On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3."

Transcription

1 T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule est blache, o la remet das l ure et o ajoute boules blaches supplémetaires Si la boule est oire, o la remet das l ure et o ajoute boules oires supplémetaires O tire esuite au hasard ue secode boule das l ure. O ote : B l évéemet : «o obtiet ue boule blache au premier tirage» : B l évéemet : «o obtiet ue boule blache au secod tirage» ; A l évéemet : «les deux boules tirées sot de couleurs différetes».. as cette questio o pred = 0. a. Calculer p(b B ) et motrer que p(b ) = 4 O peut représeter la situatio par u arbre : 4 B O a doc p(b B )= p(b ) p (B ) 4 4 B N N B N B = 4 =. 4 p(b )= p(b B ) + p(n B ) = + = = b. Calculer p (B ) B p(b B ) 4 p (B )= = = B p(b ) c. Motrer que p(a) = 0 4 p(a) = p(b N ) + p(n B ) = + = + = O pred toujours = 0. Huit joueurs réaliset l épreuve décrite précédemmet de maière idetique et idépedate. O appelle X la variable aléatoire qui pred pour valeur le ombre de réalisatios de l évéemet A. a. étermier p(x = ). Cette expériece aléatoire est la répétitio de 8 expérieces de Beroulli idetiques et idépedates de paramètre. Cette loi est doc ue loi biomiale de paramètres 8 et 0 0.

2 T ale S Correctio Exercices type bac de Probabilités. Mars 7 après le cours p(x = ) = = 6 0, soit fialemet p(x=) 0 0 0, 484 b. étermier l espérace mathématique de la variable aléatoire X. L espérace mathématique de la variable aléatoire X est : E(X) = 8 0 =,4. as cette questio,. Existe-t-il ue valeur de pour laquelle p(a) = 4? as cette questio, o reviet doc à l arbre décrivat l expériece de début d exercice, mais avec + 0 p (B ) =, B p (N ) =, B p (N ) = et N p (B ) = N + 40 O a doc tout comme à la questio.c : p(a) = p(b N ) + p(n B ) Soit, p(a) = + = aisi p(a)= ( + 40) 4 60 = 60 = + 40 = 0 4( + 40) 4 Exercice : Ue etreprise fait fabriquer des paires de chaussettes auprès de trois fourisseurs, et. as l etreprise, toutes les paires de chaussettes sot regroupées das u stock uique. La moitié des paires de chaussettes est fabriquée par le fourisseur, le tiers par le fourisseur et le reste par le fourisseur. Ue étude statistique a motré que : % des paires de chaussettes fabriquées par le fourisseur ot u défaut ;,% des paires de chaussettes fabriquées par le fourisseur ot u défaut ; Sur l esemble du stock,,% des paires de chaussettes ot u défaut.. O prélève au hasard ue paire de chaussettes das le stock de l etreprise. O cosidère les évéemets suivats : : La paire de chaussettes prélevée est fabriquée par le fourisseur. : La paire de chaussettes prélevée est fabriquée par le fourisseur. : La paire de chaussettes prélevée est fabriquée par le fourisseur. : La paire de chaussettes prélevée présete u défaut. a. Traduire e termes de probabilités les doées de l éocé e utilisat les évéemets précédets. p( )=, p()= et p( )= 6 o a aussi, p () = 0, 0, p () = 0, 0 et p() = 0,0.

3 T ale S Correctio Exercices type bac de Probabilités. Mars as la suite, o pourra utiliser u arbre podéré associé à cette expériece. 0,0 0,9 0,0 0,98 6 b. Calculer la probabilité qu ue paire de chaussettes prélevée soit fabriquée par le fourisseur et présete u défaut. p( )=p( ) p () = 0, 0 = 40 c. Calculer la probabilité de l évéemet. p( )=p( ) p () = 0,0 = 00 d. E déduire la probabilité de l évéemet. après la formule des probabilités totales o a : p( )+p( )+p( )=p() p( )=p()-(p( )+p( )), 7 oc p( )= - - = = e. Sachat que la paire de chaussettes prélevée est fabriquée par le fourisseur, quelle est la probabilité qu elle présete u défaut. p () p( ) 00 p( ) 00 6 = = =. L etreprise coditioe les paires de chaussettes par lots de six paires. O cosidère que le stock est suffisammet grad pour assimiler le choix des six paires de chaussettes à des tirages idépedats, successifs avec remise. a. Calculer la probabilité que deux paires de chaussettes exactemet d u lot présetet u défaut ; o doera u résultat arrodi au millième. après l éocé, p()=0,0, l expériece aléatoire présetée est la successio de 6 expérieces de Beroulli idetique et idépedates de paramètre 0,0, la loi de probabilité de cette expériece aléatoire est la loi biomiale de paramètres 6 et 0,0. O a doc, e otat N le ombre de paires avec défaut, p(n = ) = 0, 0 ( 0, 0) 6 4 0,06.

4 T ale S Correctio Exercices type bac de Probabilités. Mars b. émotrer que la probabilité, arrodie au millième, qu au plus ue paire de chaussettes d u lot présete u défaut est égale à 0,98. Avec les mêmes otatios qu au a. le calcul de probabilité demadé est p(n ). 6 p(n )=p(n=0) + p(n=)= 0, , 0 ( 0, 0) 6 0, ,76 o a doc p(n ) 0,98. Exercice : Ue etreprise fabrique des lecteurs mp, dot 6% sot défectueux. Chaque lecteur mp est soumis à ue uité de cotrôle dot la fiabilité est pas parfaite. Cette uité rejette 98% des lecteurs mp défectueux et % des lecteurs mp foctioat correctemet. O ote : l évéemet : «le lecteur mp est défectueux» ; l évéemet : «l uité de cotrôle rejette le lecteur mp».. aire u arbre podéré sur lequel o idiquera les doées qui précèdet. 0,98 0,06 0,0 0,94 0,0 0,9. a. Calculer la probabilité que le lecteur soit défectueux et e soit pas rejeté. p( ) = p() p ()=0,06 0,98 = 0,088. b. O dit qu il y a ue erreur de cotrôle lorsque le lecteur mp est rejeté alors qu il est pas défectueux, ou qu il est pas rejeté alors qu il est défectueux. Calculer la probabilité qu il y ait ue erreur de cotrôle. P = p( ) + p( ) = 0,06 0,0 + 0,94 0,0 = 0,048.. Motrer que la probabilité qu u lecteur mp e soit pas rejeté est égale à 0,894. après la formule des probabilités totales o obtiet, p( ) = p( ) + p( ) = 0,00 + 0,94 0,9 = 0, Quatre cotrôles successifs idépedats sot maiteat réalisés pour savoir si u lecteur mp peut être commercialisé.

5 T ale S Correctio Exercices type bac de Probabilités. Mars U lecteur mp est : Commercialisé avec le logo de l etreprise s il subit avec succès les quatre cotrôles successifs, étruit s il est rejeté au mois deux fois, Commercialisé sas le logo sio. Le coût de fabricatio d u lecteur mp s élève à 0. So prix de vete est de 0 pour u lecteur avec logo et 60 pour u lecteur sas logo. O désige par G la variable aléatoire qui, à chaque lecteur mp fabriqué, associe le gai algébrique e euros (évetuellemet égatif) réalisé par l etreprise. a. étermier la loi de probabilité de la variable aléatoire G. E cosidérat l expériece aléatoire : «o fait subir quatre cotrôles successifs à u lecteur mp et o compte le ombre N le ombre de succès aux cotrôles», celle-ci est la successio de 4 expérieces de Beroulli idetiques et idépedates de paramètre p( ) = 0,894. La loi de probabilité de celle-ci est ue loi biomiale de paramètres 4 et 0,894. Mais das cette questio o s itéresse à la loi de probabilité du gai G. G peut predre les valeurs : -0, 0 et 70. O a : p(-0 ) = p(n ), p(0 ) = p(n=) et p(70 ) = p(n=4). Aisi d après le cours sur la loi biomiale, p(70 ) = 0, ,69, p(0 ) = 4 0,894 (-0,894) 0,06. oc p(-0 ) = -(p(70 ) + p(0 )) 0,08. Ce qui peut être sythétisé par le tableau suivat : G p 0,08 0,06 0,69 b. Calculer à 0 - près l espérace mathématique de G. oer ue iterprétatio de ce résultat. E(G) = -0 0, , ,69 44,87 Ce qui sigifie que l etreprise peut espérer réaliser u gai de 44,87 par mp vedu. Exercice 4 : as ue kermesse, u orgaisateur de jeux dispose de roues de 0 cases chacue. La roue A comporte 8 cases oires et cases rouges. La roue B comporte 6 cases oires et 4 cases rouges. Lors du lacer d ue roue, toutes les cases ot la même probabilité d être obteues. La règle du jeu est la suivate : Le joueur mise et lace la roue A.

6 T ale S Correctio Exercices type bac de Probabilités. Mars S il obtiet ue case rouge, alors il relace la roue B, ote la couleur de la case obteue et la partie s arrête. S il obtiet ue case oire, alors il relace la roue A, ote la couleur de la case obteue et la partie s arrête.. Traduire l éocé à l aide d u arbre podéré. 0, 0, 0,8 N 0,9 N 0, 0,9 N. Soiet E et les évéemets : E : «à l issue de la partie, les cases obteues sot rouges» ; : «à l issue de la partie, ue seule des deux cases est rouge». Motrer que p(e) = 0,0 et p() = 0,7. p(e) = p() p () = 0, 0, = 0,0. p() = p( N) + p(n ) = p() p (N) + p(n) p N ()= 0, 0,8 + 0,9 0, = 0,7.. Si les deux cases obteues sot rouges, le joueur reçoit 0 ; si ue seule des cases est rouge, le joueur reçoit ; sio il e reçoit rie. X désige la variable aléatoire égale au gai algébrique e euros du joueur. a. étermier la loi de probabilité de X. X pred les valeurs : 9, ou -. O a p(x = 9 ) = p(e) = 0,0. O a aussi p(x = ) = p() = 0,7 et efi p(x = - ) = (p(e)+p()) = 0,8. La loi de probabilité de X est doée par le tableau suivat : X 9 - probabilité 0,0 0,7 0,8 b. Calculer l espérace mathématique de X et e doer ue iterprétatio. E(X) = 9 0,0 + 0,7 0,8 = -0,46. Ue joueur peut espérer, e jouat, perdre 46 cets. 4. Le joueur décide de jouer parties cosécutives et idépedates ( N et ). a. émotrer que la probabilité p qu il lace au mois ue fois la roue B est telle que p = (0,9). L expériece à laquelle o s itéresse est la suivate : «le joueur joue parties cosécutives idetiques et idépedates et o compte le ombre de fois où il lace la

7 T ale S Correctio Exercices type bac de Probabilités. Mars roue B». Celle-ci est la répétitio de expérieces de Beroulli idetiques et idépedates de paramètre 0, (probabilité de lacer la roue B), la loi de probabilité de celle-ci est doc ue loi biomiale de paramètres et 0, (otée B( ; 0,)). E otat N le ombre de fois où la roue B est lacée et d après le cours, 0 0 p = p(n ) = p(n=0) = (0,) (-0,) = (0,9) b. Justifier que la suite de terme gééral p est covergete et préciser sa limite. après le cours sur les suites, toute suite géométrique de raiso 0<q< coverge vers 0. oc (0,9) ted vers 0 quad ted vers +. oc (p ) coverge vers. c. Quelle est la plus petite valeur de l etier pour laquelle p > 0,9? l 0, p > 0,9 0,9 > 0,9 0,9 < 0, l 0,9 < l 0, > l 0,9 Soit pour >,9. La plus petite valeur de sera doc. Exercice : O dispose de deux ures U et U. L ure U cotiet billes vertes et 8 billes rouges toutes idiscerables au toucher. L ure U cotiet billes vertes et 7 billes rouges toutes idiscerables au toucher. Ue partie cosiste, pour u joueur, à tirer au hasard ue bille de l ure U, oter sa couleur et remettre la bille das U, puis de tirer au hasard ue bille das U, oter sa couleur et remettre la bille das l ure U. A la fi de la partie, si le joueur a tiré deux billes vertes, il gage u lecteur mp. S il a tiré ue bille verte, il gage u ours e peluche. Sio il e gage rie. O ote V l évéemet : «le joueur tire ue boule verte das U» ; V l évéemet : «le joueur tire ue boule verte das U». Les évéemets V et V sot idépedats.. Motrer, à l aide d u arbre podéré, que la probabilité de gager u lecteur mp est p = 0,06. L arbre de probabilité est aussi évidet que das les exercices précédets avec p(v ) = 0,, p( V ) = 0,8, p (V )= 0,, V p (V ) = 0,, V p (V ) = p ( V ) = 0,7. V V O peut doc écrire que p(«gager u lecteur mp») = p = p(v V ) = p(v ) =0, 0, = 0,06.. Quelle est la probabilité de gager u ours e peluche? p (V ) V p(«gager u ours e peluche») = p( V V ) + p( V V ) = 0,8 0, + 0, 0,7 = 0,8.. Vigt persoes jouet chacue ue partie. étermier la probabilité que deux d etre elles exactemet gaget u lecteur mp. O justifiera la répose et o doera ue valeur approchée du résultat à 0-4 près. E cosidérat l expériece aléatoire suivate : Vigt persoes jouet ue partie, elles gaget u lecteur mp avec ue probabilité de 0,06. Cette expériece est la répétitio de 0

8 T ale S Correctio Exercices type bac de Probabilités. Mars expérieces de Beroulli idetiques et idépedates de paramètre 0,06. La loi de probabilité de cette expériece est doc la loi biomiale de paramètres 0 et 0,06. Si o ote N le ombre de lecteurs mp gagés lors de ces 0 parties et d après le cours p(n = ) = 0,06 0, , O appelle le ombre de persoes participat à la loterie u jour doé et jouat ue seule fois. O ote p la probabilité que l ue au mois de ces persoes gage u lecteur mp. étermier la plus petite valeur de vérifiat p 0,99. p = p(n ) = p(n=0) = ,06 0,94 = 0,94 l 0,0 p 0,99 0,94 0,99 0,94 0,0 l 0,94 l 0,0 l 0,94 soit 74,4. oc la plus petite valeur de sera 7. Exercice 6 : Au début des travaux de costructio d ue autoroute, ue équipe d archéologie prévetive procède à des sodages successifs e des poits régulièremet espacés sur le terrai. Lorsque le -ième sodage doe lieu à la découverte de vestiges, il est dit positif. L évéemet «le -ième sodage est positif» est oté V, o ote p la probabilité de l évéemet V. L expériece acquise au cours de ce type d ivestigatio permet de prevoir que : Si u sodage est positif, le suivat a ue probabilité égale à 0,6 d être aussi positif. ; Si u sodage est égatif, le suivat a ue probabilité égale à 0,9 d être aussi égatif. O suppose que le premier sodage est positif, c est-à-dire que p =. Calculer les probabilités des évéemets suivats : a. A «les e et e sodages sot positifs» ; p(a) = p(v V ) = 0,6 0,6 = 0,6. b. B «les e et e sodages sot égatifs» p(b) = p( V V ) = 0,4 0,9 = 0,6.. Calculer la probabilité p pour que le e sodage soit positif. après la formule des probabilités totales, p(v ) = p( V V ) + p( V V ) = 0,6 + 0,4 0, = 0,4.. désige u etier aturel supérieur ou égal à. ecopier et compléter l arbre ci-dessous : 0,6 V + p V 0,4 V + -p V 0, V + 0,9 V +

9 T ale S Correctio Exercices type bac de Probabilités. Mars 4. Pour tout etier o ul, établir que p + = 0,p + 0,. N, p + = p(v V +) + p( V V ) = 0,6p + ( p ) 0, = 0,p + 0, +. O ote u la suite défiie pour tout etier aturel o ul par : u = p 0,. a. émotrer que u est ue suite géométrique, e préciser le premier terme et la raiso. N, u = p 0, = 0,p + 0, 0, = 0,p 0, = 0,( p 0,) = 0,u. (u ) + + est géométrique de raiso 0, et de premier terme u = p 0, = 0,8. b. Exprimer p e foctio de. après a. u = 0,8 0, = 0,8 0, =,6 0,. Comme p = u + 0,, o a doc 0, N, p = 0, +,6 0,. c. Calculer la limite de la probabilité p. O a N, p = 0, +,6 0,. Comme 0<0,< doc lim 0, = 0. O obtiet doc que (p ) coverge vers 0,. +

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Corrigé Exercice Sujets Bac Maths Aales Mathématiques Bac Sujets + Corrigés - Alai Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL Aales Bac Maths SESSION MATHÉMATIQUES Série S Cadidats ayat pas suivi l eseigemet

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Exercice 1 (10 points)

Exercice 1 (10 points) Devoir surveillé 2 L usage de la calculatrice est autorisé La qualité de la présetatio et de la rédactio de la copie sera prise e compte das so évaluatio Sauf metio du cotraire, toute répose doit être

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

Loi de Bernoulli et loi binomiale, cours, première S

Loi de Bernoulli et loi binomiale, cours, première S Loi de Beroulli et loi biomiale, cours, classe de première S Loi de Beroulli et loi biomiale, cours, première S 1 Loi de Beroulli Déitio : Soit p u ombre réel tel que p [0; 1]. Soit X ue variable aléatoire.

Plus en détail

COUPLES VARIABLES ALEATOIRES DISCRETES

COUPLES VARIABLES ALEATOIRES DISCRETES COUPLES VARIABLES ALEATOIRES DISCRETES EERCICE : U sac cotiet six jetos, u ortat le uméro, deux ortet le uméro et trois ortet le uméro Ces jetos sot idiscerables au toucher. Deux jetos sot rélevés de ce

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

Classes de première générale et technologique STATISTIQUES ET PROBABILITÉS

Classes de première générale et technologique STATISTIQUES ET PROBABILITÉS Classes de première géérale et techologique STATISTIQUES ET PROBABILITÉS Sommaire I. Itroductio...4 II. Statistique descriptive, aalyse de doées...4 III. Variables aléatoires discrètes...6 IV. Utilisatio

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité BACCALAUREAT GENERAL Bac blac 4 Mercredi 7 Mai 4 MATHEMATIQUES Série : S Eseigemet Obligatoire ou de Spécialité Durée de l épreuve : 4 heures Coefficiet : 7 ou 9 L utilisatio de la calculatrice est autorisée

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

x 0 + f ' (x) f (x) ln 3 3 f (x) dx.

x 0 + f ' (x) f (x) ln 3 3 f (x) dx. T S Devoir surveillé 8 Vedredi avril 7 Exercice (5 poits) l (x + ) O cosidère la foctio f défiie sur [, + [ par f (x) = x +. O admet que le tableau de variatios de f est le suivat. O défiit la suite (U

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Probabilités exercices corrigés

Probabilités exercices corrigés Termiale S Probabilités Exercices corrigés Combiatoire avec démostratio Ragemets Calcul d évéemets Calcul d évéemets Calcul d évéemets 6 Dés pipés 7 Pièces d or 8 Agriculteur pas écolo 9 Boules Jeux 6

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

CORRIGES DE TRAVAUX DIRIGES DE MATH TERMINALES C,D,E. Structure : Probabilités JE RAPPELLE QUE C

CORRIGES DE TRAVAUX DIRIGES DE MATH TERMINALES C,D,E. Structure : Probabilités JE RAPPELLE QUE C Cette fiche a été téléchargée sur le site http://sila.e-mosite.com CORRIGES DE TRAVAUX DIRIGES DE MATH TERMINALES C,D,E. Structure : Probabilités k JE RAPPELLE QUE C k Exercice Le ombre total de possibilités

Plus en détail

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

I. Probabilités : petit bilan de 2 nde

I. Probabilités : petit bilan de 2 nde ère S FICHE Variables aléatoires I. Probabilités : petit bila de de EXECICE TYPE (voir évaluatio diagostique d etrée e ère S) Eocé O fait tourer ue roue équilibrée comme ci-dessous séparées e 8 secteurs

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités T.S Probabilités coditioelles L 5 I Expériece aléatoire - modélisatio - lagage des probabilités Ue expériece aléatoire est ue expériece liée au hasard. Les mathématiques itervieet pour apporter u modèle

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement " Hajeb Laayoun "

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement  Hajeb Laayoun Série d'exercices *** 3 ème M Lycée Secodaire Ali Zouaoui Déombremet " Hajeb Laayou " I / -ulet : Défiitio : Soit E u esemble o vide et * ;O aelle -ulet d élémet de E toute écriture de la forme : a a a

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail