Problèmes de fiabilité dépendant du temps

Dimension: px
Commencer à balayer dès la page:

Download "Problèmes de fiabilité dépendant du temps"

Transcription

1 Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants

2 Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t = Rt () St () Résistance - activation de phénomènes aléatoirement dans le temps Initiation de la corrosion des armatures - dégradation des propriétés des matériaux Ténacité de l acier de cuve 2

3 Pourquoi la dimension temporelle? Sollicitations - chargements climatiques. vent, hauteur de vague (dynamique). neige (pseudo-statique) - chargement sismique : γ(t) (dynamique) - charges de trafic, d occupation de bureau, etc. (pseudo-statique) - température de fluide (transitoire) 3

4 Sommaire Processus stochastiques : notions élémentaires Problèmes de fiabilité dépendant du temps - Formulation - Problèmes à marge décroissante Approche asymptotique - Taux de franchissement - Bornes sur la probabilité de défaillance - Intégration de Laplace - Mise en oeuvre Méthode PHI2 - Calcul analytique du taux de franchissement - Mise en oeuvre Exemples d application 4

5 Processus stochastiques Définition : ensemble de variables aléatoires X (, t ω) indexées sur le temps Xtω (, 0) : réalisation Xt ( 0, ω) (trajectoire du processus) Variable aléatoire x () t X(, t ω ) 1 1 x () t 2 x () t 3 f X ( xt, ) 0 t t 1 2 t x Caractérisation : densité conjointe de tout ensemble fini de variables f ( x x ) pour tout (t 1,.. t n ) X X n t1,..., 1,, t n 5

6 Notations Moyenne Variance Fonction d auto-corrélation Fonction d auto-covariance 6

7 Propriétés importantes (1) Stationnarité Moyenne et écart-type indépendant du temps Fonction d auto-corrélation invariante par translation Différentiabilité R ( t, t ) R ( t t ) XX 1 2 XX 2 1 Propriétés: (convergence en moyenne quadratique) 7

8 Propriétés importantes (2) Ergodicité Moyenne temporelle Espérance Ergodicité : permet de déterminer les propriétés d un processus à partir d une seule trajectoire 8

9 Processus ponctuel On considère un évènement se produisant aléatoirement dans le temps On définit les temps d arrivée (aléatoires) 0 < T < < n 1 ( ω) T ( ω) La fonction de comptage N(t,ω) est le nombre d occurrence de l évènement avant l instant t (processus à valeur entières) : ( ω) ( ω) { } N t, = sup n: Tn t 9

10 Processus ponctuel de Poisson Le processus ponctuel est de Poisson ssi s< t, N( t) N( s) 1) suit une loi de Poisson de paramètre (λ est l intensité du processus) λ( t s) soit en particulier 2) Les v.a. Nt ( 1), Nt ( 2) Nt ( 1), Nt ( k) Nt ( k 1) sont indépendantes Corollaire : - temps de première occurrence : loi exponentielle - Les intervalles T k+1 T k suivent des lois exponentielles -Le temps T k suit une loi gamma Γ( λ,k ) 10

11 Processus de renouvellement à saut St () fs () s T1 T 2 T 3 T4 T5 t L occurrence des sauts suit un processus de Poisson Les amplitudes S sont indépendantes les unes des autres Les amplitudes S suivent la même loi f S (s) (charges de trafic, occupation de locaux, etc.) 11

12 Processus gaussien Définition : {X(t 1 ),, X(t n )} est un vecteur gaussien. En particulier X(t) est de moyenne µ () t X de variance σ 2 () t X de densité Caractérisé par le coefficient d auto-corrélation Différentiabilité : ssi existence de la dérivée croisée 12

13 Processus gaussien stationnaire Propriétés de X(t) Moyenne, écart-type constant Autocorrelation ρ(t) : dépendant d une seule variable Propriétés du processus dérivé Différentiabilité si ρ (0) existe Pulsation : Moyenne nulle Ecart-type : 13

14 Coefficients d autocorrélation 14

15 Exemples de trajectoires (méthode de discrétisation EOLE) Moyenne : 5 Ecart-type : 1 λ = 1 15

16 Sommaire Processus stochastiques : notions élémentaires Problèmes de fiabilité dépendant du temps - Formulation - Problèmes à marge décroissante Approche asymptotique - Taux de franchissement - Bornes sur la probabilité de défaillance - Intégration de Laplace - Mise en oeuvre Méthode PHI2 - Calcul analytique du taux de franchissement - Mise en oeuvre Exemples d application 16

17 Problème de fiabilité dépendant du temps X (, t ω) Ensemble de variables aléatoires et de processus scalaires S (, t ω) j R ( ω) j gtxtω (, (, )) Fonction d état limite Probabilité cumulée de défaillance Probabilité instantanée de défaillance 17

18 Problèmes à marge décroissante (1) Définition La fonction d état limite ne comporte que des variables aléatoires et des fonctions du temps (pas de processus au sens strict) : on note Les réalisations de g sont des fonctions décroissantes du temps Propriété fondamentale ) la probabilité cumulée de défaillance se calcule comme la probabilité instantanée. 18

19 Problèmes à marge décroissante (2) Applications : problèmes de durabilité des structures le modèle de dégradation a une cinétique connue, par contre ses paramètres sont mal estimés g est fonction de t et de variables aléatoires X la performance du matériau se dégrade de façon monotone la fonction g est décroissante Exemple : corrosion des armatures dans le béton d o d(t) Temps d initiation aléatoire : (modèle de carbonatation du béton) 19

20 Sommaire Processus stochastiques : notions élémentaires Problèmes de fiabilité dépendant du temps - Formulation - Problèmes à marge décroissante Approche asymptotique - Taux de franchissement - Bornes sur la probabilité de défaillance - Intégration de Laplace - Mise en œuvre Méthode PHI2 - Calcul analytique du taux de franchissement - Mise en oeuvre Exemples d application 20

21 Franchissements d un processus Franchissements en croissant (upcrossing) Franchissement en décroissant (downcrossing) a xt () g( t, x( t) ) t N ( 0, t ) T1 T2 t Défaillance premier passage de g dans le domaine négatif P (0, t) = P( T t) T 1 temps de premier passage : f 1 21

22 Taux de franchissement Définition Nt ( 1, t2) : nombre (aléatoire) de franchissements entre t 1 et t 2 Propriété Remarque : processus régulier 22

23 Bornes sur la probabilité de défaillance Cas général Problème stationnaire 23

24 Cas des processus à sauts 24

25 Cas des processus différentiables at () at () xt () xt () t xt () t t + t Formule de Rice : 25

26 Formule de Rice : applications Processus stationnaire et seuil constant Processus stationnaire gaussien et seuil constant Xt ()~ Nµ ( Xt X, σ X) ()~ N(0, σ ) X indépendants : X ()et t X() t Processus stationnaire gaussien et seuil variable 26

27 Approche asymptotique (1) Calcul de ν + - Résumé - franchissement de seuil (plus généralement, d une surface) déterministe - seule source d incertitude : dans le processus (gaussien) insuffisant pour traiter des problèmes pratiques - problème de l intégration temporelle à résoudre dans le cas non stationnaire 27

28 Approche asymptotique (2) Notation Principes R : variables aléatoires Q : paramètres aléatoires de séquences ergodiques S : processus stochastiques, de paramètres pouvant dépendre de Q,R - Formules analytiques pour calculer le taux de franchissement conditionnel - Intégration asymptotique (Laplace) dans le temps - Intégration du nombre de franchissements conditionnels : asymptotique 28

29 Intégration de Laplace - principe Soit à approximer : λ, h(x), f(x) >0 + différentiabilité On suppose que f possède un minimum en un point critique x* développement limité autour de ce point x*=a ou b : x* ]a,b[ : 29

30 Mise en oeuvre de l approche asymptotique Détermination du point critique t* Utilisation d un algorithme FORM d Abdo-Rackwitz modifié qui détermine en même temps le point de conception et le t* minimisant β(t) sur [t 1,t 2 ] Implémentation Méthode développée par Rackwitz, Breitung, Faber et al., Implémentée dans COMREL TV Différentes approximations dans le raisonnement, pas toujours faciles à maîtriser Difficile de compréhension et de mise en œuvre 30

31 Sommaire Processus stochastiques : notions élémentaires Problèmes de fiabilité dépendant du temps - Formulation - Problèmes à marge décroissante - Bornes sur la probabilité de défaillance Approche asymptotique - Taux de franchissement - Intégration de Laplace - Mise en oeuvre Méthode PHI2 - Calcul analytique du taux de franchissement - Mise en oeuvre Exemples d application 31

32 Méthode PHI2 (1) Retour sur la définition du taux de franchissement : au numérateur, probabilité de défaillance d un système parallèle Approche intuitive (Der Kiureghian, 1995 ; Andrieu, 2002) On calcule la différence finie pour t suffisamment petit : Résolution d un problème de fiabilité d un système parallèle à deux composants par FORM Problème : choix de t délicat instabilités numériques 32

33 Méthode PHI2 approche analytique (1) Notations Soit : (Sudret, 2005) On a : Résolution FORM indice de fiabilité à l instant t+h Indice de fiabilité à l instant t Produit des cosinus directeurs Φ 2 : fonction de répartition binormale 33

34 Méthode PHI2 approche analytique (2) Problème stationnaire indépendant du temps : Problème non stationnaire avec : dépendant du temps, à intégrer pour avoir et la borne sup de P f (t 1,t 2 ) 34

35 P [ gtxtω (, (, )) > 0] Méthode PHI2 mise en oeuvre [ gtxt+ tω ] P (, (, )) 0 obtenu par FORM en fixant t dans les fonctions du temps β(t), α(t) remplaçant les processus S (, t ω ) par des v.a (1) obtenu par FORM en fixant t+ t dans les fonctions du temps remplaçant les processus Sj ( t+ t, ω) (2) (1) par des v.a corrélées aux S j j S j S j β(t+ t), α(t + t) Cas stationnaire : Choix de t : petit devant la longueur de corrélation (~1%), schéma très stable 35

36 Méthode PHI2 résumé Deux analyses FORM de problèmes indépendants du temps - Utilisation d outils / logiciels classiques de fiabilité (pas d implémentation spécifique pour calculer ν + ) - La deuxième est très rapide (choix du point de départ) - On peut aussi utiliser les corrections SORM des indices de fiabilité Pour calculer la probabilité de défaillance cumulée - schéma d intégration cumulatif (type trapèzes) pour avoir t P f (0,t) 1 t E[ N ( t t )] t ( t + k t) + ν ( t + ( k+ 1) t) ; t = N , 2 ν 1 1 k= intégration asymptotique de Laplace si la variation temporelle est lente, et si on connaît le point critique t N 36

37 Sommaire Processus stochastiques : notions élémentaires Problèmes de fiabilité dépendant du temps - Formulation - Problèmes à marge décroissante - Bornes sur la probabilité de défaillance Approche asymptotique - Taux de franchissement - Intégration de Laplace - Mise en oeuvre Méthode PHI2 - Calcul analytique du taux de franchissement - Mise en oeuvre Exemples d application 37

38 Un exemple analytique (1) Fonction d état limite N ( µ, σ ) Taux de franchissement R R Processus gaussien N ( µ, σ ) S S t2 t1 ρs ( t1, t2) = exp λ pulsation ω = 2/ o 2 λ Probabilité cumulée de défaillance β LB LB P f = 1 ( LB P ) UB 1 UB = Φ f β = Φ ( P f ) 38

39 Un exemple analytique (2) 39

40 Durabilité d une poutre corrodée F(ω,t) d c (t)=κ t zone corrodée corroded area h 0 b 0 sound steel acier sain gt () = M () t Mt () ult M ult () t = bth 2 () () t 4 σ e Fl ρstb0h0l Mt () =

41 Variables aléatoires Parameter Type of distribution Mean Coefficient of variation Load Gaussian 3500 N 20 % Steel yield stress Lognormal 240 MPa 10 % Beam breadth Lognormal 0.2 m 5 % Beam height Lognormal 0.04 m 10 % Cas n 1 : la charge est constante dans le temps (variable aléatoire) Cas n 2 : la charge est modélisée par un processus gaussien, de longueur de corrélation 1 jour Durée de vie de la structure : 20 ans 41

42 Résultats (années) Taux de franchissement 42

43 Résultats Indice de fiabilité 43

44 Conclusions Problèmes à marge décroissante - dégradation lente de structures : variables aléatoires + fonctions du temps monotones - se ramène à un problème indépendant du temps - on peut utiliser les techniques classiques (FORM/SORM/IS/subset simulation, etc.) Approches par taux de franchissement - nécessaire quand il y a des processus stochastiques - permet d obtenir une borne supérieure de P f (t 1,t 2 ), c est-à-dire de la fonction de répartition du temps de première défaillance 44

45 Conclusions (2) Approche asymptotique - basée sur des formules analytiques pour le franchissement de processus élémentaires - utilisation de formules d intégration asymptotique dans le temps et dans l espace des paramètres - difficile d accès, implémenté dans un logiciel unique (COMREL TV) Méthode PHI2 - plus intuitif dans sa formulation - utilise les outils de l analyse de fiabilité système classique (FORM) Pas d implémentation spécifique (FERUM, PhimecaSoft, OpenTurns) 45

46 Merci de votre attention 46

La méthode PHI2 ou comment prendre en compte la dépendance du temps dans une analyse en Þabilité

La méthode PHI2 ou comment prendre en compte la dépendance du temps dans une analyse en Þabilité La méthode PHI2 ou comment prendre en compte la dépendance du temps dans une analyse en Þabilité mécanique C. Andrieu-Renaud a,m.lemaire a,b.sudret b a LaRAMA, Campus de Clermont-Ferrand / les Cézeaux,

Plus en détail

Université BLAISE PASCAL - Clermont II Ecole Doctorale Sciences pour l Ingénieur de Clermont-Ferrand. Thèse. présentée pour obtenir le grade de

Université BLAISE PASCAL - Clermont II Ecole Doctorale Sciences pour l Ingénieur de Clermont-Ferrand. Thèse. présentée pour obtenir le grade de N ordre : 1395 EDSPIC : 263 Université BLAISE PASCAL - Clermont II Ecole Doctorale Sciences pour l Ingénieur de Clermont-Ferrand Thèse présentée pour obtenir le grade de Docteur d Université (Spécialité

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1 Modélisation stochastique des données à partir d essais sur matériaux Pr. Denys Breysse Université Bordeaux 1 Hasard cause fictive de ce qui arrive sans raison apparente ou explicable (Petit Robert). Ce

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008) Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Version default Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Responsable : Irmela ZENTNER Clé : U4.36.

Version default Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Responsable : Irmela ZENTNER Clé : U4.36. Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Opérateur GENE_ACCE_SEISME 1 But Cet opérateur permet de générer des accélérogrammes sismiques artificiels pour des calculs dynamiques transitoires.

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L2 MIASHS Cours de B. Desgraupes Simulation Stochastique Séance 04: Nombres pseudo-aléatoires Table des matières 1

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema. Filtrage et EDP Philippe Montesinos EMA/LGI2P - Site EERIE Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.fr 1 Plan 1. Rappels: - Les analyses multi-échelles. - Méthodes

Plus en détail

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant Mathématiques et Applications 57 Modèles aléatoires Applications aux sciences de l'ingénieur et du vivant Bearbeitet von Jean-François Delmas, Benjamin Jourdain 1. Auflage 2006. Taschenbuch. xxv, 431 S.

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Une algorithmique pour le Network Calculus

Une algorithmique pour le Network Calculus Une algorithmique pour le Network Calculus Anne Bouillard ENS Cachan (Bretagne) / IRISA 27 janvier 2009 - journées AFSEC Anne Bouillard (ENS Cachan / IRISA) Une algorithmique pour le Network Calculus 1

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

Soutenance de Thèse. Analyses statistiques des communications sur puce

Soutenance de Thèse. Analyses statistiques des communications sur puce Soutenance de Thèse Analyses statistiques des communications sur puce Antoine Scherrer LIP - ENS Lyon Equipe Compsys 11 décembre 26 A. Scherrer - Analyses statistiques des communications sur puce 1 / 4

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

12/06/2012 INTRODUCTION

12/06/2012 INTRODUCTION Université Abdelmalek Essàadi Ecole Supérieure Normale - Martil - Réalisée par : - Noura ZEKKARI - Laila KARIM INTRODUCTION Une file d attente est le résultat d un système lorsque la demande pour un bien

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

Modélisation coalescente pour la détection précoce d un cancer

Modélisation coalescente pour la détection précoce d un cancer Modélisation coalescente pour la détection précoce d un cancer Mathieu Emily 27 Novembre 2007 Bioinformatics Research Center - Université d Aarhus Danemark Mathieu Emily Coalescence et cancer 1 Introduction

Plus en détail

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Simulation avancée du procédé d injection

Simulation avancée du procédé d injection Simulation avancée du procédé d injection JT «Conception et optimisation numérique en plasturgie» Jeudi 30 juin Ronan Le Goff Sommaire Introduction Modèle numérique Cas d étude Paramètres rhéo Stratégies

Plus en détail

«Pièges», «erreurs» et pathologie des calculs numériques

«Pièges», «erreurs» et pathologie des calculs numériques Session de formation continue ENPC «Pièges», «erreurs» et pathologie des calculs numériques 6-8 octobre 2010 Philippe Mestat (LCPC) «Pièges» pour débutant?. Conditions limites en déplacements : il faut

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Systèmes linéaires, Signaux aléatoires, bruits, statistique et probabilités

Systèmes linéaires, Signaux aléatoires, bruits, statistique et probabilités Signaux et graphes : terminologie Systèmes linéaires, Signaux aléatoires, bruits, statistique et probabilités Cours signaux et systèmes M1 physique Un signal décrit la relation entre un paramètre et un

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Fascicule d exercices

Fascicule d exercices UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Fascicule d exercices Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph Fourier de

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

M4 OSCILLATEUR HARMONIQUE

M4 OSCILLATEUR HARMONIQUE M4 OSCILLATEUR HARMONIQUE I Modèle de l oscillateur harmonique (O.H.) I. Exemples Cf Cours I. Définition Définition : Un oscillateur harmonique à un degré de liberté x (X, θ,... ) est un système physique

Plus en détail

1 Correction de l examen du vendredi 13 novembre 2015.

1 Correction de l examen du vendredi 13 novembre 2015. Journal de bord du module Chaînes de Markov sur des espaces mesurables Les renvois de la table de matières ainsi que le texte en couleur magenta sont cliquables. Table des matières 1 Correction de l examen

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2011 Supplément théorique Inférence dans les réseaux bayésiens Rappel théorique Les processus aléatoires La plupart des processus

Plus en détail

Asymétrie des rendements et volatilité multifractale

Asymétrie des rendements et volatilité multifractale Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest

Plus en détail

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix.

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix. ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN 1 AVRIL 21 CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE EPREUVE D'ORDRE GENERAL DUREE :

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail