection de paiements frauduleux Comparaison avec des années de données historiques Détection de transactions inhabituelles Détection de comportements frauduleux Le but est de prévenir la fraude alors qu elle est en train de se produire Traitement temps réel extrêmement performant 7

8 Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion Polling Flux de données - Réception Notify pull Push 8

9 Flux de données - Réception Polling Interroger le service toutes les N secondes pour récupérer la valeur courante ou les nouvelles données Très gourmant en ressources: la requête doit être réexécutée toutes les N secondes et comparée avec son résultat précédent Peut être amélioré si le service peut fournir un «diff» lors de chaque interrogation Notify-pull Flux de données - Réception Le client enregistre sa requête au niveau du service Le service notifie le client lorsque de nouvelles données sont disponibles Le client requête le serveur pour récupérer les nouvelles données Plus efficace que le polling, évites les aller-retours inutiles Pas toujours vrai si le serveur notifie le client lorsque de nouvelles données apparaissent «à côté» de la requête Très efficace si la quantité de nouvelles données récupérées lors de chaque requête est importante 9

10 Flux de données - Réception Push Le client enregistre sa requête au niveau du service Le service envoie au client les nouvelles données au fil de l eau Très efficace, évite tout aller-retour après la souscription Le serveur peut «batcher» les nouvelles données si la fréquence d apparition est trop élevée Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 10

11 Traitement des flux Les données entrantes passent à travers un réseau d opérateurs Les données sortantes (s il y en a) correspondent au résultat du «complex processing» Modélisation et représentation par un système de «boites et flêches» (boxes and arrows) Traitement des flux Médias sociaux Analyse des tweets sur Apple et Samsung suite à la sortie des nouveaux IPhone et Galaxy S Recherche des mots apparaissant le plus souvent avec Apple et Samsung Filtrage des tweets Découpage des phrases en mots => Création de nouveaux flux Aggrégation de flux sur une fenêtre de temps 11

12 Traitement des flux Médias sociaux Filter Split Agg. Top 3 OUT Contains Apple On words Sum over 30mn Group by words Dupli cate Tweets Filter Split Agg. Top 3 OUT Contains Samsung On words Sum over 30mn Group by words Modélisation d un flux de données Un flux de données est une séquence de tuples t = (a 1,a 2,a 3,...,a n ) Le schéma du flux est la description des différents attributs des tuples: a 1,a 2,a 3,...,a n Les données du flux sont des éléments (tuples) ayant des valeurs pour chacun des attributs du flux 12

13 Modélisation d un flux de données Exemple: flux de ventes de voitures chez un concessionnaire Schéma: (date, marque, modèle, couleur, prix) Flux de données: t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, )... Différents opérateurs d un moteur CEP Filter Applique des conditions sur les différents attributs d un tuple Le flux de sortie a le même schéma que le flux d entrée mains ne contient qu un sous-ensemble des tuples entrants Exemple t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, ) t1 = (01/12/2012, Peugeot, 407, bleue, ) t3 = (06/12/2012, Citroen, C5, noire, ) Prix >

14 Différents opérateurs d un moteur CEP Projection Projette les tuples vers un sous-ensemble des attributs du flux entrant Le schéma du flux de sortie est un sous-ensemble des attributs du schéma du flux entrant Exemple t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, ) t1 = (Peugeot, 407) t2 = (Renault,Twingo) t3 = (Citroen, C5) Projection = (Marque,Modèle) Différents opérateurs d un moteur CEP Sort Trie les tuples du flux entrant selon un ordre défini sur la valeur des attributs Le flux de sortie a le même schéma que le flux d entrée, mais l ordre des tuples est différent Exemple t1 = (01/12/2012, Peugeot, 407, bleue, ) t2 = (04/12/2012, Renault,Twingo, blanche, ) t3 = (06/12/2012, Citroen, C5, noire, ) t1 = (04/12/2012, Renault,Twingo, blanche, ) t2 = (01/12/2012, Peugeot, 407, bleue, ) t3 = (06/12/2012, Citroen, C5, noire, ) Sort by price 14

15 Différents opérateurs d un moteur CEP Sort Un tri ne peut se faire sur l ensemble des tuples d un flux Comment trier un flux infini d éléments? Stockage trop important pour un flux fini Doit être fait sur une fenêtre glissante de temps (e.g. 10 dernières minutes) d événements (e.g derniers tuples) Pour une fenêtre de taille n, les n+1 derniers éléments sont gardés dans un «buffer» en mémoire Ejecte et émet dans le flux sortant le plus petit élément du buffer lorsqu il devient plein Opérateur sort - Exemple D.J. Abadi et al.: Aurora: a new model and architecture for data stream management 15

16 Différents opérateurs d un moteur CEP Aggregate Application d une fonction d aggrégation (sum, min, max, avg,...) et d un «group by» sur le flux de tuples entrant Le schéma du flux de sortie contient les attributs du group by, ainsi que la valeur de l attribute aggrégé Exemple t1 = (01/12/2012, Peugeot, 407, noire, ) t2 = (04/12/2012, Peugeot, 307,noire, ) t3 = (06/12/2012, Citroen, C5, bleue, ) t1 = (Peugeot, noire, ) t2 = (Citroen, bleue, ) Sum(price) group by make,color Différents opérateurs d un moteur CEP Aggregate Comme le tri, l aggrégation ne peut se faire sur l ensemble du flux L aggrégation se fait sur une fenêtre glissante Pour une fenêtre d une heure, les éléments reçus durant cette heure sont gardés en mémoire ainsi que les aggrégats pour chaque groupe existant Lorsque l heure est terminée, les aggrégats sont émis dans le flux de sortie et la mémoire est ré-initialisée 16

17 Opérateur aggregate - Exemple D.J. Abadi et al.: Aurora: a new model and architecture for data stream management Moteur CEP - Stockage des données Certaines fonctions ne nécessitent pas de stockage Filter Projection... Fenêtre glissante de temps/éléments pour les autres Sort Aggregate Join... 17

18 Moteur CEP - Stockage des données Implémentation d une fenêtre glissante LinkedList (Deque) Les éléments sont ajoutés à la fin de la liste Lorsque la liste est pleine, on enlève l élément du début: il est sorti de la fenêtre glissante Ces opérations sont en O(1) pour une liste chaînée Nécessite de maintenir la taille de la liste dans une variable pour être efficace (O(n) sinon) Moteur CEP - Stockage des données Implémentation d une fenêtre glissante Tableau «circulaire» de taille n Maintient d un index i pour la prochaine insertion Commence à 0 et augmente après chaque insertion Recommence à 0 à la fin du tableau Lorsqu un élément est inséré à la place d un autre, l ancien élément sort de la fenêtre glissante Dès que le tableau a été rempli une première fois 18

19 Moteur CEP - Stockage des données Somme courante sur une fenêtre de n éléments La fenêtre glissante est maintenue à l aide d une des techniques précedentes Lorsqu un élément est reçu, il est inséré dans la fenêtre et sa valeur est ajoutée à la somme courante Si l insertion a éjecté un ancien élément de la fenêtre, la valeur de cet ancien élément est soustraite à la somme courante Moteur CEP - Stockage des données Max courant sur une fenêtre de n éléments Implémentation naïve : garder les n derniers éléments en mémoire et recalculer le max lorsqu il sort de la fenêtre Peut mieux faire Garder les «sommets» décroissants de la fenêtre 19

20 Moteur CEP - Stockage des données Max courant sur une fenêtre de 10 éléments U1 1 U2 2 U3 3 U4 U4 5 U2 U1 6 U3 U2 7 U4 U3 U3 U4 U5 11 U1 12 U U Max list Plan Génération et exploitation de données CEP et applications Flux de données et notifications Traitement des flux Implémentation Conclusion 20

21 Conclusion CEP est une technologie encore nouvelle Très présente pour les traitements «simples» de flux de données avec très faible latence Donne de bons résulats CEP est une technologie qui a ses limites Pas de stockage de données donc pas de contexte ni historique Les traitements sont encore assez simples Faible dimensionalité Convergence du CEP, OLAP et Data Mining ActivePivot! Fondée en 2005 Développe et commercialise ActivePivot R&D à Paris, Services à Paris, Londres, NY et Singapour CEI Supélec et stage tous les ans depuis

22 Thank you for your attention To know more about Quartet FS Please visit: 22

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Historique. Streaming et VOD. Client / Serveur ou P2P? Optimisations. Conclusion. TONGUET / GONZALEZ 20/11/2009 La Vidéo à la demande

Historique. Streaming et VOD. Client / Serveur ou P2P? Optimisations. Conclusion. TONGUET / GONZALEZ 20/11/2009 La Vidéo à la demande Historique Streaming et VOD Client / Serveur ou P2P? Optimisations Conclusion En septembre 1994 : Cambridge Interactive TV trial Service VOD sur le Cambridge Cable Network Accessible pour 250 foyers et

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Comment rendre un site d e-commerce intelligent

Comment rendre un site d e-commerce intelligent Comment rendre un site d e-commerce intelligent Alexei Kounine CEO +33 (0) 6 03 09 35 14 alex@tastehit.com Christopher Burger CTO +49 (0) 177 179 16 99 chris@tastehit.com L embarras du choix Donner envie

Plus en détail

Optimisations des SGBDR. Étude de cas : MySQL

Optimisations des SGBDR. Étude de cas : MySQL Optimisations des SGBDR Étude de cas : MySQL Introduction Pourquoi optimiser son application? Introduction Pourquoi optimiser son application? 1. Gestion de gros volumes de données 2. Application critique

Plus en détail

IdR Trading et Microstructure CA Cheuvreux. Charles-Albert Lehalle

IdR Trading et Microstructure CA Cheuvreux. Charles-Albert Lehalle IdR Trading et Microstructure CA Cheuvreux Charles-Albert Lehalle 2010-2014 Crédit Agricole Cheuvreux Kepler Cheuvreux L objectif de cette IdR «trading et microstructure des marchés» est de stimuler la

Plus en détail

Thibault Denizet. Introduction à SSIS

Thibault Denizet. Introduction à SSIS Thibault Denizet Introduction à SSIS 2 SSIS - Introduction Sommaire 1 Introduction à SQL Server 2008 Integration services... 3 2 Rappel sur la Business Intelligence... 4 2.1 ETL (Extract, Transform, Load)...

Plus en détail

Lotus Notes Traveler 8.5.2. GUIDE DE SURVIE http://traveler.gouv.nc/servlet/traveler

Lotus Notes Traveler 8.5.2. GUIDE DE SURVIE http://traveler.gouv.nc/servlet/traveler Lotus Notes Traveler 8.5.2 GUIDE DE SURVIE http://traveler.gouv.nc/servlet/traveler Le service http://traveler.gouv.nc/servlet/traveler issu de la technologie IBM «Lotus Notes Traveler» est une application

Plus en détail

Systèmes de Fichiers

Systèmes de Fichiers Systèmes de Fichiers Hachage et Arbres B Serge Abiteboul INRIA February 28, 2008 Serge Abiteboul (INRIA) Systèmes de Fichiers February 28, 2008 1 / 26 Systèmes de fichiers et SGBD Introduction Hiérarchie

Plus en détail

Cours No 10 - Conclusion et perspectives

Cours No 10 - Conclusion et perspectives B. Amann - Cours No 10 - Conclusion et perspectives 1 Slide 1 Cours No 10 - Conclusion et perspectives Gestion de contenus Web La gestion de contenus Web est possible grâce à des technologies complémentaires

Plus en détail

LES DONNÉES CLIENTS APPLIQUÉES À LA MOBILITÉ : ENJEUX, ÉVOLUTIONS ET ACTIONS

LES DONNÉES CLIENTS APPLIQUÉES À LA MOBILITÉ : ENJEUX, ÉVOLUTIONS ET ACTIONS LES DONNÉES CLIENTS APPLIQUÉES À LA MOBILITÉ : ENJEUX, ÉVOLUTIONS ET ACTIONS BIG DATA, DIRTY DATA, MULTI DATA : DE LA THÉORIE À LA PRATIQUE : ARTÉMIS Paris le 4 avril 2013 EFFIA Synergies 20 Bd Poniatowski

Plus en détail

ELOECM Conference2015

ELOECM Conference2015 ELOECM Conference2015 Dématérialisation de courriers ELO DocXtractor Florent Melchers Consultant Projet et Avant-vente f.melchers@elo-digital.fr Intérêt d une solution de dématérialisation Nos clients

Plus en détail

CAHIER DES CHARGES FONCTIONNEL GENERAL PROJET 13. Validation. Historique des modifications

CAHIER DES CHARGES FONCTIONNEL GENERAL PROJET 13. Validation. Historique des modifications PROJET 13 CAHIER DES CHARGES FONCTIONNEL GENERAL Réf. : Projet : ccfg.doc Etude et réalisation d une application de gestion des appels téléphoniques Emetteur : ISTDI Tél. 23733001392 Fax. 23733473355 Mail

Plus en détail

BOOSTEZ MAITRISEZ. votre business en ligne. la qualité de vos données

BOOSTEZ MAITRISEZ. votre business en ligne. la qualité de vos données 3 BOOSTEZ votre business en ligne MAITRISEZ la qualité de vos données J accélère drastiquement le temps de mise en ligne d un nouveau site et je m assure de la qualité de marquage Mon site évolue constamment

Plus en détail

Requêtes S.Q.L. 1 Création des requêtes sous ACCESS

Requêtes S.Q.L. 1 Création des requêtes sous ACCESS Activité 15 Requêtes S.Q.L. Objectif Interroger une base de données avec des requêtes SQL. Fiche de savoir associée Ressource à utiliser Csi1Projets.pdf (Dossier 4) B.1.1.b. 1 En cliquant sur l'objet "Requêtes"

Plus en détail

1 re. Se documenter automatiquement grâce aux réseaux sociaux. séquence pédagogique L1.2 L1.4 L2.2 L4.2. 3 e trimestre. Consigne 1

1 re. Se documenter automatiquement grâce aux réseaux sociaux. séquence pédagogique L1.2 L1.4 L2.2 L4.2. 3 e trimestre. Consigne 1 Se documenter automatiquement grâce aux réseaux sociaux Nom :... Prénom :... Date :... Validez les items du B2i! L1.2 L1.4 L2.2 L4.2 PAYS DE LA LOIRE Consigne 1 (Travail en groupe possible) De plus en

Plus en détail

Créer un compte personnel ou professionnel Pearltrees

Créer un compte personnel ou professionnel Pearltrees Créer un compte personnel ou professionnel Pearltrees Introduction: Pearltrees est un service gratuit qui permet de découvrir, collecter, classer et partager des pages web, des images, des notes et/ou

Plus en détail

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Oracle Database 10g: Les fondamentaux du langage SQL I

Oracle Database 10g: Les fondamentaux du langage SQL I Oracle University Appelez-nous: +33 (0) 1 57 60 20 81 Oracle Database 10g: Les fondamentaux du langage SQL I Durée: 3 Jours Description Ce cours offre aux étudiants une introduction à la technologie de

Plus en détail

Poker. A rendre pour le 25 avril

Poker. A rendre pour le 25 avril Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Compte-rendu d atelier L EMAILING DANS SIRIUS

Compte-rendu d atelier L EMAILING DANS SIRIUS Compte-rendu d atelier L EMAILING DANS SIRIUS I. Principes et pré-requis A. De l usage de l Emailing Principe de fonctionnement : serveur d Emailing hébergé par Alcion mutualise les Emailings des clients.

Plus en détail

La gestion des processus humain et documentaires / Session Number Pascale Vincent Manager Tech Sales IBM ECM

La gestion des processus humain et documentaires / Session Number Pascale Vincent Manager Tech Sales IBM ECM La gestion des processus humain et documentaires / Session Number Pascale Vincent Manager Tech Sales IBM ECM 2 Le constat Les processus d entreprise ne sont rien d autre qu un enchaînement de prises de

Plus en détail

La gestion informatique des points de vente

La gestion informatique des points de vente La gestion informatique des points de vente Newsletter SOLSYS Détail et Caisse, version 3.2.20, disponible depuis le 13 Juillet 2015. Nouveautés Solsys Caisse : Option de saisie de quantités décimales.

Plus en détail

Guide de démarrage rapide avec DataStudio Online Edition

Guide de démarrage rapide avec DataStudio Online Edition Guide de démarrage rapide avec DataStudio Online Edition Introduction Ce document vient en complément des films de démonstration disponibles sur le site web de data. L ETL ETL est un sigle qui signifie

Plus en détail

TP Bases de données réparties

TP Bases de données réparties page 1 TP Bases de données réparties requêtes réparties Version corrigée Auteur : Hubert Naacke, révision 5 mars 2003 Mots-clés: bases de données réparties, fragmentation, schéma de placement, lien, jointure

Plus en détail

L EXPLORATEUR DE DONNEES «DATA EXPLORER»

L EXPLORATEUR DE DONNEES «DATA EXPLORER» L EXPLORATEUR DE DONNEES «DATA EXPLORER» Avec l arrivée de l explorateur de données dans SAS Enterprise Guide, vous allez pouvoir explorer le contenu de vos sources de données sans les ajouter à votre

Plus en détail

Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1

Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1 Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1 Plan Généralités Langage de Définition des (LDD) Langage de Manipulation

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

Documentation du serveur de jeu

Documentation du serveur de jeu Documentation du serveur de jeu Introduction Ce document décrit le rôle de notre serveur de jeu et les fonctionnalités qu il fournit à l application Android. Nous détaillerons aussi l architecture et les

Plus en détail

Cours #4 Introduction aux bases de données

Cours #4 Introduction aux bases de données IFT-6800, Automne 2015 Cours #4 Introduction aux bases de données Louis Salvail André-Aisenstadt, #3369 salvail@iro.umontreal.ca Pourquoi les bases de données Des applications nécessitent l organisation

Plus en détail

PROMOT (PRESTADESK ONLINE MONEY TRANSFER)

PROMOT (PRESTADESK ONLINE MONEY TRANSFER) LOGICIEL DE TRANSFERT D ARGENT POUR LES AGENCES ET LA MICROFINANCE PROMOT PRESTADESK ONLINE MONEY TRANSFER MONEY TRANSFER SOFTWARE- REMITTANCE SYSTEM A PROPOS : Dénomination du logiciel Version du logiciel

Plus en détail

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Mémoires 2010-2011 www.euranova.eu MÉMOIRES ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Contexte : Aujourd hui la plupart des serveurs d application JEE utilise des niveaux de cache L1

Plus en détail

Comparaison Entre la technologie «TAG» et l analyse de fichiers logs

Comparaison Entre la technologie «TAG» et l analyse de fichiers logs Comparaison Entre la technologie «TAG» et l analyse de fichiers logs Laurent Patureau Co-fondateur d IDfr Editeur de Wysistat 16, Boulevard Winston CHURCHILL 25 000 BESANCON Tel : 03 81 48 03 05 Fax :

Plus en détail

TD 5- PRISE EN MAIN DE L OUTIL ACCESS 2007

TD 5- PRISE EN MAIN DE L OUTIL ACCESS 2007 TD 5- PRISE EN MAIN DE L OUTIL ACCESS 2007 Rappels SGBDR : Un SGBDR est un Système de Gestion de Bases de Données Relationnel'. Access est un Système de Gestion'. C'est un logiciel, et en aucun cas, il

Plus en détail

Cours No 8 - Entrepôt de données XML

Cours No 8 - Entrepôt de données XML B. Amann - Cours No 8 - Entrepôt de données XML 1 Slide 1 Cours No 8 - Entrepôt de données XML Système d information et Web Le Web Slide 2 applications ad hoc recherche manuelle navigation mises à jour

Plus en détail

Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino

Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino Contrôlez et Maîtrisez votre environnement de messagerie Lotus Notes Domino avec la Messaging Flow Suite de Cooperteam Laurent Leturger Technical Manager Cooperteam Lotusphere Paris - Le 26 mars 2009 Index

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

GED MARKETING. Page 1 sur 18

GED MARKETING. Page 1 sur 18 GED MARKETING I. Présentation du produit... 2 II. Page principale de l application... 3 L arbre... 3 Le menu... 4 La fenêtre de navigation... 4 III. La recherche de documents... 4 Rechercher tous les documents...

Plus en détail

Gérer ma boutique en ligne

Gérer ma boutique en ligne Gérer ma boutique en ligne Ma boutique en ligne Objectif : L onglet Ma boutique en ligne vous permet de gérer votre boutique en ligne. Vous pouvez modifier le contenu de la boutique, ajouter des catégories,

Plus en détail

Utiliser Reporting Services pour des NewsLetter

Utiliser Reporting Services pour des NewsLetter Utiliser Reporting Services pour des NewsLetter SQL Server Reporting Services et les NewsLetters Le moteur de rapport inclus dans Microsoft SQL Server permet de créer de nombreux rapports classiques. Il

Plus en détail

Mise en oeuvre d'office 365 Gestion de projet et conduite du changement

Mise en oeuvre d'office 365 Gestion de projet et conduite du changement La transformation digitale 1. Introduction 13 2. La transformation digitale 13 2.1 Les premières analyses 13 2.2 Les analyses actuelles 18 2.3 Les perspectives 28 3. Présentation d Office 365 29 3.1 Présentation

Plus en détail

Analyse de données électroniques et intelligence d affaires

Analyse de données électroniques et intelligence d affaires Analyse de données électroniques et intelligence d affaires Valoriser les données internes et externes 3 avril 2014 Ordre du jour UNE INTRODUCTION À L ANALYSE DE DONNÉES Analyse de données et l intelligence

Plus en détail

Tout le matériel (actif) qui sert à produire: boulons, capteurs, automates, vérins, câblage, éclairage, etc.

Tout le matériel (actif) qui sert à produire: boulons, capteurs, automates, vérins, câblage, éclairage, etc. 1 La maintenance 2 De quoi? Tout le matériel (actif) qui sert à produire: boulons, capteurs, automates, vérins, câblage, éclairage, etc. Pourquoi? Garder le matériel de production (les actifs) en état

Plus en détail

" # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! "##$ % &!

 # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! ##$ % &! "# $ %%& ' ( )*+, '()*+,'+''-++.+/0112134+1.50*406 "##$ %& 8CC "#$%& ' ( )* +,-./ 0 123 456+7 3 7-55-89.*/ 0 +3 *+:3 ;< =3 3-3 8 0 23 >-8-3 >5? //*/*0;* @A: *53,,3 / * $/ >B+? - 5, 2 34*56 7 /+#** //8

Plus en détail

Problématiques dans trading à haute fréquence

Problématiques dans trading à haute fréquence Extrait de la présentation de Charles-Albert Lehalle, Atelier Trading & Micro-structure, Collège de France, 10 Décembre 2008. mdang@cheuvreux.com Recherche Quantitative, Séminaire de la finance, VNFinance

Plus en détail

Algorithmes de tri. 1 Introduction

Algorithmes de tri. 1 Introduction Algorithmes de tri L objectif de ce document est de présenter plusieurs algorithmes classiques de tri. On commence par présenter chaque méthode de manière intuitive, puis on détaille un exemple d exécution

Plus en détail

2012-2013 INTRODUCTION PRESENTATION :

2012-2013 INTRODUCTION PRESENTATION : TP1 : Microsoft Access INITITIATION A ACCESS ET CREATION DE TABLES INTRODUCTION Une base de données est un conteneur servant à stocker des données: des renseignements bruts tels que des chiffres, des dates

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 8 Introduction à OLAP 8.1. Présentation de la semaine Le modèle OLAP (Online Analytical Processing) est un modèle quasiomniprésent en intelligence

Plus en détail

Analyse des déplacements des objets mobiles : définition de comportements types

Analyse des déplacements des objets mobiles : définition de comportements types Analyse des déplacements des objets mobiles : définition de comportements types Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Les déplacements L analyse des déplacements

Plus en détail

António Dória Arnaud Largillière, Pascal Pradier. ecommerce : Approfondir

António Dória Arnaud Largillière, Pascal Pradier. ecommerce : Approfondir Architectures d ecommerce effectives ne peuvent pas être définies dans le vacuum. Il faut avoir une approche structurée pour survivre dans le monde sauvage d ecommerce... António Dória Arnaud Largillière,

Plus en détail

SQL Server 2012 - SQL, Transact SQL Conception et réalisation d'une base de données

SQL Server 2012 - SQL, Transact SQL Conception et réalisation d'une base de données Le modèle relationnel 1. Introduction 9 2. Rappels sur le stockage des données 9 2.1 Les différentes catégories de données 10 2.1.1 Les données de base 10 2.1.2 Les données de mouvement 10 2.1.3 Les données

Plus en détail

Le métier de Chargé(e) d Etudes Statistiques

Le métier de Chargé(e) d Etudes Statistiques Le métier de Chargé(e) d Etudes Statistiques Nicolas Cabaj Sommaire Présentation du chargé d études statistiques 3 exemples de missions réalisées: Le scoring, illustré par un outil de détection des fraudes

Plus en détail

Notice d utilisation de l application mobile

Notice d utilisation de l application mobile Notice d utilisation de l application mobile L'application GEONIMO Tracking vous permet de suivre en temps réel sur votre mobile les déplacements de vos chiens équipés d un collier de repérage GPS GEONIMO.

Plus en détail

Rank, l outil de la visibilité web

Rank, l outil de la visibilité web Rank, l outil de la visibilité web Développé par le pôle R&D de la société Brioude Internet, Rank a pour vocation de nous aider à suivre le positionnement d un site et de ses concurrents. Il ne s agit

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Administration, monitoring des services

Administration, monitoring des services IBM Software Group Administration, monitoring des services Véronique Kaçar, Consultant Tivoli, IBM France 2005 IBM Corporation Les Services : des ressources à gérer - Analyser et optimiser les services

Plus en détail

Cours de Community Management Master 2 CAWEB

Cours de Community Management Master 2 CAWEB Cours proposé le 17 décembre 2014 Cours de Community Management Master 2 CAWEB Chargé d enseignement : Max Schleiffer, consultant social media Notre Programme 19/11 : Présentation du métier de Community

Plus en détail

Annexe 4 Page 1 of 7

Annexe 4 Page 1 of 7 BDS standards pour les créateurs d entreprises et les PME existantes: produits, impact Groupe A : CREATEURS D ENTREPRISE Produits/BDS(3) 1. Germe/TRIE 1 comprendre la relation entre l idée d entreprise,

Plus en détail

1 La visualisation des logs au CNES

1 La visualisation des logs au CNES 1 La visualisation des logs au CNES 1.1 Historique Depuis près de 2 ans maintenant, le CNES a mis en place une «cellule d analyse de logs». Son rôle est multiple : Cette cellule est chargée d analyser

Plus en détail

Modèle de cahier des charges pour un appel d offres relatif à une solution de gestion des processus métier (BPM)

Modèle de cahier des charges pour un appel d offres relatif à une solution de gestion des processus métier (BPM) LA BOITE A OUTILS DE L ACHETEUR DE BPM Modèle de cahier des charges pour un appel d offres relatif à une solution de gestion des processus métier (BPM) La boîte à outils de l acheteur de solution BPM -

Plus en détail

Exposé d étude : Sage 100 gestion commerciale

Exposé d étude : Sage 100 gestion commerciale Exposé d étude : Sage 100 gestion commerciale Présenté par : Demb Cheickysoul 1 INTRODUCTION Parfaitement adapté à l organisation de l entreprise par sa puissance de paramétrage, Sage 100 Gestion Commerciale

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

NIMBUS TRAINING. Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription. Objectifs. Publics. Durée. Pré-requis

NIMBUS TRAINING. Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription. Objectifs. Publics. Durée. Pré-requis Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription A partir des retours d expérience, et des préconisations des éditeurs, présenter les facteurs clés de succès et les bonnes pratiques

Plus en détail

CONFERENCE TECHNOM AIDE IBM

CONFERENCE TECHNOM AIDE IBM Conférence Big Data CONFERENCE TECHNOM AIDE IBM Le BIG DATA : le nouveau pétrole de la société. En présence de : Christophe MENICHETTI (spécialiste BIG DATA chez IBM) JN. SCHNEIDER et F. WEYGAND (professeurs

Plus en détail

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le

Qu est ce qu un réseau social. CNAM Séminaire de Statistiques Appliquées 13/11/2013. F.Soulié Fogelman 1. Utilisation des réseaux sociaux pour le Qui je suis Innovation Utilisation des réseaux sociaux pour le data mining Business & Decision Françoise Soulié Fogelman francoise.soulie@outlook.com Atos KDD_US CNAM Séminaire de Statistique appliquée

Plus en détail

Formation. Durée de la formation : 1 journée. Formule In-house (jusque 3 participants) Formation sur mesure en entreprise.

Formation. Durée de la formation : 1 journée. Formule In-house (jusque 3 participants) Formation sur mesure en entreprise. Formation Comment tirer le meilleur bénéfice de toute l information interne et externe disponible au sein de l'entreprise? Durée de la formation : 1 journée Formules : Formule In-house (jusque 3 participants)

Plus en détail

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Université Ibn Zohr Faculté des Sciences Juridiques, Économiques et Sociales Exposé sous le thème : Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Plan : Introduction : L

Plus en détail

ERP & Processus. lacreuse@unistra.fr

ERP & Processus. lacreuse@unistra.fr ERP & Processus Métiers lacreuse@unistra.fr Processus : «Système d activités qui utilise des ressources pour transformer des éléments d entrée en résultat» Iso9000 Approche par processus Axes de modélisation

Plus en détail

Nouvelles caractéristiques: Problèmes résolus: Plus

Nouvelles caractéristiques: Problèmes résolus: Plus Nouvelles caractéristiques: La possibilité de configurer la connexion à travers un proxy a été ajoutée dans les options générales de configuration du logiciel. Les types de proxy admis sont: SOCKS v4,

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

Découvrez la nouvelle version de HelpDesk! HelpDesk 3.4. www.artologik.com. De nouvelles fonctions, plus de contrôle, mais toujours aussi simple!

Découvrez la nouvelle version de HelpDesk! HelpDesk 3.4. www.artologik.com. De nouvelles fonctions, plus de contrôle, mais toujours aussi simple! Une gestion effective et puissante des tickets en interne comme en externe! HelpDesk 3.4 www.artologik.com Découvrez la nouvelle version de HelpDesk! De nouvelles fonctions, plus de contrôle, mais toujours

Plus en détail

L application est utilisable pour toute personne disposant d un compte Qobuz.

L application est utilisable pour toute personne disposant d un compte Qobuz. Manuel d utilisation Appli mobile iphone, ipod, ipad L application est utilisable pour toute personne disposant d un compte Qobuz. - Les abonnés streaming bénéficient en écoute intégrale du catalogue mis

Plus en détail

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014

Recherche et Diffusion de l Information dans les Réseaux. Philippe Robert. Le 8 avril 2014 Recherche et Diffusion de l Information dans les Réseaux Philippe Robert Le 8 avril 2014 Présentation Présentation Directeur de recherche à l INRIA Responsable de l équipe de recherche Réseaux, Algorithmes

Plus en détail

Module 26 : Techniques de modélisation

Module 26 : Techniques de modélisation Module 26 : Techniques de modélisation 26.0 Introduction Ce module enseigne une série de techniques qui constituent une trousse à outils bien pratique quand il s agit de construire des modèles dans Excel

Plus en détail

Formation DEV4 : SQL - Conception & Mise en Oeuvre

Formation DEV4 : SQL - Conception & Mise en Oeuvre Synopsis Formation DEV4 : SQL - Conception & Mise en Oeuvre Le SQL (Structured Query Language) est le langage standard de manipulation de données. À ce titre, il est le pilier fondamental de la base PostgreSQL,

Plus en détail

Web dynamique. Techniques, outils, applications. (Partie C)

Web dynamique. Techniques, outils, applications. (Partie C) Web dynamique Techniques, outils, applications (Partie C) Nadir Boussoukaia - 2006 1 SOMMAIRE 1. MySQL et PHP (20 min) 2. SQL (petits rappels) (20 min) 2 MySQL et PHP Synthèse 3 MySQL et PHP SGBD MySQL

Plus en détail

Découvrez la nouvelle version de HelpDesk! HelpDesk 3.4. www.artologik.com. De nouvelles fonctions, plus de contrôle, mais toujours aussi simple!

Découvrez la nouvelle version de HelpDesk! HelpDesk 3.4. www.artologik.com. De nouvelles fonctions, plus de contrôle, mais toujours aussi simple! Une gestion effective et puissante des tickets en interne comme en externe! HelpDesk 3.4 www.artologik.com Découvrez la nouvelle version de HelpDesk! De nouvelles fonctions, plus de contrôle, mais toujours

Plus en détail

http://mondomaine.com/dossier : seul le dossier dossier sera cherché, tous les sousdomaines

http://mondomaine.com/dossier : seul le dossier dossier sera cherché, tous les sousdomaines Principales fonctionnalités de l outil Le coeur du service suivre les variations de position d un mot-clé associé à une URL sur un moteur de recherche (Google - Bing - Yahoo) dans une locale (association

Plus en détail

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Classe de 5 ème Domaine d application : Habitat et ouvrages Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Nous proposons deux séquences ayant pour problématiques: 1) Quel est le secteur économique

Plus en détail

Présentation du système MCAGED

Présentation du système MCAGED Sommaire Sommaire Présentation du système MCAGED... 3 Première Partie MCAGED Courrier... 4 Deuxième Partie MCAGED Archives... 7 Troisième partie MCAGED Pnumeris...10 Présentation du système MCAGED Le système

Plus en détail

Website Express Créer un site professionnel avec Orange

Website Express Créer un site professionnel avec Orange Website Express Créer un site professionnel avec Orange mars 2015 Safiétou Ndao Ndiaye Sommaire Présentation... 3 Description du service... 3 Configuration requise... 4 Consignes... 4 Pour bien démarrer...

Plus en détail

La gestion des flux d information : EDI

La gestion des flux d information : EDI La gestion des flux d information : EDI Introduction EDI (définition, composants, types et domaines d application) Les enjeux de l EDI La mise en œuvre de l EDI Conclusion Introduction Tâches Création

Plus en détail

Optimiser la maintenance des applications informatiques nouvelles technologies. Les 11 facteurs clés de succès qui génèrent des économies

Optimiser la maintenance des applications informatiques nouvelles technologies. Les 11 facteurs clés de succès qui génèrent des économies Application Services France the way we do it Optimiser la maintenance des applications informatiques nouvelles technologies Les 11 facteurs clés de succès qui génèrent des économies Chaque direction informatique

Plus en détail

Modèles de Données & d Opportunités BI. Michel Bruley Directeur Marketing & PR Teradata

Modèles de Données & d Opportunités BI. Michel Bruley Directeur Marketing & PR Teradata Modèles de Données & d Opportunités BI Michel Bruley Directeur Marketing & PR Teradata 2003 Potentiel de la Donnée Quelles sont mes ventes par magasin la Comment les ventes sur le net impactent les semaine

Plus en détail

Méthodes de test. Mihaela Sighireanu

Méthodes de test. Mihaela Sighireanu UFR d Informatique Paris 7, LIAFA, 175 rue Chevaleret, Bureau 6A7 http://www.liafa.jussieu.fr/ sighirea/cours/methtest/ Partie I 1 Propriétés 2 Un peu de génie logiciel de test 3 Eléments Problèmes Point

Plus en détail

DEVELOPPEMENT ET MAINTENANCE DE LOGICIEL: OUTIL DE PILOTAGE

DEVELOPPEMENT ET MAINTENANCE DE LOGICIEL: OUTIL DE PILOTAGE DEVELOPPEMENT ET MAINTENANCE DE LOGICIEL: OUTIL DE PILOTAGE Développement et maintenance de logiciel Automne 2006 François-Xavier RIU Thomas POUPART Seng LAO Zhe WU SOMMAIRE Introduction Introduction INTRODUCTION

Plus en détail

Les systèmes de gestion de version

Les systèmes de gestion de version Les systèmes de gestion de version Matthieu Herrb Envol 2010 http://homepages.laas.fr/matthieu/talks/envol10-sgv.pdf Systèmes de gestion de version - kesako? Logiciel permettant de gérer l historique des

Plus en détail

HORIZON Pop Suite Logicielle de P ilotage Opérationnel de la Performance Rendre vos processus compétitifs plus légers, plus réactifs, plus agiles et plus sûrs www.concept-pop.com Process Mapping Process

Plus en détail

Amélioration & Optimisation de processus

Amélioration & Optimisation de processus Ingénierie de l information ASQ services SA Société internationale fondée à Sion (Suisse) en 1999 Analyse Statistiques Qualité Amélioration & Optimisation de processus Nos clients ont des processus/procédés

Plus en détail

Formation Développement d'applications mobiles multiplateformes

Formation Développement d'applications mobiles multiplateformes L institut de formation continue des professionnels du Web Formation Développement d'applications mobiles multiplateformes Référence formation : Durée : Prix conseillé : MO00015 5 jours (35 heures) 2 320

Plus en détail

Manuel d utilisation www.torraspapelmalmenayde.fr

Manuel d utilisation www.torraspapelmalmenayde.fr www.torraspapelmalmenayde.fr Manuel d utilisation www.torraspapelmalmenayde.fr 1. S identifier et demander un accès au site : client, utilisateur express P. 2 2. Rechercher & commander un produit P. 7

Plus en détail

OpenText Content Server v10 Cours 3-0126 (ex 215)

OpenText Content Server v10 Cours 3-0126 (ex 215) v10 Cours 3-0126 (ex 215) Administration système et indexation-recherche Durée : 5 jours Ce cours de 5 jours apprendra aux administrateurs, aux architectes système et aux services support comment installer,

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

WWW.MELDANINFORMATIQUE.COM

WWW.MELDANINFORMATIQUE.COM Solutions informatiques Procédure Sur Comment convertir les fichiers.ost en fichiers.pst Solutions informatiques Historique du document Revision Date Modification Autor 3 2013-04-29 Creation Daniel Roy

Plus en détail

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner

Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star Manipulation de données avec SAS Enterprise Guide et modélisation prédictive avec SAS Enterprise Miner Le cas Orion Star... 1 Manipulation de données avec SAS Enterprise Guide et modélisation

Plus en détail