OUTILS STATISTIQUES ET NUMÉRIQUES

Dimension: px
Commencer à balayer dès la page:

Download "OUTILS STATISTIQUES ET NUMÉRIQUES"

Transcription

1 UNIVERSITÉ D ORLEANS Année universitaire UFR Sciences Master FAC et SAE, 2ème année OUTILS STATISTIQUES ET NUMÉRIQUES POUR LA MESURE ET LA SIMULATION T. Dudok de Wit Université d Orléans 16 septembre 214 Ce cours a pour objectif de présenter divers outils qui sont couramment utilisés dans l analyse de données. Il s agit plus d une collection de chapitres choisis que d un cours exhaustif sur l analyse de données, pour laquelle vous trouverez des références ci-dessous.

2 Table des matières 1 Livres utiles 3 2 Rappels sur les probabilités Variable aléatoire Loi de probabilité Statistique descriptive : estimateurs Population ou échantillon? Densité de probabilité Espérance et moyenne Mode et médiane Variance et écart-type Moments d ordre supérieur Propriétés d un estimateur Cohérence d un estimateur Biais d un estimateur Efficacité Quelques lois de probabilité Aléa de Bernouilli Aléa binomial Loi uniforme Aléa de Poisson Loi normale ou loi de Gauss Loi du χ Théorème de la limite centrale Simuler des lois avec Scilab Erreurs Quantifier les erreurs Représenter les erreurs Chiffres significatifs Comment déterminer l incertitude? Propagation des erreurs Bootstrap et jackknife Pourquoi moyenner? Tests d hypothèse Etapes du test d hypothèse Test du χ Calculer les seuils avec Scilab Tests de stationnarité Test de run Régression affine et ajustement de courbes Max de vraisemblance et moindres carrés Résolution avec Scilab Validation de la droite de régression Régression de fonctions affines Régression non-linéaire Régression non-linéaire avec Scilab Ajustement de modèles : Bayes 58 2

3 1 Livres utiles L. Lyons, A practical guide to data analysis for physical science students, Cambridge University Press, 1991 (introduction très claire à l analyse de données). NIVEAU LI- CENCE W. Press et al., Numerical Recipes in C, Cambridge University Press, 1998 (LA référence sur les outils numériques). Voir aussi la version en ligne à NIVEAU MASTER ET +, EN BU. P. Bevington, Data reduction and error analysis for the physical sciences, McGraw-Hill, 1992 (ce livre un peu ancien reste une référence ; il est davantage orienté vers l analyse des erreurs). NIVEAU LICENCE, EN BU E. Feigelson & G. J. Babu, Modern statistical analysis for astronomy, Cambridge University Press, 213 (excellent panorama de méthodes, et bien que dédié à l astronomie, s applique aussi à d autres domaines). NIVEAU LICENCE/MASTER, EN COMMANDE À LA BU K. Protassov, Probabilités et incertitudes, Presses Universitaires de Grenoble, 2 (excellent traité sur les incertitudes). NIVEAU LICENCE, DISPONIBLE EN BU J. Max, Méthodes et techniques de traitement du signal : tome 1 Applications aux mesures physiques et tome 2 Exemples d applications, Dunod, 1987 (ces deux volumes, même s ils ont pris de l âge, restent un des rares exemples de synergie entre les outils de traitement de données et leurs applications en physique). NIVEAU MASTER ET + le cours de Philippe Depondt sur la physique numérique (ENS Cachan), orienté vers la simulation : Allez dans "Licence L3 -> Cours téléchargeables -> Physique numérique" référence complète sur les techniques d analyse de données pour ingénieurs, le Data Analysis Handbook :http://www.itl.nist.gov/div898/handbook/index.htm GUM : Guide to the Expression of Uncertainty of Measurement est un document officiel et une mine d informations sur tous les aspects métrologiques liées au traitement des erreurs.http://www.bipm.org/en/publications/guides/gum.html 3

4 2 Rappels sur les probabilités 2.1 Variable aléatoire On appelle variable aléatoire ou aléa numérique une variable X susceptible de prendre différentes valeurs, auxquelles il est possible d affecter une probabilité. Soit V l ensemble des valeurs possibles de X : si V est fini ou dénombrable, on dit que l aléa est discret. Le cas échéant, l aléa est dit continu. Exemple : Dans le lancer d un dé, la variable aléatoire X = {1,2,3,4,5,6} est discrète et ne peut prendre que 6 valeurs. Le débit de fluide dans une conduite est une variable continue. Remarque : La plupart des observables physiques (température, pression, tension, longueur, durées,... ) sont des variables continues, bien que des effets quantiques puissent jouer à très petite échelle, par exemple pour de très faibles champs magnétiques. Les variables discrètes apparaissent généralement dans les expériences où il y a dénombrement. 2.2 Loi de probabilité Soit p(x), la probabilité qu une variable aléatoire discrète X prenne la valeur x. L ensemble des couples (x, p(x)) est appelé loi de probabilité de la variable aléatoire. Elle peut être représentée par un diagramme en bâtons ou par un histogramme. Lorsque l aléa est continu, la probabilité que X prenne la valeur x est en général infiniment petite. Ainsi, si on tire au hasard des nombres réels répartis uniformément entre et 5, la probabilité qu un tel nombre soit exactement égal est très faible, quoique non nulle. Il devient dès lors plus intéressant de calculer la probabilité que X prenne une valeur dans un petit intervalle Prob(a<X b)=prob(x b) Prob(X < a) La quantité Prob(X b) Prob(X < a) b a définit la densité de probabilité dans l intervalle [a,b]. Par passage à la limite, on définit p(a)= lim b a Prob(X b) Prob(X < a) b a La quantité d c p(x) d x équivaut à la probabilité que l aléa X prenne une valeur située entre c et d. Exemple : Dans le lancer d un dé non truqué, la loi de probabilité discrète se résume à x i p(x i ) 1/6 1/6 1/6 1/6 1/6 1/6 4

5 Exemple : La probabilité de tirer un nombre aléatoire issu d une distribution uniforme sur l intervalle [, 1[ vaut { 1 si x < 1 p(x)= sinon Pour un aléa discret, la probabilité de tirer une valeur parmi toutes les valeurs possibles vaut obligatoirement 1 car on est sûr du résultat. Cela signifie qu on a toujours x X p(x) = i p(x i ) = 1 De la même façon, pour un aléa continu, la probabilité de tirer une valeur parmi l ensemble des valeurs possibles est toujours égale à 1. On a donc + p(x) d x = 1 Ces résultats sont valables quelle que soit la loi de probabilité. Remarque : Pour un aléa discret, chaque probabilité satisfait forcément p(x) 1, puisque la somme des probabilités est égale à 1. La probabilité p(x) est alors un nombre sans unités. En revanche, pour un aléa continu, il est tout à fait possible d avoir p(x) > 1, puisque c est l intégrale qui est bornée. En outre, p(x) peut s exprimer en unités physiques. Par exemple, si x est une longueur mesurée en [m], alors p(x) s exprimera en [m 1 ]. 3 Statistique descriptive : estimateurs Dans une expérience, on a rarement accès à l expression exacte de la loi de probabilité ; il n est pas forcément possible de mesurer p(x) pour chaque valeur de x. On se contente donc souvent de calculer des indicateurs, qui résument à eux seuls certaines caractéristiques de la loi. Le mieux connu de ces indicateurs est la moyenne, qui est un indicateur de tendance. On recourt aussi fréquemment à des indicateurs de dispersion ou d étalement, tels que écarttype. Notre objectif est d en trouver la meilleure estimation à partir d un échantillon dont la taille sera toujours finie. 3.1 Population ou échantillon? D un point de vue formel, il existe une différence fondamentale entre les modèles et les observations. Dans le premier cas, et pour autant que la loi de probabilité soit connue, on parlera de population. Les quantités qui en seront déduites, telles que l espérance, sont théoriques et en ce sens dépourvues d erreur. Il est rare de pouvoir travailler directement sur une population, sauf si on dispose d un modèle mathématique exact du phénomène à étudier. Lorsque la loi de probabilité n est pas connue, alors il faut réaliser une expérience pour estimer les propriétés telles que la moyenne. On parlera alors d échantillon. Les valeurs obtenues seront d autant plus proches des valeurs théoriques que l expérience a été bien menée. 5

6 En vertu de la loi des grands nombres, les valeurs obtenues avec l échantillon convergent vers celles de la population lorsque la taille de l échantillon augmente. Tout le problème consiste à estimer au mieux ces valeurs. Sauf exception rare, l expérimentateur travaille toujours sur des échantillons. Un modèle de son expérience lui permettra cependant de définir une population, par rapport à laquelle il se référera. 3.2 Densité de probabilité La densité de probabilité figure parmi les quantités les plus importantes pour caractériser une série temporelle ou une suite de valeurs en général. Comme nous l avons vu en 2.2, p(a)d x est la probabilité qu un processus stationnaire x(t) prenne une valeur comprise dans l intervalle [a, a+ d x]. On utilise fréquemment l expression pdf (= probability density function) pour désigner la densité de probabilité p(x). Un théorème important (le théorème de la limite centrale, cf. 5.7) nous dit que pour beaucoup de processus physiques, la pdf tend vers une loi normale (ou loi de Gauss) p(x) e (x a)2 /b. FIGURE 1 A gauche : quatre exemples de séries temporelles : a) une sinusoïde, b) une sinusoïde avec du bruit de haute fréquence, c) une sinusoïde dont l amplitude fluctue au cours du temps, d) un signal aléatoire. A droite est représentée la densité de probabilité de chaque série. 6

7 Quelques exemples de pdf estimées à partir d échantillons sont illustrés dans la figure 1. L estimation d une pdf à partir d un échantillon est une tâche délicate pour laquelle la méthode la plus simple (mais non la meilleure) consiste à calculer un histogramme. La détermination de la pdf joue un rôle crucial dans l étude de la turbulence, où de très faibles écarts par rapport à une loi normale peuvent parfois être interprétés en termes de structures cohérentes (tourbillons, etc.). Estimer des distributions avecscilab Le logiciel Scilab dispose de quelques routines permettant d estimer des fonctions de distribution et plus particulièrement des histogrammes. histplot(n,x) affiche l histogramme de la variable x (un vecteur) en choisissant automatiquement n classes de même largeur ; l effectif de chaque classe est normalisé par l effectif total. histplot(b,x) même fonction que ci-dessus, sauf qu elle utilise les classes dont les bornes sont définies par le vecteur b. Ces bornes sont [b 1,b 2 ], (b 2,b 3 ], (b 3,b 4 ], etc. [pos,eff] = dsearch(x,b,"c") recherche parmi les éléments du vecteur x ceux qui se trouvent dans l une des classes définies par b (même syntaxe que ci-dessus). pos est un vecteur de même taille que x, qui indique le numéro de la classe à laquelle appartient chaque élément. e f f donne l effectif de chaque classe. Cette fonction convient aux lois discrètes et continues. [pos,eff] = dsearch(x,v,"d") même fonction que ci-dessus, sauf que la recherche se fait par rapport aux valeurs entières définies dans le vecteur v. Cette fonction convient uniquement aux lois discrètes. Un estimateur simple : l estimateur à noyau La méthode de l histogramme possède un sérieux défaut : les effectifs obtenus dans chaque classe fluctuent et lui donnent une allure irrégulière. Il devient lors difficile de distinguer les fluctuations statistiques des véritables variations d effectifs entre classes. Pour atténuer les premières, il convient de moyenner les effectifs entre classes. L estimateur de la densité de probabilité par histogramme peut être défini comme ˆp(x i )= 1 [ n i avec n i = nbre d observations dans x i N 2, x i + ] 2 que l on peut écrire comme ˆp(x)= 1 1 N N ( x xk ) Γ k=1 { 1/2 si u 1 avec Γ(u) = sinon L estimateur classique peut dès lors être interprété comme un empilement de boîtes de largeur 2 et de hauteur (2 N) 1. Comme l aire de chaque boîte vaut N 1, l aire totale de la densité de probabilité est bien égale à 1. 7

8 On peut avantageusement remplacer la fonction porte Γ(u) par une fonction plus lisse, qui atténuera les irrégularités dans la distribution. Ceci donne lieu aux estimateurs à noyau (kernel estimators), qui sont fréquemment utilisés dans la pratique. A chaque valeur z i de l échantillon on associe alors une courbe centrée sur z i ; la superposition de toutes ces courbes donne la densité p(z). p(z) z A priori, n importe quelle fonction Γ(u) peut servir de noyau, à condition de remplir les conditions suivantes Γ(u) doit être et à support compact Γ(u)du= 1 Il est toutefois préférable de choisir une fonction qui soit aussi lisse que possible, tout en étant concentrée sur un intervalle compact. Le noyau Gaussien Γ(u)= 1 2π e est particulièrement adapté et très fréquemment utilisé. Toutefois, la forme précise du noyau n a que peu d influence sur le résultat final. Le seul paramètre ajustable est le paramètre de lissage (ou encore largeur caractéristique ) pour lequel il n existe pas de recette fiable. Si les données en question suivent un loi normale de variance σ 2 alors on peut utiliser en première approximation =σn 1/5 Cette expression nous apprend que le résolution à laquelle on peut espérer dans un histogramme (à savoir la valeur de ) ne s améliore que très lentement lorsque l effectif N croît. u Espérance et moyenne Quand la densité de probabilité n est pas connue, on commence par estimer certains de ses moments. Une des caractéristiques les plus importantes d une loi est sa moyenne ou espérance. En présence d une population, on parle d espérance de la variable X, qui se note habituellement µ X, E(X ) ou X. Si la loi de probabilité n est pas connue a priori, alors il faut estimer l espérance à partir d un échantillon. On parlera alors de moyenne, que l on notera habituel- 8

9 lement x, parfois x N ou m. On a x = x p(x) d x espérance pour un aléa continu x = i x i p i espérance pour un aléa discret x = 1 N N x i moyenne pour un échantillon Notons qu il existe d autres estimateurs de la moyenne, telles que la moyenne pondérée x = i w i x i / i w i ainsi que la moyenne géométrique x = ( N x i) 1/N. Exemple : Dans le lancer d un dé non truqué, l espérance vaut X = = 7 2 Ce résultat est exact, et ne dépend pas du nombre de lancers. En réalisant l expérience pour des nombres de lancers différents, obtient de même la moyenne N x Ces valeurs convergent vers le résultat théorique pour N. Dans le logiciel Scilab, la moyenne d un échantillon s obtient avec l une des commandes m = mean(x) estime la moyenne sur tous les éléments de la matrice x m = mean(x, r ) même fonction que ci-dessus, sauf que la moyenne s effectue selon chaque rangée de x m = mean(x, c ) même fonction que ci-dessus, sauf que la moyenne s effectue selon chaque colonne de x 3.4 Mode et médiane La moyenne à elle seule ne suffit pas pour rendre compte de la notion intuitive de "valeur moyenne". On recourt parfois aussi au mode, qui est la valeur la plus probable de la distribution, cf. figure 2. Le mode n est pas toujours défini. Une autre quantité utile est la médiane : c est la valeur x m telle qu on a la même probabilité de tirer une valeur inférieure à x m qu une valeur supérieure à x m. Pour une population avec un aléa continu, nous avons xm p(x) d x = p(x) d x = 1 x m 2 Pour un échantillon, la médiane s estime de la manière suivante : soient {x i },i = 1,..., N les N résultats de l expérience. D abord on les trie par ordre croissant, pour obtenir une nouvelle suite {x k },k = 1,..., N. La valeur médiane x m est alors la valeur d indice N/2 (si N est pair) ou d indice (N + 1)/2 (si N est impair). 9

10 p(x) mode médiane moyenne 2 écarts-type x FIGURE 2 Représentation de quelques indicateurs statistiques pour une distribution continue. Exemple : Une mesure du courant dans un conducteur a donné les valeurs suivantes : {x i }=7, 79.4, 94, 86, 82, 81.4 et 7 [A]. La moyenne est 8.4 [A], le mode est 7 [A] et la médiane est 81.4 [A]. Exemple : Une distribution continue est donnée par la loi { 1 p(x)= 2 x si x < 2 sinon On vérifie que l on a bien + p(x) d x= 1. L espérance vaut x = + La médiane x m est donnée par x p(x) d x = x 2 d x = 4 3 xm p(x) d x = 1 2 x m = 2 Estimer la médiane avecscilab Il n existe pas de fonction dédiée dans Scilab pour calculer le mode car ce dernier n est pas toujours défini. En revanche, la médiane s obtient avec la même syntaxe que la moyenne m = median(x) estime la médiane sur tous les éléments de la matrice x m = median(x, r ) même fonction que ci-dessus, sauf que la médiane se calcule selon chaque rangée de x m = median(x, c ) même fonction que ci-dessus, sauf que la médiane se calcule selon chaque colonne de x 1

11 3.5 Variance et écart-type Pour quantifier la dispersion des valeurs de X autour de sa valeur moyenne, on recourt habituellement à la variance σ 2 x et plus fréquemment à l écart-type (ou écart quadratique moyen) σ x = σ 2 x. La définition de la variance est σ 2 x = (x µ ) 2 p(x)d x pour un aléa continu σ 2 x = i ( xi µ ) 2 pi pour un aléa discret où µ est l espérance et non la moyenne. Les expressions ci-dessus peuvent se mettre sous une forme plus commode σ 2 x = x2 µ 2 L écart-type est donc une mesure de la largeur d une distribution, cf. figure 2. Elle s exprime dans les mêmes unités que la variable X : si cette dernière est par exemple en [Ω], alors l écarttype le sera aussi. Pour un échantillon de taille finie, on notera généralement la variance sx 2 et non σ2 x ; son expression dépendra alors de la connaissance de l espérance. Si l espérance est connue (ce qui est rarement le cas), l expression de la variance sera la même que pour celle d une population. En revanche, si l espérance n est pas connue, le fait de devoir estimer la moyenne de l échantillon pour ensuite calculer la variance à partir de ce même échantillon aura pour effet de sous-estimer cette dernière. L estimation de la variance est alors biaisée (cf. 4). Pour corriger cet effet, on peut montrer que le dénominateur doit être N 1 et non N. La plupart des calculatrices font la distinction entre les deux estimateurs. sx 2 = 1 N sx 2 = 1 N 1 N ( xi µ ) 2 l espérance est connue N (x i x) 2 l espérance n est pas connue Dans ce qui suit, j utiliserai souvent la notation σ indifféremment pour les populations et les échantillons. Exemple : Dans l exemple précédent de la distribution continue, la variance vaut + σ 2 x = x 2 p(x) d x ( x ) 2 = 1 2 L écart-type vaut donc σ x = σ 2 x = x 3 d x 16 9 =.222 Estimer l écart-type avec Scilab Dans Scilab, l estimateur non-biaisé de l écart-type est 11

12 s = stdev(x) estime l écart-type sur tous les éléments de la matrice x s = stdev(x, r ) même fonction que ci-dessus, sauf que l écarttype est estimé selon chaque rangée de x s = stdev(x, c ) même fonction que ci-dessus, sauf que l écarttype est estimé selon chaque colonne de x u = x(:)-mean(x); s = sqrt(u *u/length(u)); notation compacte pour l estimateur biaisé de l écart-type 3.6 Moments d ordre supérieur L espérance et la variance sont les deux principaux moments d une densité de probabilité. Il arrive qu on soit amené à s intéresser à des moments d ordre supérieur, définis selon m q = (x µ ) q p(x)d x pour un aléa continu m q m q = i ( xi µ ) q pi pour un aléa discret m q = 1 N N (x i x) q pour un échantillon où l ordre q est habituellement un entier positif. Pour q =, on trouve par définition 1, pour q = 1, l espérance et pour q = 2, la variance. Il est souvent plus commode de normaliser les moments d ordre supérieur par rapport à la variance de la population ou de l échantillon, ce qui donne m q = m q σ q. On rencontre fréquemment le skewness (ou asymétrie), défini comme γ 1 = (x µ)3 (x µ) 2 3/2 = m 3 σ 3 et le kurtosis (ou aplatissement), défini comme γ 1 = (x µ)4 (x µ) 2 2 3= m 4 σ 4 3 Le skewness mesure l asymétrie d une distribution. Comme le montre la Figure 3, il est nul pour toute distribution symétrique par rapport à sa moyenne alors que γ 1 > implique un surcroît de grandes valeurs positives. Le kurtosis est une mesure de l étalement d une distribution, encore appelé aplatissement. Pour une loi normale, m 4 = 3 et γ 2=. Plus l ordre d un moment est élevé, plus celui-ci sera fortement pondéré par les valeurs extrêmes. Il faudra donc être très prudent avec un échantillon X de taille finie, car la valeur du moment sera presque entièrement déterminée par les quelques valeurs de x qui s écartent le plus de la moyenne. C est la raison pour laquelle on ne rencontre que très rarement les moments d ordre supérieur à 4. La seule exception est l étude expérimentale de la turbulence, où ces moments apportent une information cruciale sur les processus physiques de transfert d énergie entre les tourbillons de tailles différentes (loi de Kolmogorov). 12

13 .4.3 m 1 =µ=, m 2 =σ 2 =1, γ 1 = γ 2 =.6.4 m 1 =µ=, m 2 =σ 2 =1, γ 1 = γ 2 =.812 p(x).2.1 p(x) x 5 5 x m 1 =µ=, m 2 =σ 2 =1, γ 1 = γ 2 =1.35 m 1 =µ=, m 2 =σ 2 =1, γ 1 =.631 γ 2 =.245 p(x) x p(x) x FIGURE 3 Quelques distributions et leurs premiers moments normalisés. 4 Propriétés d un estimateur On dispose d un échantillon fini {x i } de N valeurs. Supposons que l on veuille en extraire une valeur x aussi raisonnablement proche que possible de la vraie valeur x. On appellera x estimation de x. Dans le cas plus général où on est confronté à N variables aléatoires {X i }, on appellera X estimateur de la variable aléatoire X recherchée (par exemple, la moyenne). Un bon estimateur doit satisfaire à la fois trois conditions souvent contradictoires : il doit être cohérent, non biaisé et efficace. 4.1 Cohérence d un estimateur La loi des grands nombres (cf. section 6) nous dit qu en moyennant le résultat d une expérience un grand nombre N de fois, la moyenne X ainsi obtenue tend vers une variable non aléatoire x, qui est la valeur numérique recherchée. C est la propriété de cohérence (ou consistency). 4.2 Biais d un estimateur Lorsque la taille N d un échantillon tend vers l infini, un estimateur cohérent tend vers la valeur exacte x. Mais dans le cas réel où l échantillon est de taille finie, on aimerait que l es- 13

14 pérance X N s écarte le moins possible de la valeur x. Cet écart est appelé biais. Pour un estimateur biaisé, on a X N = x + b N où b N est le biais de l échantillon. Pour un estimateur cohérent, lim N b N =. L estimateur de la figure 4 est biaisé. Celui de la figure 5 ne l est pas. intervalle dans lequel se répartissent les valeurs de X * biais FIGURE 4 Exemple d un estimateur cohérent et biaisé. Exemple : L estimateur de l entropie est biaisé. Soit {k i } un échantillon de N nombres entiers répartis uniformément entre et 9 compris (chaque nombre possède la même probabilité d apparition). Si f k est la fréquence d apparition du nombre k, alors l entropie vaut H = 9 f k log f k k= On montre aisément que cet estimateur est fortement biaisé. N H N valeur numérique 1 log1 2 log log log Efficacité Parmi différents estimateurs de la même quantité, on choisira celui dont l écart-type est minimal : la convergence vers la valeur exacte n en sera que plus rapide. Exemple : Pour estimer la moyenne d un échantillon {x i } on effectue habituellement la moyenne arithmétique sur toutes les valeurs. On peut aussi effectuer la moyenne de la valeur minimum et de la valeur maximum. Lequel est plus efficace? 14

15 estimateur le moins efficace estimateur le plus efficace FIGURE 5 Deux estimateurs d efficacité différente. 5 Quelques lois de probabilité Il existe un grand nombre de lois de probabilité. A chaque modèle correspond une loi particulière. Néanmoins, la grande majorité des lois rencontrées dans la nature s avèrent être des lois de normales (ou lois de Gauss) ou encore des lois binomiales. Ces différentes lois étant apparentées, on passe de l une à l autre par un passage à la limite. 5.1 Aléa de Bernouilli L aléa de Bernouilli (ou loi de Bernouilli) est l expression la plus simple d une loi de probabilité. Elle s exprime par une variable aléatoire X qui n a que deux états : elle prend soit la valeur 1 (ou pile), avec une probabilité p, soit la valeur (ou face), avec une probabilité q. L espérance vaut dans ce cas et la variance Prob(X = 1)= p, Prob(X = )= q, et p+ q = 1 x =1 p+ q = p σ 2 x = (1 p)2 p+ ( p) 2 q = p(1 p) = pq Exemple : Dans le jeu de pile ou face, avec une pièce non truquée, on a p = q = 1/ Aléa binomial On considère N épreuves de Bernouilli identiques et indépendantes. La variable K est le nombre de réalisations de l événement X : par exemple le nombre de fois qu on obtient pile après N lancers successifs d une pièce. La probabilité pour que K prenne la valeur k vaut Prob(K = k)= C k N pk (1 p) N k où C k N = N! (N k)! k! On dit alors que K suit une loi binomiale de paramètres N et p, que l on note B N,p. On montre dans ce cas que l espérance, la variance et l écart-type valent respectivement 15

16 espérance variance écart-type K = N p σ 2 K = N pq σ K = N pq.4 p =.1.4 p =.5.4 p =.7 Prob(K=k) k k k FIGURE 6 Distribution binomiale correspondant à N = 1 et p =.1,.5,.7 Exemple : On lance une pièce de monnaie truquée N = 3 fois. Quelle est la probabilité d obtenir en tout k = 2 fois pile sachant que la probabilité d avoir pile vaut p =.6? Prob(k = 2)= 3! 2! 1! =.432 La valeur moyenne et l écart-type sont respectivement K =3.6=1.8 et σ K = 3.6.4=.848 L aléa binomial intervient fréquemment dans les phénomènes physiques où il n existe que deux états possibles, chacun étant assorti d une probabilité. Par exemple, dans une expérience d analyse optique d une couche translucide, p pourrait être la probabilité qu un photon traverse la couche et q celle de voir le photon être absorbé. 5.3 Loi uniforme La loi uniforme décrit une variable aléatoire X dont les valeurs sont équiprobables sur un ou plusieurs intervalles [a, b[. Prob(a< x b)=cte Or comme on a obligatoirement p(x) d x = 1, cela donne p(x)= { 1 b a si a x< b sinon On montre dans ce cas que (a+ b) espérance x = 2 (b a) écart-type σ x = 12 Dans les ordinateurs, les générateurs de nombres aléatoires fournissent généralement par défaut des nombres distribués selon une loi uniforme sur l intervalle [, 1[. On peut générer à partir d elle des nombres distribués selon n importe quelle loi. La construction d un bon générateur est un problème ardu qui fait encore l objet de recherches intenses. 16

17 5.4 Aléa de Poisson Considérons des épreuves binomiales telles que N devient très grand (un lance la pièce un grand nombre de fois) et p très petit (la probabilité d obtenir pile est très petite) tout en gardant K = N p fini (ni nul, ni infini). La loi binomiale tend alors vers une loi dite de Poisson. La probabilité que K prenne la valeur k vaut Prob(K = k)= µk k! e µ où µ est un paramètre qui est égal à l espérance. Contrairement à la loi binomiale, qui nécessite deux paramètres (N et p), ici un seul paramètre (µ) suffit pour décrire la loi. On montre dans ce cas que l espérance, la variance et l écart-type valent respectivement espérance K =µ variance écart-type σ 2 K = µ σ K = µ.4 µ = 1.4 µ = 3.4 µ = 8 Prob(K=k) k k k FIGURE 7 Distribution de Poisson correspondant à µ = 1, 3, 8 La loi de Poisson décrit les phénomènes dont la probabilité de tirage individuel (c est-à-dire p) est très petite, mais dont le nombre de réalisations (c est-à-dire N) est si élevé, que l espérance µ atteint une valeur finie. On dira qu une loi binomiale B N,p peut être approchée par une loi de Poisson P µ dès que N p < 5 et N > 2. La loi de Poisson décrit bien des phénomènes de comptage : détection de photons par un photomultiplicateur, comptage de particules émises lors de désintégrations radioactives, comptage d ions dans un spectromètre de masse, comptage d individus en microbiologie,... Exemple : Une décharge luminescente émet en moyenne N = photons par seconde. Sur ceux-ci, seule une très faible fraction p = pénètre dans un photomultiplicateur. Le nombre moyen de photons détectés en une seconde vaut donc µ = N p = 15. Ce nombre fluctue au cours du temps avec un écarttype qui vaut σ= µ=12.2. Si dans l exemple qui précède on n effectue qu une seule mesure, avec par exemple n = 822 photons pendant un intervalle de temps donné, alors le seul fait d avoir une loi de Poisson nous permet d affirmer que l incertitude sur cette valeur sera de σ= µ n= La force de la loi réside ici dans sa capacité à nous renseigner directement sur une quantité qui nécessiterait sinon plusieurs mesures. 17

18 5.5 Loi normale ou loi de Gauss Si on prend la loi binomiale ou la loi de Poisson dans la limite où l espérance devient très grande (N > 2 et µ>2) alors le nombre d états possibles croît rapidement : la représentation du diagramme en bâtons de p(x) se transforme petit à petit en une courbe continue. Dans la limite où le nombre N est infini, on obtient une loi normale (ou loi de Gauss), dont l expression générale est p(x)= 1 ) ( σ 2π exp (x µ)2 2σ 2 Cette expression fait apparaître deux paramètres, µ et σ, qui sont respectivement l espérance et l écart-type. On dit dès lors que X suit une loi normale N (µ,σ 2 ). Lorsqu un générateur de nombres aléatoires fournit des valeurs distribuées selon une loi normale, c est toujours d une distribution N (, 1) qu il s agit..4.3 µ=, σ=1 µ=, σ=2 µ=2, σ=3 p(x) x FIGURE 8 Distribution normale correspondant à différents couples de valeurs (µ,σ). La loi normale se rencontre très fréquemment et s applique à tous les phénomènes qui résultent de la superposition d un grand nombre d événements indépendants et d origines diverses. L explication se trouve dans le théorème de la limite centrale, cf. section 5.7. Pourquoi standardiser? Il arrive fréquemment que l on doive comparer deux ou plusieurs quantités, dont les unités de mesure diffèrent ou dont les ordres de grandeur ne sont pas les mêmes. Si en plus ces quantités obéissent à une loi normale, il peut être commode de les standardiser. Cette opération consiste à leur soustraire la moyenne (= centrer) et à les normaliser par rapport à leur écart-type (= réduire) x x x La figure ci-dessous illustre cela pour la mesure simultanée de la température et de la résistance d un thermistor dans un écoulement fluide. Les deux quantités s expriment en des unités différentes et sont difficilement comparables. Leur comparaison relative est facilitée une fois qu elles sont standardisées. 18 σ x

OUTILS STATISTIQUES ET NUMÉRIQUES

OUTILS STATISTIQUES ET NUMÉRIQUES UNIVERSITÉ D ORLEANS Année universitaire 26-27 UFR Sciences Master EE, 2ème année OUTILS STATISTIQUES ET NUMÉRIQUES POUR LA MESURE ET LA SIMULATION T. Dudok de Wit Université d Orléans Septembre 26 Ce

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

1 Un objet aléatoire de base : le dé

1 Un objet aléatoire de base : le dé Dans le monde des statistiques, il est bien évident qu on ne fait plus aucun calcul à la main. Si nous le faisons en cours de mathématiques, c est pour mieux comprendre ce que font les divers logiciels

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

Chapitre 3 : Mesure et Incertitude.

Chapitre 3 : Mesure et Incertitude. Chapitre 3 : Mesure et ncertitude. Le scientifique qui étudie un phénomène naturel se doit de faire des mesures. Cependant, lors du traitement de ses résultats ce pose à lui la question de la précision

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

Calcul d erreur (ou Propagation des incertitudes)

Calcul d erreur (ou Propagation des incertitudes) Travaux Pratiques de Physique vers. septembre 014 Calcul d erreur (ou Propagation des incertitudes) 1) Introduction Le mot "erreur" se réfère à quelque chose de juste ou de vrai. On parle d erreur sur

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L2 MIASHS Cours de B. Desgraupes Simulation Stochastique Séance 04: Nombres pseudo-aléatoires Table des matières 1

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

4. Introduction expérimentale à la mesure

4. Introduction expérimentale à la mesure Le comptage pour le PM situé en bas est plus élevé que celui pour le PM situé en haut : l origine céleste des muons a été mise en évidence. 4. Introduction expérimentale à la mesure a. Erreur i. Introduction

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Département de physique

Département de physique Département de physique Etude de la densité spectrale de puissance du bruit thermique dans une résistance Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr

Plus en détail