Modélisation aléatoire en fiabilité des logiciels

Dimension: px
Commencer à balayer dès la page:

Download "Modélisation aléatoire en fiabilité des logiciels"

Transcription

1 collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur. Cet ouvrage présente la théorie mathématique de la fiabilité des logiciels et ses applications, qui permettent de prévoir l occurrence des défaillances futures d un système informatique et d évaluer sa fiabilité. Les principaux modèles du processus des défaillances et corrections d un logiciel y sont décrits en adoptant une présentation unifiée dans le cadre des processus aléatoires ponctuels. Les méthodes statistiques associées (de l inférence bayésienne au choix de modèle) sont également étudiées, ainsi que les modèles prenant en compte des covariables et l architecture d un logiciel. L objectif est d aller de l étude conceptuelle approfondie des modèles au calcul numérique des indicateurs de fiabilité à l aide d exemples. Mêlant théorie et pratique, Modélisation aléatoire en fiabilité des logiciels s adresse aux étudiants, ingénieurs, chercheurs en mathématiques appliquées et en informatique, intéressés par les méthodes probabilistes et leurs applications en fiabilité. Les auteurs Olivier Gaudoin est professeur à l Ecole nationale supérieure d informatique et de mathématiques appliquées de Grenoble (ENSIMAG) où il enseigne les probabilités et la statistique. Ses domaines de recherche sont la modélisation aléatoire et l analyse statistique pour la fiabilité des systèmes. James Ledoux est maître de conférences à l Institut national des sciences appliquées (INSA) de Rennes où il enseigne les mathématiques appliquées, et en particulier les probabilités et la statistique. Ses recherches portent sur la modélisation aléatoire Olivier Gaudoin James Ledoux Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen Modélisation aléatoire en fiabilité des logiciels Olivier Gaudoin James Ledoux Z(7ic7e6-CBGAIC(

2 6 Fiabilité des logiciels TABLE DES MATIÈRES Avant-propos Chapitre 1. Introduction Problématique de la fiabilité des logiciels Utilisation des évaluations de fiabilité des logiciels Terminologie Différences entre fiabilité des logiciels et fiabilité des matériels Entrées, profil opérationnel et fautes Défaillances et corrections Exemple de données Contenu du livre Chapitre 2. Concepts de base Concepts élémentaires de fiabilité Hypothèses de base Les fonctions fiabilité et de survie résiduelle Le taux de défaillance Le MTTF Les lois usuelles de durées de vie La loi exponentielle La loi de Weibull La loi gamma La loi lognormale La loi de Pareto La loi hypoexponentielle La loi hyperexponentielle Lois avec taux de défaillance en baignoire Autres lois usuelles en fiabilité La loi binomiale La loi de Poisson La loi normale La loi uniforme La loi puissance Concepts élémentaires de statistique Estimation Qualité d un estimateur Intervalles de confiance et tests d hypothèses Statistiques d ordre Notations et conventions Chapitre 3. Modèles de défaillance auto-excités Le processus des défaillances Quelques mesures de fiabilité des systèmes réparables Construction d un modèle de défaillance La suite des instants de défaillance Le processus de comptage des défaillances Propriétés des modèles de défaillance auto-excités Notion de mémoire Intensité cumulée ou compensateur Loi des durées inter-défaillances Loi des instants de défaillance Fonctions de vraisemblance Loi du nombre de défaillances survenues Expressions des principales grandeurs de fiabilité Classification des modèles de défaillance auto-excités Notes et compléments Chapitre 4. Processus ponctuels Processus de comptage et intensité stochastique Histoire, mesurabilité, prévisibilité Intensité stochastique Intensité d un processus de comptage relativement à son histoire interne Processus de Poisson Simulation Inverse généralisée Simulation par inversion Image d un processus de Poisson par un changement de temps Simulation et taux de hasard Modèles conditionnellement auto-excités Intensité à structure multiplicative

3 Table des matières 7 8 Fiabilité des logiciels Exemple introductif Modèles de régression Notes et compléments Chapitre 5. Processus markoviens Processus markovien de sauts Propriété de Markov Noyau de transition Caractérisation des processus markoviens de sauts Générateur infinitésimal et graphe de transition Irréductibilité et ergodicité Processus markovien uniformisable Processus de comptage associés à un processus markovien de sauts Intensités des processus de comptage Processus de naissance pure Intégrabilité Le processus markovien des arrivées Définition MAP et processus de renouvellement markovien Intensité stochastique d un MAP Principales formules utiles en fiabilité Fonction fiabilité MTTF Loi de N t Fonction moyenne et ROCOF Quelques éléments sur les chaînes de Markov générales Notes et compléments Chapitre 6. Propriétés générales des processus de Poisson Intensité de défaillance Processus de comptage des défaillances Durées inter-défaillances Instants de défaillance Fiabilité et MTTF Fonctions de vraisemblance Lien entre NHPP et processus de records Quelques propriétés utiles Chapitre 7. Fiabilité d un logiciel non corrigé : les processus de Poisson homogènes Définition et propriétés probabilistes Processus de comptage des défaillances Durées inter-défaillances Instants de défaillance Fiabilité et MTTF Fonctions de vraisemblance Quelques propriétés utiles Estimation des grandeurs de la fiabilité Censure de type Estimation ponctuelle de λ Intervalles de confiance pour λ Tests d hypothèses sur λ Estimation du MTTF et de la fiabilité Censure de type Estimation ponctuelle de λ Intervalles de confiance et tests d hypothèses Estimation de la fiabilité Données groupées Application aux données de l exemple Validation des logiciels Validation en présence de défaillances Validation en l absence de défaillance Chapitre 8. Modèles à durées inter-défaillances exponentielles et leurs généralisations Définition et propriétés des modèles ETBF Intensité de défaillance Instants de défaillance Processus de comptage des défaillances Fiabilité et MTTF Fonction de vraisemblance Le modèle de Jelinski-Moranda Définition Propriétés probabilistes Propriétés statistiques Commentaires Premières généralisations du modèle de Jelinski-Moranda Le modèle géométrique de Moranda Définition et propriétés probabilistes Propriétés statistiques Les modèles de statistiques d ordre généralisées Définition Propriétés probabilistes Quelques modèles GOS Modèles conditionnellement ETBF

4 Table des matières 9 10 Fiabilité des logiciels Définition Le modèle de Littlewood Le modèle de Littlewood-Verrall Modélisation par chaînes de Markov cachées Le profil opérationnel poissonnien homogène Lois conditionnelles des taux de hasard Le modèle de Basu et Ebrahimi Le modèle proportionnel lognormal Un modèle à deux taux de correction Un modèle de chaîne de Markov cachée Notes et compléments Chapitre 9. Quelques modèles NHPP Construction des modèles NHPP Loi du premier instant de défaillance Lien entre ROCOF et intensité Lien entre NHPP et modèles GOS Le processus de puissance ou modèle de Duane Définition et propriétés probabilistes Processus de comptage des défaillances Durées inter-défaillances Instants de défaillance Fiabilité et MTTF Fonctions de vraisemblance Quelques propriétés utiles Estimation des grandeurs de la fiabilité Censure de type Censure de type Données groupées Application aux données de l exemple La famille puissance généralisée Le modèle de Goel-Okumoto Quelques extensions du modèle de Goel-Okumoto Décomposition en modules Taux de manifestation variable Correction imparfaite Autres modèles NHPP Le modèle de Musa-Okumoto Le modèle NHPP de Littlewood Le modèle hyperexponentiel Notes et compléments Chapitre 10. Inférence bayésienne Des éléments sur l inférence bayésienne Principe général de l inférence bayésienne Méthodes de Monte Carlo par chaînes de Markov Echantillonneur d Hastings-Metropolis Echantillonneur de Gibbs Echantillonneur de Gibbs avec complétion des données Echantillonneur de Gibbs avec une étape Hastings-Metropolis Inférence bayésienne en fiabilité des logiciels Analyses bayésiennes du modèle de Jelinski-Moranda Analyses bayésiennes du modèle de Littlewood-Verrall Analyses bayésiennes des modèles NHPP et GOS NHPP bornés Modèles GOS NHPP non bornés Estimation et contrôle de convergence Le modèle d Al-Mutairi, Chen et Singpurwalla Chapitre 11. Choix de modèles auto-excités Les tests de tendance Méthodes graphiques Tests d adéquation au HPP Le test de Laplace Censure de type Censure de type Données groupées Le test logarithmique Censure de type Censure de type Optimalité des tests de tendance Les tests d adéquation Problématique Méthodes graphiques Tests d adéquation pour des variables aléatoires i.i.d Cas 1 : tests d adéquation à une loi entièrement spécifiée Cas 2 : test d adéquation à une famille paramétrée de lois Tests d adéquation au PLP Tests CPIT Les tests préquentiels Tests d adéquation aux NHPP de Zhao-Wang Comparaison des tests d adéquation Chapitre 12. Modèles à covariables Covariables en fiabilité des logiciels

5 Table des matières Modèles basés sur le modèle de Cox Modèle à intensités proportionnelles L individu est un sous-système d un logiciel L individu est une copie d un logiciel L individu est une faute Un modèle basé sur le modèle multiplicatif matriciel d Aalen Estimateur de Nelson-Aalen Estimateur du vecteur des fonctions de régression Adéquation au modèle Chapitre 13. Modèles basés sur l architecture du logiciel Un modèle de la structure d un logiciel Quelques modèles de fiabilité Le modèle de Laprie Le modèle boîte-blanche de Littlewood Un modèle général de processus markovien des arrivées Analyse Expressions des grandeurs de fiabilité Comportement asymptotique Croissance de fiabilité Estimation des paramètres Modèles en temps discret D autres approches Approximations de la fiabilité Simulation Méthodes basées sur le test Notes et compléments A Jean-Louis Soler Bibliographie Index

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant Mathématiques et Applications 57 Modèles aléatoires Applications aux sciences de l'ingénieur et du vivant Bearbeitet von Jean-François Delmas, Benjamin Jourdain 1. Auflage 2006. Taschenbuch. xxv, 431 S.

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 STATISTIQUES Méthodes d'estimation ponctuelle (méthodes des moments, du maximum de vraisemblances, bayésienne) et par intervalles de confiance. Statistiques

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

Algorithme EM en fiabilité des logiciels James Ledoux

Algorithme EM en fiabilité des logiciels James Ledoux en fiabilité des logiciels James Ledoux INSA de Rennes & IRMAR Rennes I James Ledoux FIMA06 Grenoble 1/26 1 Processus de défaillance en fiabilité du logiciel Modèle auto-excité Modèles DIDE et conditionnellement

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural

Plus en détail

INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS

INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS INTERNATIONAL CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS (ICMPA) UNESCO CHAIR IN MATHEMATICAL PHYSICS AND APPLICATIONS established in 2006 at the University of Abomey-Calavi (Republic of Benin) UNITWIN/UNESCO

Plus en détail

1 Correction de l examen du vendredi 13 novembre 2015.

1 Correction de l examen du vendredi 13 novembre 2015. Journal de bord du module Chaînes de Markov sur des espaces mesurables Les renvois de la table de matières ainsi que le texte en couleur magenta sont cliquables. Table des matières 1 Correction de l examen

Plus en détail

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Porteurs du projet Marc Arnaudon, professeur des universités, responsable des relations avec les entreprises.

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Activités en FIabilité et MAintenance au sein de l équipe FIGAL du Laboratoire Jean Kuntzmann

Activités en FIabilité et MAintenance au sein de l équipe FIGAL du Laboratoire Jean Kuntzmann Activités en FIabilité et MAintenance au sein de l équipe FIGAL du Laboratoire Jean Kuntzmann Laurent Doyen Laboratoire Jean Kuntzmann (LJK) Département probabilités et statistique Equipe FIGAL LJK - Grenoble

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale,

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, PROGRESSION SPIRALÉE Page 1/10 Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, série scientifique et série économique et sociale, précise que : " Les

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE Chaque fois que c est nécessaire, il sera fait usage des moyens modernes de calcul. I. ALGEBRE-ANALYSE OBJECTIFS SPECIFIQUES CONTENUS/MATIERES

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

PROGRAMME DETAILLE AU CONCOURS INTERNATIONAL D ENTREE AU CYCLE MST-A

PROGRAMME DETAILLE AU CONCOURS INTERNATIONAL D ENTREE AU CYCLE MST-A PROGRAMME DETAILLE AU CONCOURS INTERNATIONAL D ENTREE AU CYCLE MST-A A/- EPREUVE DE CULTURE GENERALE ET FRANÇAIS 1- Les problèmes du monde contemporain 2- Les grands courants de la pensée moderne 3- Exercice

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Processus stochastiques et fiabilité des systèmes

Processus stochastiques et fiabilité des systèmes Christiane Cocozza-Thivent Processus stochastiques et fiabilité des systèmes Springer Table des Matières Avant-Propos Terminologie et notations VI XIV 1 Introduction à la fiabilité 1 1.1 Mesures de performances

Plus en détail

Gestion de tâches dans un centre d appels multicanal

Gestion de tâches dans un centre d appels multicanal Gestion de tâches dans un centre d appels multicanal Thèse de Benjamin Legros, Encadrée par Oualid Jouini, Directeur de thèse: Yves Dalery Etude en collaboration avec Ger Koole Participation de l entreprise

Plus en détail

Génération automatique de modèle de simulation récursive

Génération automatique de modèle de simulation récursive TP SdF N 32 Génération automatique de modèle de simulation récursive Ce TP a pour objet de présenter un outil de génération automatique de modèles de simulation récursive à travers un exemple succinct

Plus en détail

Chapitre I Théorie de la ruine

Chapitre I Théorie de la ruine Chapitre I Théorie de la ruine Olivier Wintenberger ISUP 2, Université Paris VI (slides Olivier Lopez) Année universitaire 2013-2014 1 Risque collectif 2 Modélisation des coûts de sinistres 3 Probabilité

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Génia Babykina 1 & Simon Cauchemez 2 1 Université de Lille, Faculté Ingénierie

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION

MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION Résumé de la formation Type de diplôme : MASTER 1 et 2 Domaine ministériel : Sciences Mention : Mathématiques et applications Présentation Le master 1 est

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

A. Chambaz, L. Meyer, P. Tubert-Bitter. 22 juin 2010

A. Chambaz, L. Meyer, P. Tubert-Bitter. 22 juin 2010 Présentation du parcours Biostatistique de la spécialité Recherche en santé publique du Master 2 Santé Publique de l université Paris-Sud, cohabilité Paris Descartes A. Chambaz, L. Meyer, P. Tubert-Bitter

Plus en détail

Techniques et outils de test pour les logiciels réactifs synchrones

Techniques et outils de test pour les logiciels réactifs synchrones Journées Systèmes et Logiciels Critiques Institut IMAG ; 14-16 nombre 2000 Techniques et outils de test pour les logiciels réactifs synchrones Farid Ouabdesselam 1 Méthodes de test : classification générale

Plus en détail

Fiabilité des Systèmes et des Logiciels

Fiabilité des Systèmes et des Logiciels Ensimag - 3ème année Fiabilité des Systèmes et des Logiciels Notes de cours Olivier Gaudoin 2 Table des matières 1 Problématique de la sûreté de fonctionnement des systèmes informatiques 5 1.1 Contexte.....................................

Plus en détail

Présentation de l épreuve

Présentation de l épreuve MÉTHODO Présentation de l épreuve 1. Programme de l arrêté du 22 décembre 2006 DURÉE DE L ENSEIGNEMENT ÉPREUVE N 11 CONTRÔLE DE GESTION (à titre indicatif) : 210 heures 18 crédits européens 1. Positionnement

Plus en détail

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Karen Gonzalez Benoîte de Saporta et François Dufour IMB, Université Bordeaux Neuvième Colloque Jeunes Probabilistes et Statisticiens

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie et biologie (TB) Discipline : Informatique Première et seconde années Programme d informatique

Plus en détail

Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel

Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel J. Blondel, L. Marle - CRIGEN A. Abdesselam GRTgaz F. Brissaud - DNV France Presentation Plan Objectifs

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

Licence 1ère année Mention Mathématiques

Licence 1ère année Mention Mathématiques Licence 1ère année Mention Mathématiques Semestre 1 Anglais (2 ECTS) Préparation du C2i (3 ECTS) Méthodologie du Travail Universitaire Scientifique (2 ECTS) Expression Orale et Écrite (3 ECTS) Outils Mathématiques

Plus en détail

Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel.

Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel. Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel. Workshop du GIS 3SGS Reims, 29 septembre 2010 Sommaire Missions

Plus en détail

SIMCAB : UN OUTIL GENERIQUE DE SIMULATION SOUS MICROSOFT EXCEL

SIMCAB : UN OUTIL GENERIQUE DE SIMULATION SOUS MICROSOFT EXCEL 3 e Conférence Francophone de MOdélisation et SIMulation Conception, Analyse et Gestion des Systèmes Industriels MOSIM 01 du 25 au 27 avril 2001 - Troyes (France) SIMCAB : UN OUTIL GENERIQUE DE SIMULATION

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Problème de contrôle optimal pour une chaîne de Markov

Problème de contrôle optimal pour une chaîne de Markov Problème de contrôle optimal pour une chaîne de Markov cours ENSTA MA206 Il s agit de résoudre un problème d arrêt optimal pour une chaîne de Markov à temps discret. Soit X n une chaîne de Markov à valeurs

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

TABLE DES MATIÈRES CHAPITRE

TABLE DES MATIÈRES CHAPITRE TABLE DES MATIÈRES CHAPITRE 1 Le pilotage de la performance... 17 I. Du contrôle au pilotage de la performance... 17 A. Le contrôle de gestion traditionnel... 17 B. Le pilotage de la performance... 19

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Simulations de Monte-Carlo pour un modèle de dynamique forestière

Simulations de Monte-Carlo pour un modèle de dynamique forestière Journées MAS de la SMAI - 29 août 2008 - Rennes Simulations de Monte-Carlo pour un modèle de dynamique forestière F. Campillo, N. Desassis, V. Rossi ARC MICR - Projet MERE - INRIA Plan Contexte et objectifs

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

LICENCE D' INGENIERIE MATHEMATIQUES - 1LINM

LICENCE D' INGENIERIE MATHEMATIQUES - 1LINM UNIVERSITE PAUL SABATIER SCIENCES TOULOUSE III U.F.R. MATHEMATIQUE INFORMATIQUE GESTION LICENCE D' INGENIERIE MATHEMATIQUES - 1LINM PRESENTATION DES ENSEIGNEMENTS Année Universitaire 2003/2004 La licence

Plus en détail

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels.

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels. Compétences : math, 2 ème degré (pages 1 à 3) math, 3 ème degré (pages 4 à 8) 3 grands thèmes du cours à 4h sem (pages 9 à 11) 3 grands thèmes du cours à 2h sem (pages 12 à 14) (Seules les définitions

Plus en détail

MASTER SMIS. Mention Mathématiques et Applications. Spécialité : Ingénierie Mathématique

MASTER SMIS. Mention Mathématiques et Applications. Spécialité : Ingénierie Mathématique UNIVERSITE PAUL SABATIER TOULOUSE III SCIENCES U.F.R. MATHEMATIQUE INFORMATIQUE GESTION Année Universitaire 2004 2005 PRESENTATION DES ENSEIGNEMENTS Syllabus MASTER SMIS Mention Mathématiques et Applications

Plus en détail

partie a Introduction à la statistique 1

partie a Introduction à la statistique 1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

MASTER DE MATHÉMATIQUES DE POITIERS. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

MASTER DE MATHÉMATIQUES DE POITIERS. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE MASTER DE MATHÉMATIQUES DE POITIERS. SPÉCIALITÉ : MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Responsables Marc Arnaudon, professeur des universités, responsable de la formation et des relations avec

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Analyse statistique de modèles de fiabilité en environnement dynamique

Analyse statistique de modèles de fiabilité en environnement dynamique THESE / UNIVERSITE DE BRETAGNE SUD UFR Sciences et sciences de l ingénieur sous le sceau de l Université européenne de Bretagne pour obtenir le titre de DOCTEUR DE L UNIVERSITE DE BRETAGNE SUD Mention

Plus en détail

1 comptables Principes de base du modèle Ressource «mécanismes comptables fondamentaux» 2

1 comptables Principes de base du modèle Ressource «mécanismes comptables fondamentaux» 2 Semestre Niveau de connaissance : : connaître, culture générale : savoir appliquer 3 : maîtriser ressources IUT en ligne : se connecter à http://www.iutenligne.net/etudiants_log.php identifiant : qlio0

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Contrat didactique Finance stochastique

Contrat didactique Finance stochastique Contrat didactique Finance stochastique Les compétences de ce cours sont à placer dans le contexte général de l appropriation de la notion de modèle mathématique et de son utilisation pratique en gestion

Plus en détail

PROGRAMME DE MATHÉMATIQUES BTS Comptabilité et gestion des organisations

PROGRAMME DE MATHÉMATIQUES BTS Comptabilité et gestion des organisations 1 PROGRAMME DE MATHÉMATIQUES BTS Comptabilité et gestion des organisations I. Lignes directrices 1. Objectifs généraux L enseignement des mathématiques doit fournir les outils nécessaires pour permettre

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Master. en sciences et technologies mention mathématiques et applications

Master. en sciences et technologies mention mathématiques et applications Master en sciences et technologies mention mathématiques et applications master mathématiques et applications Contacts Nicolas Lerner lerner@math.jussieu.fr www.master.math.upmc.fr Master sciences et technologies

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

Petit déjeuner Actuariat - 27 juin 2013

Petit déjeuner Actuariat - 27 juin 2013 Provisions pour Prestations à Payer en Assurance Santé : Comparaisons de méthodes d estimation sur la base de simulations de remboursements Petit déjeuner Actuariat - 27 juin 2013 Petit déjeuner Actuariat

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Université de Strasbourg Ségolen Geffray M2 - Statistique geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Ces exercices seront effectués au moyen du logiciel

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

PROGRAMME DE FORMATION A L UTILISATION DU LOGICIEL R

PROGRAMME DE FORMATION A L UTILISATION DU LOGICIEL R PROGRAMME DE FORMATION A L UTILISATION DU LOGICIEL R Analyses multivariées avec R Vincent RICHARD Unité d épidémiologie Institut Pasteur de DakarRindra Randremanana Unité d'épidémiologie Institut Pasteur

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Informatique Première et seconde années

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique»

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» M1_presentation_generale_4juil05.doc 1/11 MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» La mention s articule autour de 6 spécialités : Recherche en éthique : Pr Christian HERVE (herve@necker.fr)

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail