Étendue, moyenne, médiane

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Étendue, moyenne, médiane"

Transcription

1 Étendue, moyenne, médiane 1 Climat Ce tableau compare les températures mensuelles moyennes (en C) au cours d'une année dans deux villes Alpha (A) et Gamma (G). A G Pour chaque ville, réponds aux questions. a. Calcule la température annuelle moyenne. Pour la ville A, la température moyenne est de : = 9 Pour la ville B, la température moyenne est de : =13 12 b. Détermine une température médiane. Pour la ville A, on commence par classer les températures par ordre croissant : 9 ; 6; 3; 1 ; 4 ; 10 ; 10 ; 11 ; 19 ; 21 ; 24 ; 28. La température médiane correspond toute valeur comprise entre la 6e et la 7e valeur de la série statistique ordonnée, c'est dire ici 10 C. Pour la ville B, par un raisonnement analogue, la température médiane est de 13 C. c. Calcule l'étendue des températures. L'étendue des températures est de : 28 ( 9) = 37 C pour la ville A et de : 23 4 = 19 C pour la ville B. d. Décris le climat. Pour la ville A, les températures varient de manière importante entre l'été et l'hiver, comme le montre l'étendue. Alors que dans la ville B les températures sont plus resserrées, avec moins de variations : il y fait doux toute l'année. 2 Tableaux À partir des trois tableaux de données, recopie et complète le quatrième tableau. Série 1 : Nombre de personnes fréquentant un club de remise en forme sur une semaine. Lu Ma Me Je Ve Sa Di Série 2 : La pointure de 20 personnes. Pointure Effectif Série 3 : Notes obtenues (sur 20) par une classe de troisième en français lors d'un contrôle. Notes Effectif Étendue Médiane Moyenne Série Série ,5 40,85 Série ,55 Pour une médiane de la série 1, on ordonne les valeurs. Une médiane est donc de 38, ce qui signifie que le club de remise en forme a reçu moins de 38 personnes par jour durant la moitié de la semaine. 3 Des valeurs inventer a. Invente une série de sept valeurs dont l'étendue est 8, la moyenne est 16 et la médiane est ; 14 ; 15 ; 17 ; 18 ; 18 ; 19. b. Modifie l'une des valeurs extrêmes pour que l'étendue devienne égale 15. Quel est l'effet sur les deux autres caractéristiques? Solution 1 : 11 ; 14 ; 15 ; 17 ; 18 ; 18 ; 26. La moyenne augmente alors de 1, mais la médiane reste inchangée. Solution 2 : 3 ; 14 ; 15 ; 17 ; 18 ; 18 ; 19 La moyenne diminue alors de 1, et la médiane devient 15. Bien entendu, si on choisi d'autres séries, les situations changent. 1

2 3 4 Avec des graphiques À partir de ces trois graphiques, recopie et complète le tableau. Série 1 : On prélève neuf pommes dans une caisse et on les pèse (mesures données en g). 5 Salaires Ce tableau donne la répartition des salaires mensuels des employés d'une petite entreprise. Salaire (en ) Fréquence (en %) ,5 12,5 28,5 44 6,5 a. Calcule le salaire moyen d'un employé Série 2 : On donne ci-dessous la répartition du nombre d'heures que consacrent 36 collégiens faire du sport durant une semaine. Série 3 : On a relevé les températures dans une ville de Russie pendant une année h 3 h 4 h 5 h 7 h 9 h Étendue Médiane Moyenne Série Série ,6 Soit 4H35min Série ,5 1, , , , ,5 100 = Le salaire moyen d'un employé est b. Dans quelle classe est situé le salaire médian? Que signifie-t-il? Le salaire médian se situe 50 % de fréquence cumulée, c'est dire dans la classe Ce salaire signifie qu'il y a autant de salaires inférieurs ce salaire que de salaires supérieurs celui-ci. 6 D'après Brevet En météorologie, on appelle «insolation» (I) le nombre d'heures d'exposition d'un site au Soleil. Voici un relevé de la station de météorologie de Voglans, située en Savoie, donnant des informations sur l'insolation (en h) de la région au mois de juillet de Année I (en h) a. Calculer la moyenne d'insolation sur cette période = 262 h b. 260 est-elle une valeur médiane de cette série? Justifier la réponse. La série comporte 6 valeurs. Donc la médiane correspond toute valeur comprise entre la troisième et la quatrième valeur de la série statistique ordonnée. La troisième valeur est 259. La quatrième valeur est 261. Donc 260 est une valeur médiane possible pour cette série statistique. CHAPITRE N9 STATISTIQUES ET PROBABILITÉS 2

3 Quartiles 7 Luc, Samia et Rudy ont obtenu sept notes en français ce trimestre. Luc Samia Rudy a. Détermine pour chaque élève : sa moyenne arrondie au dixième ; une note médiane ainsi que les valeurs des premier et troisième quartiles ; l'étendue des notes. Pour Luc : = ,6 Médiane : C'est la quatrième note de la série ordonnée, soit 4. Premier quartile : La série comportant 7 notes, 25 % de 7 est égal 1,75, et donc le premier quartile correspond la 2ème note de la série statistique ordonnée par ordre croissant, soit 2. Troisième quartile : La série comportant 7 notes et 75 % de 7 faisant 5,25, le troisième quartile correspond la 6ème note de la série statistique ordonnée par ordre croissant, soit 19. Etendue : 20 1 = 19. Pour Samia : = ,6. Médiane : 12. Premier quartile : 7. Troisième quartile : 19. Etendue : 20 1 = 19. Pour Rudy : = ,6. Médiane : 12. Premier quartile : 10. Troisième quartile : 13. Etendue : = 3. b. Comment expliquer la grande différence entre la note moyenne et la note médiane de Luc? Les notes de Luc sont regroupées en deux pôles extrêmes, l'un d'eux comportant plus de notes. c. Samia et Rudy ont des caractéristiques en commun. Penses-tu que ces élèves auront la même appréciation sur leurs bulletins? Justifie. Non, bien qu'ils aient la même médiane et la même moyenne, les notes de Rudy sont beaucoup plus resserrées que celles de Samia. Autrement dit Rudy travaille régulièrement et Samia est plus irrégulière dans ses résultats. 8 Le tableau suivant a été obtenu après avoir relevé la vitesse de 60 véhicules. Vitesse (en km h 1 ) Effectifs cumulés de 80 de 90 de 100 de a. Construis le polygone des effectifs cumulés croissants. b. Détermine une valeur approchée de la médiane et des premier et troisième quartiles. Donne ensuite la signification de ces valeurs. Par lecture graphique, on obtient : La médiane : 87 km/h. Le premier quartile : 81 km/h. Le troisième quartile : 95 km/h. La médiane correspond la valeur de la vitesse où 50 % des automobilistes roulaient en dessous et 50 % au dessus de cette vitesse. Le premier quartile correspond la vitesse où 25 % des automobilistes sont en dessous et le troisième quartile celle où 75 % sont en dessous (et donc 25 % au dessus). 3

4 9 On a interrogé les élèves d'une classe de troisième sur le temps mis (en minutes) pour le trajet aller-retour entre leur domicile et le collège. Les résultats sont représentés par le diagramme en barres suivant. Effectifs Temps (en min) troisième quartiles de cette série statistique = ,1 Médiane : L'effectif total étant de 28, la médiane de cette série statistique correspond toute valeur entre la 14e et la 14e valeur de la série statistique ordonnée, soit % de 28 donne 7, donc le premier quartile correspond la 7ème valeur de la série statistique ordonnée, c'est dire % de 28 donne 21, donc le troisième quartile correspond la 21ème valeur de la série statistique ordonnée, c'est dire 50. b. Donne la signification de chacune de ces caractéristiques. 50 % des élèves mettent moins que la valeur médiane de 30 minutes pour faire le trajet allerretour entre leur domicile et le collège. Au moins 25 % des élèves mettent moins de 20 minutes et au moins 75 % des élèves ont moins de 50 minutes de trajet aller-retour. 10 Mesures de grandeur en Physique En physique, on a demandé 13 groupes d'élèves de mesurer la tension aux bornes d'un conducteur ohmique et l'intensité le traversant. Chaque groupe a un circuit présentant les mêmes caractéristiques. Grâce la loi d'ohm, ils ont ensuite pu donner une valeur pour la résistance de ce conducteur. Voici leurs résultats (en Ω) : 43,5 ; 46,3 ; 14,7 ; 45,2 ; 43,7 ; 45,2 ; 46,4 ; 45,1 ; 44,9 ; 44,8 ; 45,1 ; 44,8 ; 18,4. troisième quartiles de cette série. La moyenne est de : 43,5 46,3 14,7 45,2 43,7 45,2 46,4 45,1 44,9 44,8 45,1 44,8 18,4 13 = 528, ,6 La médiane correspond la septième valeur de la série statistique ordonnée, soit 44,9 Ω. Comme 25 % de 13 est égal 3,25, le premier quartile correspond la quatrième valeur de la série statistique ordonnée par ordre croissant, soit 43,7 Ω. Comme 75 % de 13 est égal 9,75, le troisième quartile correspond la dixième valeur de la série statistique ordonnée par ordre croissant, soit 45,2 Ω. b. Comment expliques-tu la différence entre la moyenne et les autres caractéristiques? Deux valeurs de la série statistique sont anormalement basse. Cela n'a guère d'influence que sur la moyenne qui est abaissée cause de ces deux valeurs. c. Reprends la question a. pour la série obtenue après avoir enlevé les deux valeurs suspectes. Est-ce plus cohérent? Justifie. La moyenne est alors de : 43,5 46,3 45,2 43,7 45,2 46,4 45,1 44,9 44,8 45,1 44,8 11 = La médiane correspond la sixième valeur de la série statistique ordonnée, soit 45,1 Ω. Comme 25 % de 11 est égal 2,75, le premier quartile correspond la troisième valeur de la série statistique ordonnée de manière croissante, soit 44,8 Ω. Comme 75 % de 11 est égal 8,25, le troisième quartile correspond la neuvième valeur de la série statistique ordonnée de façon croissante, soit 45,2 Ω. CHAPITRE N9 STATISTIQUES ET PROBABILITÉS 4

5 11 Voici les relevés des précipitations annuelles (en mm) Marrakech (M) et Pointe-- Pitre (P). M P troisième quartiles de chaque série. M Moyenne , ,1 Etendue 26 0 = = 88 Médiane 15,5 61 Q Q b. Pour chacune des séries, combien de valeurs diffèrent de la moyenne de moins de 20 %? Pour Marrakech, on regarde les valeurs comprises entre : 0,8 12,7 10,2 et 1,2 12,7 15,2. Il n'y a qu'une seule valeur correspondant ce critère. Pour Pointe--Pitre, on regarde les valeurs comprises entre : 0,8 67,1 53,7 et 1,2 67,1 80,5. Il y a quatre valeurs correspondant ce critère. P 5

Statistiques. Objectifs du chapitre. Énigme du chapitre.

Statistiques. Objectifs du chapitre. Énigme du chapitre. Statistiques C H A P I T R E 2 Énigme du chapitre. Objectifs du chapitre. Proposer, si possible, une série de 9 valeurs telle que sa moyenne est égale à son premier quartile et son étendue soit égale à

Plus en détail

TD d exercices statistiques et pourcentages.

TD d exercices statistiques et pourcentages. TD d exercices statistiques et pourcentages. Exercice 1 : Diagramme circulaire On donne la répartition du nombre d abonnés au téléphone mobile en France en 2006. Opérateurs Bouygue télécom SFR Orange Autres

Plus en détail

chap S1 : Statistiques descriptives Eléments de correction des exercices

chap S1 : Statistiques descriptives Eléments de correction des exercices 2ndes chap S1 : Statistiques descriptives Eléments de correction des exercices Objectifs : mieux comprendre les notions de moyenne et médiane utiliser des statistiques pour prendre des décisions Moyenne

Plus en détail

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51 Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77

Plus en détail

Corrigé des exercices

Corrigé des exercices THEME : STATISTIQUES Corrigé des exercices Exercice n : Détermine la valeur médiane des listes de valeurs suivantes : a) 6 8 6 9,5 8 7,5 b) 6,5,5 9 9,5 c) 5, 9,7 5, 8,5 50, 9, 5,8 d) 5, 7 9,6, 6,6 9,,5

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Le tableau ci-dessous donne la répartition des notes obtenues à un contrôle de mathématiques par les 27 élèves de troisième.

Le tableau ci-dessous donne la répartition des notes obtenues à un contrôle de mathématiques par les 27 élèves de troisième. EXERCICE 1: Brevet Ouest 2 CORRIGE EXERCICES DE STATISTIQUES BREVET 211 Le tableau ci-dessous donne la répartition des notes obtenues à un contrôle de mathématiques par les 27 élèves de troisième. Notes

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES 1 sur 7 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Baccalauréat Mathématiques-informatique Polynésie juin 2007

Baccalauréat Mathématiques-informatique Polynésie juin 2007 Durée : 1 h 30 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices L annexe 1 est rendre avec la copie Baccalauréat Mathématiques-informatique Polynésie juin 2007 EXERCICE 1 10 points

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Mathématiques 11 Avril 2013. Année scolaire 2012-2013

Mathématiques 11 Avril 2013. Année scolaire 2012-2013 Année scolaire 2012-201 Mathématiques 11 Avril 201 Classe de ème Brevet Blanc N 2 Durée : 1h50min Les calculatrices sont autorisées ainsi que les instruments usuels de dessin 4 points sont réservés à la

Plus en détail

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours.

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours. Exercice 1 Le comptable des Tacauds Blancois vient de comptabiliser le nombre de passagers transportés par les taxis de son entreprise pour chaque jour de l'année 2011. Pour que son travail soit plus compréhensible

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

ATELIER "STATISTIQUES "

ATELIER STATISTIQUES ATELIER "STATISTIQUES " Médiane et quartiles Se référer au document d'accompagnement des programmes de premières des séries générales, annexe "boîtes et quantiles". Médiane Me La définition à adopter est

Plus en détail

Étendue, moyenne, médiane

Étendue, moyenne, médiane Étendue, moyenne, médiane Climat Ce tableau compare les températures mensuelles moyennes (en C) au cours d'une année dans deux villes Alpha (A) et Gamma (G). J F M A M J J A S O N D A 9 0 9 8 0 G 7 9 7

Plus en détail

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité NOM : Prénom : Exercice 1 : Elections régionales 1999 Le tableau ci-dessous donne les pourcentages des voix obtenues par le

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n CHAPITRE 11 PROPORTIONNALITE I. GENERALITES A. NOTION DE GRANDEURS PROPORTIONNELLES Deux grandeurs x et y sont proportionnelles si, lorsque l une varie, l autre varie dans les mêmes proportions : si x

Plus en détail

Première L juin 2008 A B C D E F G

Première L juin 2008 A B C D E F G Première L juin 2008 Liban 1. Exercice 1 (10 points) On fournit ci-dessous un tableau statistique relatif aux accidents de la route avec des piétons en France. Ce tableau est obtenu à l'aide d'un tableur,

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison.

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison. Énoncés Exercice 1 Le tableau ci-contre indique des grandeurs physiques et démographiques des territoires constituant la Mélanésie. 1. Rédiger une phrase commençant par «Il y a» et contenant le nombre

Plus en détail

Décret n 2007-429 du 25 mars 2007 - art. 1 JORF 27 mars 2007

Décret n 2007-429 du 25 mars 2007 - art. 1 JORF 27 mars 2007 MATHEMATIQUES L éducation à la sécurité routière est présente de la maternelle au lycée. Son inscription obligatoire dans les horaires et programmes de différentes disciplines vise à une meilleure appréhension

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

1 élève. 0 8 12 16 20 Note

1 élève. 0 8 12 16 20 Note L'histogramme est utilisé dans le cas d'une série regroupée en classe. Pour construire un histogramme, on porte les classes en abscisse et sur chacune d'elles pris comme base, on construit un rectangle

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Diplôme intermédiaire BEP MSA/ MRCU

Diplôme intermédiaire BEP MSA/ MRCU Session 2011 Diplôme intermédiaire BEP MSA/ MRCU CCF de MATHEMATIQUES N 1 Classe : 2 nde Période : 2 ème Semestre 2009-2010 LP Les Charmilles BAC PRO Comptabilité Secrétariat Commerce/Vente Service/Accueil

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Mathématiques 3e Compétences du Répertoire des connaissances et des comportements des usagers de l espace routier Connaître les risques liés aux conditions météo (freinage,

Plus en détail

CONSTRUCTION DES COMPETENCES DU SOCLE COMMUN CONTRIBUTION DES SCIENCES PHYSIQUES

CONSTRUCTION DES COMPETENCES DU SOCLE COMMUN CONTRIBUTION DES SCIENCES PHYSIQUES CONSTRUCTION DES COMPETENCES DU SOCLE COMMUN CONTRIBUTION DES SCIENCES PHYSIQUES Compétence du socle : Compétence 4 : La maîtrise des techniques usuelles de l information et de la communication Contribution

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES STATISTIQUES DESCRIPTIVES ORGANISATION DES DONNÉES Etude de population 53 784 56 28 4 13 674 8375 9974 60 Consommation annuelle du lait Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu

Plus en détail

Comment calculer les contributions de chaque mois à la mortalité annuelle par accident?

Comment calculer les contributions de chaque mois à la mortalité annuelle par accident? Comment calculer les contributions de chaque mois à la mortalité annuelle par accident? Le débat sur les conséquences de l affaiblissement du permis à points par un amendement à la LOPPSI2, qui double

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Partie 2 Statistique- Chapitre 8 Tableaux Croisés

Partie 2 Statistique- Chapitre 8 Tableaux Croisés Partie 2 Statistique- Chapitre 8 Tableaux Croisés PLAN: Cours... 2 TABLEAUX CROISES... 2 1. Tableau des effectifs... 2 2. Tableau des fréquences un rapport à l'effectif total... 2 3. Tableau des fréquences

Plus en détail

Cote c 1 en mm [7,9 ; 7,95[ [7,95 ; 8,0[ [8,0 ; 8,05[ [8,05 ; 8,1[ Nombre de pièces 3 39 37 1

Cote c 1 en mm [7,9 ; 7,95[ [7,95 ; 8,0[ [8,0 ; 8,05[ [8,05 ; 8,1[ Nombre de pièces 3 39 37 1 EXERCICES SUR LES STATISTIQUES Exercice 1 La toupie permet de fabriquer des pièces pour les montants d un meuble de porte de cuisine dont une coupe de profil est représentée ci-contre. Pour contrôler le

Plus en détail

Devoir-maison, à rendre le lundi 4 novembre 2013

Devoir-maison, à rendre le lundi 4 novembre 2013 Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen)

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Problème 1 Partie A On peut remarquer que la définition de Da est très ambigüe : l expression «le moment ou le conducteur voit

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 EXERCICE 1 11 points Un institut de recherche désire relever des informations sur l état de l enneigement dans un massif montagneux.

Plus en détail

LES CIRCUITS ÉLECTRIQUES EN RÉGIME SINUSOÏDAL

LES CIRCUITS ÉLECTRIQUES EN RÉGIME SINUSOÏDAL LES CIRCUITS ÉLECTRIQUES EN RÉGIME SINUSOÏDAL Compétences mises en jeu durant l'activité : Compétences générales : Etre autonome S'impliquer Suivre et réaliser un protocole expérimental en toute sécurité

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

STATISTIQUES. Pour inciter mon fils à travailler, je passe avec lui le contrat suivant :

STATISTIQUES. Pour inciter mon fils à travailler, je passe avec lui le contrat suivant : 1/8 Situation Pour inciter mon fils à travailler, je passe avec lui le contrat suivant : "Si tu es dans la première moitié de la classe, je te donne 10, sinon tu es privé de télévision pendant une semaine!"

Plus en détail

Statistiques 2009-10 Cours 4. Statistiques descriptives: méthodes numériques (1) Mesures de tendance centrale (1)

Statistiques 2009-10 Cours 4. Statistiques descriptives: méthodes numériques (1) Mesures de tendance centrale (1) Statistiques 2009-10 Cours 4 Bachelor 1 ère année Unil, Ecole des HEC 1 Statistiques descriptives: méthodes numériques (1) Eléments de tendance centrale (moyenne, médiane, mode, quantiles, ) 2 Mesures

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

STATISTIQUE. 3) Construire un tableau donnant les effectifs cumulés, les fréquences (en % au dixième près) et les fréquences cumulées.

STATISTIQUE. 3) Construire un tableau donnant les effectifs cumulés, les fréquences (en % au dixième près) et les fréquences cumulées. STATISTIQUE Exercice 1 Les 33 élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 5 8 10 11 1 1 15 18 0 Effectif 1 1 7 6 3 1 ECC Fréquences FCC 1) Déterminer l étendue et le mode

Plus en détail

Statistique descriptive. Analyse de données

Statistique descriptive. Analyse de données Chapitre Statistique descriptive. Analyse de données Énigme On note x le prix au kg du produit. 5 % de remise en caisse : le prix au kg devient x 5 x = 0,85x. + 5 % de produit gratuit : le prix au kg devient

Plus en détail

Organisation et gestion de données

Organisation et gestion de données - Mathématiques - Niveau 3 ème Organisation et gestion de données Remerciements à Mesdames Hélène Clapier et Dominique Halperin, professeures de mathématiques de collège et Monsieur Gilles Damamme, maître

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

La durée de service des conducteurs routiers de fret poids lourds en 2010

La durée de service des conducteurs routiers de fret poids lourds en 2010 COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 273 Décembre 2011 La durée de service des conducteurs routiers de fret poids lourds en 2010 OBSERVATION ET STATISTIQUES TRANSPORT En 2010, le temps de service

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a :

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : Proportionnalité I) Proportionnalité et produit en croix 1) Propriété Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : a b c

Plus en détail

C H A P I T R E 1 1 S T A T I S T I Q U E S ; P O U R C E N T A G E S ; M O Y E N N E S

C H A P I T R E 1 1 S T A T I S T I Q U E S ; P O U R C E N T A G E S ; M O Y E N N E S Classe de Troisième C H A P I T R E 1 1 S T A T I S T I Q U E S ; P O U R C E N T A G E S ; M O Y E N N E S Le but de ce chapitre est de porter une réflexion sur le traitement habituel de l'information

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

PROPORTIONNALITE VITESSE MOYENNE

PROPORTIONNALITE VITESSE MOYENNE PROPORTIONNALITE VITESSE MOYENNE 1) Remplir un tableau de proportionnalité (Rappels) 3 kg de pommes coûtent 5,40. Combien coûtent 5 kg de pommes? Les grandeurs en jeu sont : la masse des pommes en kg ;

Plus en détail

Fonctions Affines. 1. Activité 1

Fonctions Affines. 1. Activité 1 1. Activité 1 Fonctions Affines La centrale PS10 en Espagne (Séville) produit de l électricité au moyen de 624 miroirs de 120 m 2 chacun qui concentrent les rayons du soleil au sommet d une tour de 115

Plus en détail

Notion de fonction. Résolution graphique Fonction affine

Notion de fonction. Résolution graphique Fonction affine Eercices 6 décembre 0 Notion de fonction. Résolution graphique Fonction affine Eercice Représentation d une fonction Parmi les courbe suivantes, quelles sont celles qui ne sont pas des représentations

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES

DEVOIR COMMUN DE MATHÉMATIQUES Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

Fiche descriptive : Statistique descriptive avec Sinequanon

Fiche descriptive : Statistique descriptive avec Sinequanon Fiche descriptive : Statistique descriptive avec Sinequanon Public concerné : Enseignants de tous niveau désirant découvrir des possibilités du logiciel Objectif : Proposer une approche du logiciel pour

Plus en détail

Devoir à la maison. Bon travail et bonnes vacances! Mme FORCONI.

Devoir à la maison. Bon travail et bonnes vacances! Mme FORCONI. Lycée International Victor Hugo. Classe : 3 ème Enseignante : Marie-Tatiana FORCONI. marie-tatiana.forconi@vhugo.eu Devoir à la maison. A faire comme un DM, pendant les vacances de la Toussaint, pour le

Plus en détail

LA VITESSE. Savoir calculer. Sytnhèse et exercices. Comment calculer la vitesse? Prénom et n :... Date :...

LA VITESSE. Savoir calculer. Sytnhèse et exercices. Comment calculer la vitesse? Prénom et n :... Date :... Prénom et n :....................... Date :............................... Savoir calculer LA VITESSE http://moto-club-arsouilles69.over-blog.com/article-16927787.html, le 04-04-2015 Sytnhèse et exercices

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation.

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation. Exercice 1 : brevet centre étrangers, juin 2012 (4 points : 1+3) 1 ) Calculer 2 ) Au goûter, Lise mange du paquet de gâteaux qu elle vient d ouvrir. De retour du collège, sa sœur Agathe mange les des gâteaux

Plus en détail

Brevet Blanc de Mathématiques n 4

Brevet Blanc de Mathématiques n 4 Collège français Sadi Carnot Diego Suarez 15/05/2015 Brevet Blanc de Mathématiques n 4 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4

Plus en détail

Formation Tremplin (entrée directe) ou Préparation concours Préparation examen :

Formation Tremplin (entrée directe) ou Préparation concours Préparation examen : 1 CENTRE NATIONAL DE LA FONCTION PUBLIQUE TERRITORIALE CATEGORIE C TEST D ORIENTATION MATHEMATIQUES Durée : 2h00 Calculatrice autorisée NOM : PRENOM : COLLECTIVITE : FORMATION DEMANDEE Formation Tremplin

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ J étudie un phénomène naturel : la marée................................................................

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

BLANC. L épreuve comporte huit exercices obligatoires, indépendants, notés sur

BLANC. L épreuve comporte huit exercices obligatoires, indépendants, notés sur BREVET BLANC EPREUVE DE MATHEMATIQUES L épreuve comporte huit exercices obligatoires, indépendants, notés sur 3 points, 4 points, 5 points ou 9 points (le barème figure à titre indicatif ) Il sera tenu

Plus en détail

3) Cet appareil produit quel genre de courant (continu ou alternatif)? Expliquer votre choix.

3) Cet appareil produit quel genre de courant (continu ou alternatif)? Expliquer votre choix. EXERCICES SUR L INTENSITÉ & LA TENSION DU COURANT ÉLECTRIQUE Exercice 1 1) Donner la lecture de la mesure. 2) Quelle est la nature de la grandeur mesurée? 3) Cet appareil produit quel genre de courant

Plus en détail

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr Brevet Blanc n 1 Attention : la page 5 est à joindre à la copie d examen. N'oubliez pas d y indiquer votre numéro de candidat. PARTIE NUMÉRIQUE (12 points) Mathématiques Année scolaire 2011 / 2012 Durée

Plus en détail

La puissance électrique L'énergie électrique

La puissance électrique L'énergie électrique La puissance électrique L'énergie électrique Je me souviens En classe de 4, on a appris à lire la tension nominale sur une lampe. C est la tension nécessaire aux bornes de la lampe pour qu elle fonctionne

Plus en détail

Statistiques. Effectif total. Une valeur du caractère c) Situation 3 : on relève l activité sportive préférée de 40 adolescents. Plongée.

Statistiques. Effectif total. Une valeur du caractère c) Situation 3 : on relève l activité sportive préférée de 40 adolescents. Plongée. Statistiques Échauffez-vous! Pour les trois situations, reliez chaque information à sa signification statistique. a) Situation : on réalise une étude statistique sur les 5 élèves d une classe. 5 Population

Plus en détail

La distance d arrêt.

La distance d arrêt. La distance d arrêt. Niveau Références B.O. Partie 3 ème C - De la gravitation à l énergie mécanique. C2 - Énergie cinétique et sécurité routière. Sous-partie Pourquoi la vitesse est-elle dangereuse? Pré

Plus en détail

Parmi les formules suivantes, lesquelles permettent de calculer celle d un véhicule :

Parmi les formules suivantes, lesquelles permettent de calculer celle d un véhicule : EXERCICE 1 Parmi les formules suivantes, lesquelles permettent de calculer celle d un véhicule : 1) Ec = m v 2) Ec = ½ m v 3) Ec = ½ m v² 4) Ec = ½ v² 5) Ec = mv² EXERCICE 2 1) Rappelez la formule permettant

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

D.A.E. DIRECTION ASSISTEE ELECTRIQUE DE TWINGO

D.A.E. DIRECTION ASSISTEE ELECTRIQUE DE TWINGO Lycée Chevalier d Eon - Tonnerre D.A.E. DIRECTION ASSISTEE ELECTRIQUE DE TWINGO MODULE 1 Station de mesure Calculateur Régime Capteur de couple Capteur de Vitesse Prise diagnostique MODULE 4 Diagnostic

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

VITESSE UTILISATION DES FORMULES 2. La distance est exprimée en heures, la vitesse en km/h, donc la durée est exprimée en h.

VITESSE UTILISATION DES FORMULES 2. La distance est exprimée en heures, la vitesse en km/h, donc la durée est exprimée en h. THEME : VITESSE UTILISATION DES FORMULES 2 Exercice 4 : La vitesse moyenne d'un cycliste est de 30 km.h -1 sur un parcours aller de 60 km. Au retour, la vitesse moyenne de ce même cycliste est de 20 km.h

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 Durée : 3 heures Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 EXECICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de

Plus en détail

L indice des fonctionnaires à la liquidation de leur retraite DREES

L indice des fonctionnaires à la liquidation de leur retraite DREES CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 10 avril 2014 à 9 h 30 «Carrières salariales et retraites dans les secteurs privé et public» Document N 8 Document de travail, n engage pas le Conseil

Plus en détail

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit

Plus en détail

3) Cet appareil produit quel genre de courant (continu ou alternatif)? Expliquer votre choix.

3) Cet appareil produit quel genre de courant (continu ou alternatif)? Expliquer votre choix. EXERCICES SUR L INTENSITÉ & LA TENSION DU COURANT ÉLECTRIQUE Exercice 1 1) Donner la lecture de la mesure. 2) Quelle est la nature de la grandeur mesurée? 3) Cet appareil produit quel genre de courant

Plus en détail

École Mitchell-Montcalm Mathématique Chapitre 1

École Mitchell-Montcalm Mathématique Chapitre 1 LE FACTEUR Un facteur de poste Canada doit distribuer 1 250 dépliants publicitaires pour BELLOTRON à raison de 1 par foyer. Son parcours se présente comme suit: 435 maisons individuelles; 147 duplex; 23

Plus en détail