Sur l image du groupe de tresses dans l algèbre de Hecke

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Sur l image du groupe de tresses dans l algèbre de Hecke"

Transcription

1 Sur l image du groupe de tresses dans l algèbre de Hecke conférence en l honneur de F. Digne, 1er avril 2015

2 Le groupe de tresses et l algèbre de Hecke B n = σ 1,..., σ n 1 σ i σ i+1 σ i = σ i+1 σ i σ i+1, σ i σ j = σ j σ i si i j 2

3 Le groupe de tresses et l algèbre de Hecke Soit k un corps, α k. B n = σ 1,..., σ n 1 σ i σ i+1 σ i = σ i+1 σ i σ i+1, σ i σ j = σ j σ i si i j 2

4 Le groupe de tresses et l algèbre de Hecke B n = σ 1,..., σ n 1 σ i σ i+1 σ i = σ i+1 σ i σ i+1, σ i σ j = σ j σ i si i j 2 Soit k un corps, α k. Alors H n (α) = kb n /(σ i + 1)(σ i α).

5 Le groupe de tresses et l algèbre de Hecke B n = σ 1,..., σ n 1 σ i σ i+1 σ i = σ i+1 σ i σ i+1, σ i σ j = σ j σ i si i j 2 Soit k un corps, α k. Alors H n (α) = kb n /(σ i + 1)(σ i α).

6 Le groupe de tresses et l algèbre de Hecke B n = σ 1,..., σ n 1 σ i σ i+1 σ i = σ i+1 σ i σ i+1, σ i σ j = σ j σ i si i j 2 Soit k un corps, α k. Alors H n (α) = kb n /(σ i + 1)(σ i α). si et seulement si R(σ i ) annule (X + 1)(X α).

7 Le groupe de tresses et l algèbre de Hecke si et seulement si R(σ i ) annule (X + 1)(X α).

8 Le groupe de tresses et l algèbre de Hecke si et seulement si R(σ i ) annule (X + 1)(X α). Problème :

9 Le groupe de tresses et l algèbre de Hecke si et seulement si R(σ i ) annule (X + 1)(X α). Problème : quand k est fini, calculer R(B n )

10 Le groupe de tresses et l algèbre de Hecke si et seulement si R(σ i ) annule (X + 1)(X α). Problème : quand k est fini, calculer R(B n ) quand k est fini, calculer Im(B n H n (α) ).

11 Motivation d étude des quotients finis de B n Si X est une variété algébrique lisse, définie sur un corps de nombres,

12 Motivation d étude des quotients finis de B n Si X est une variété algébrique lisse, définie sur un corps de nombres, les quotients fini de π 1 (X (C)) permettent de comprendre les revêtement de X (C),

13 Motivation d étude des quotients finis de B n Si X est une variété algébrique lisse, définie sur un corps de nombres, les quotients fini de π 1 (X (C)) permettent de comprendre les revêtement de X (C), qui peuvent être également vus comme des revêtements étales de X, considérée comme variété sur Q.

14 Motivation d étude des quotients finis de B n Si X est une variété algébrique lisse, définie sur un corps de nombres, les quotients fini de π 1 (X (C)) permettent de comprendre les revêtement de X (C), qui peuvent être également vus comme des revêtements étales de X, considérée comme variété sur Q. Quand de plus X est une variété définie sur Q,

15 Motivation d étude des quotients finis de B n Si X est une variété algébrique lisse, définie sur un corps de nombres, les quotients fini de π 1 (X (C)) permettent de comprendre les revêtement de X (C), qui peuvent être également vus comme des revêtements étales de X, considérée comme variété sur Q. Quand de plus X est une variété définie sur Q, de tels revêtements permettent parfois de réaliser le quotient fini correspondant comme groupe de Galois d une extension de Q.

16 Motivation d étude des quotients finis de B n Si X est une variété algébrique lisse, définie sur un corps de nombres, les quotients fini de π 1 (X (C)) permettent de comprendre les revêtement de X (C), qui peuvent être également vus comme des revêtements étales de X, considérée comme variété sur Q. Quand de plus X est une variété définie sur Q, de tels revêtements permettent parfois de réaliser le quotient fini correspondant comme groupe de Galois d une extension de Q. En tous les cas, la théorie du π 1 étale fournit une suite exacte courte

17 Motivation d étude des quotients finis de B n Si X est une variété algébrique lisse, définie sur un corps de nombres, les quotients fini de π 1 (X (C)) permettent de comprendre les revêtement de X (C), qui peuvent être également vus comme des revêtements étales de X, considérée comme variété sur Q. Quand de plus X est une variété définie sur Q, de tels revêtements permettent parfois de réaliser le quotient fini correspondant comme groupe de Galois d une extension de Q. En tous les cas, la théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π1 et (X ) Gal(Q Q) 1

18 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1

19 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1 et donc un morphisme Gal(Q Q) Out( π1 (X (C))),

20 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1 et donc un morphisme Gal(Q Q) Out( π1 (X (C))), provenant d un morphisme Gal(Q Q) Aut( π1 (X (C)))

21 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1 et donc un morphisme Gal(Q Q) Out( π1 (X (C))), provenant d un morphisme Gal(Q Q) Aut( π1 (X (C))) dès que X (Q).

22 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1 et donc un morphisme Gal(Q Q) Out( π1 (X (C))), provenant d un morphisme Gal(Q Q) Aut( π1 (X (C))) dès que X (Q). Ainsi, tout quotient fini d un tel π 1 (X (C)) joue un role dans l étude des actions de Galois géométriques de Gal(Q Q).

23 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1 et donc un morphisme Gal(Q Q) Out( π1 (X (C))), provenant d un morphisme Gal(Q Q) Aut( π1 (X (C))) dès que X (Q). Ainsi, tout quotient fini d un tel π 1 (X (C)) joue un role dans l étude des actions de Galois géométriques de Gal(Q Q). Quand le π 1 (X (C)) est loin d être abélien,

24 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1 et donc un morphisme Gal(Q Q) Out( π1 (X (C))), provenant d un morphisme Gal(Q Q) Aut( π1 (X (C))) dès que X (Q). Ainsi, tout quotient fini d un tel π 1 (X (C)) joue un role dans l étude des actions de Galois géométriques de Gal(Q Q). Quand le π 1 (X (C)) est loin d être abélien, ou anabélien,

25 Motivation d étude des quotients finis de B n La théorie du π 1 étale fournit une suite exacte courte 1 π 1 (X (C)) π et 1 (X ) Gal(Q Q) 1 et donc un morphisme Gal(Q Q) Out( π1 (X (C))), provenant d un morphisme Gal(Q Q) Aut( π1 (X (C))) dès que X (Q). Ainsi, tout quotient fini d un tel π 1 (X (C)) joue un role dans l étude des actions de Galois géométriques de Gal(Q Q). Quand le π 1 (X (C)) est loin d être abélien, ou anabélien, on conjecture de plus que Gal(Q Q) Out(π 1 (X (C))) est injectif.

26 Motivation d étude des quotients finis de B n En particulier,

27 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C))

28 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C)) pour X une variété lisse définie sur Q,

29 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C)) pour X une variété lisse définie sur Q, on a un morphisme Gal(Q Q) Aut( B n )

30 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C)) pour X une variété lisse définie sur Q, on a un morphisme Gal(Q Q) Aut( B n ) dont on sait qu il est injectif pour n 3.

31 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C)) pour X une variété lisse définie sur Q, on a un morphisme Gal(Q Q) Aut( B n ) dont on sait qu il est injectif pour n 3. Dans le cas particulier de B n,

32 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C)) pour X une variété lisse définie sur Q, on a un morphisme Gal(Q Q) Aut( B n ) dont on sait qu il est injectif pour n 3. Dans le cas particulier de B n, Drinfeld a défini un groupe abstrait par lequel factorise ce morphisme,

33 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C)) pour X une variété lisse définie sur Q, on a un morphisme Gal(Q Q) Aut( B n ) dont on sait qu il est injectif pour n 3. Dans le cas particulier de B n, Drinfeld a défini un groupe abstrait par lequel factorise ce morphisme, le groupe de Grothendieck-Teichmüller.

34 Motivation d étude des quotients finis de B n En particulier, comme B n = π 1 ({A C; #A = n}) = π 1 (X (C)) pour X une variété lisse définie sur Q, on a un morphisme Gal(Q Q) Aut( B n ) dont on sait qu il est injectif pour n 3. Dans le cas particulier de B n, Drinfeld a défini un groupe abstrait par lequel factorise ce morphisme, le groupe de Grothendieck-Teichmüller.

35 Motivation d étude des quotients finis de B n Dans le cas particulier de B n, Drinfeld a défini un groupe abstrait par lequel factorise ce morphisme, le groupe de Grothendieck-Teichmüller.

36 Motivation d étude des quotients finis de B n Dans le cas particulier de B n, Drinfeld a défini un groupe abstrait par lequel factorise ce morphisme, le groupe de Grothendieck-Teichmüller. pour n 5.

37 Motivation d étude des quotients finis de B n Dans le cas particulier de B n, Drinfeld a défini un groupe abstrait par lequel factorise ce morphisme, le groupe de Grothendieck-Teichmüller. pour n 5. Ainsi, la complétion profinie de B n est un objet intéressant à comprendre.

38 Image de B n dans H n (α) : idée générale

39 Image de B n dans H n (α) : idée générale On note o(α) l ordre de α dans le groupe multiplicatif de k.

40 Image de B n dans H n (α) : idée générale On note o(α) l ordre de α dans le groupe multiplicatif de k. Fait : si o(α) > n, alors H n (α) est semisimple déployée sur k.

41 Image de B n dans H n (α) : idée générale On note o(α) l ordre de α dans le groupe multiplicatif de k. Fait : si o(α) > n, alors H n (α) est semisimple déployée sur k. B n H n (α) λ n GL(V λ )

42 Image de B n dans H n (α) : idée générale On note o(α) l ordre de α dans le groupe multiplicatif de k. Fait : si o(α) > n, alors H n (α) est semisimple déployée sur k. B n H n (α) λ n GL(V λ ) où les R λ : B n GL(V λ ) sont les représentation irréductibles de B n qui factorisent par H n (α).

43 Image de B n dans H n (α) : idée générale On note o(α) l ordre de α dans le groupe multiplicatif de k. Fait : si o(α) > n, alors H n (α) est semisimple déployée sur k. B n H n (α) λ n GL(V λ ) où les R λ : B n GL(V λ ) sont les représentation irréductibles de B n qui factorisent par H n (α). Règle de branchement : Res Bn 1 R λ = µ λ R µ

44 Image de B n dans H n (α) : idée générale Règle de branchement : Res Bn 1 R λ = µ λ R µ

45 Image de B n dans H n (α) : idée générale Règle de branchement : Res Bn 1 R λ = µ λ R µ Idée : par induction sur n

46 Image de B n dans H n (α) : idée générale Règle de branchement : Res Bn 1 R λ = µ λ R µ Idée : par induction sur n si l on connait l image de B n 1 dans H n 1 (α), on connait un gros sous-groupe de R λ (B n ).

47 Image de B n dans H n (α) : idée générale Règle de branchement : Res Bn 1 R λ = µ λ R µ Idée : par induction sur n si l on connait l image de B n 1 dans H n 1 (α), on connait un gros sous-groupe de R λ (B n ). R λ (B n ) est un sous-groupe irréductible de GL(V λ ), dont un gros sous-groupe est connu : en grande dimension, il y a peu de possibilités.

48 Image de B n dans H n (α) : idée générale Règle de branchement : Res Bn 1 R λ = µ λ R µ Idée : par induction sur n si l on connait l image de B n 1 dans H n 1 (α), on connait un gros sous-groupe de R λ (B n ). R λ (B n ) est un sous-groupe irréductible de GL(V λ ), dont un gros sous-groupe est connu : en grande dimension, il y a peu de possibilités. Problèmes :

49 Image de B n dans H n (α) : idée générale Règle de branchement : Res Bn 1 R λ = µ λ R µ Idée : par induction sur n si l on connait l image de B n 1 dans H n 1 (α), on connait un gros sous-groupe de R λ (B n ). R λ (B n ) est un sous-groupe irréductible de GL(V λ ), dont un gros sous-groupe est connu : en grande dimension, il y a peu de possibilités. Problèmes : R λ (B n ) préserve-t-il une structure orthogonale? symplectique? unitaire?

50 Image de B n dans H n (α) : idée générale Règle de branchement : Res Bn 1 R λ = µ λ R µ Idée : par induction sur n si l on connait l image de B n 1 dans H n 1 (α), on connait un gros sous-groupe de R λ (B n ). R λ (B n ) est un sous-groupe irréductible de GL(V λ ), dont un gros sous-groupe est connu : en grande dimension, il y a peu de possibilités. Problèmes : R λ (B n ) préserve-t-il une structure orthogonale? symplectique? unitaire? Comment gérer les petites valeurs de n?

51 Image de B n dans H n (α) : cas générique Pour donner une idée de ce qui peut se passer, on considère le cas où k est infini.

52 Image de B n dans H n (α) : cas générique Pour donner une idée de ce qui peut se passer, on considère le cas où k est infini. Alors l adhérence R λ (B n ) de R λ (B n ) pour la topologie de Zariski est un groupe algébrique.

53 Image de B n dans H n (α) : cas générique Pour donner une idée de ce qui peut se passer, on considère le cas où k est infini. Alors l adhérence R λ (B n ) de R λ (B n ) pour la topologie de Zariski est un groupe algébrique. Comment le déterminer, au moins quand α est générique?

54 Image de B n dans H n (α) : cas générique Pour donner une idée de ce qui peut se passer, on considère le cas où k est infini. Alors l adhérence R λ (B n ) de R λ (B n ) pour la topologie de Zariski est un groupe algébrique. Comment le déterminer, au moins quand α est générique? Par une construction de monodromie.

55 Image de B n dans H n (α) : cas générique Pour donner une idée de ce qui peut se passer, on considère le cas où k est infini. Alors l adhérence R λ (B n ) de R λ (B n ) pour la topologie de Zariski est un groupe algébrique. Comment le déterminer, au moins quand α est générique? Par une construction de monodromie. k = C((h)) α = exp(iπh) le paramètre α étant alors transcendant sur le corps premier Q k.

56 Image de B n dans H n (α) : cas générique H n (1) = ks n.

57 Image de B n dans H n (α) : cas générique H n (1) = ks n. À λ n et w S n on associe w λ End(V λ ).

58 Image de B n dans H n (α) : cas générique H n (1) = ks n. À λ n et w S n on associe w λ End(V λ ). La représentation associée, R λ : B n GL(V λ ) GL N (k)

59 Image de B n dans H n (α) : cas générique H n (1) = ks n. À λ n et w S n on associe w λ End(V λ ). La représentation associée, sur k = C((h)), R λ : B n GL(V λ ) GL N (k)

60 Image de B n dans H n (α) : cas générique H n (1) = ks n. À λ n et w S n on associe w λ End(V λ ). La représentation R λ : B n GL(V λ ) GL N (k) associée, sur k = C((h)), est obtenue par monodromie de la 1-forme

61 Image de B n dans H n (α) : cas générique H n (1) = ks n. À λ n et w S n on associe w λ End(V λ ). La représentation R λ : B n GL(V λ ) GL N (k) associée, sur k = C((h)), est obtenue par monodromie de la 1-forme ω = h i<j (i j) λ d log(z i z j ) Ω 1 (C n ) End(V λ )

62 Image de B n dans H n (α) : cas générique H n (1) = ks n. À λ n et w S n on associe w λ End(V λ ). La représentation R λ : B n GL(V λ ) GL N (k) associée, sur k = C((h)), est obtenue par monodromie de la 1-forme ω = h i<j (i j) λ d log(z i z j ) Ω 1 (C n ) End(V λ ) où C n = {(z 1,..., z n ) C n i j z i z j }.

63 Image de B n dans H n (α) : cas générique H n (1) = ks n. À λ n et w S n on associe w λ End(V λ ). La représentation R λ : B n GL(V λ ) GL N (k) associée, sur k = C((h)), est obtenue par monodromie de la 1-forme ω = h i<j (i j) λ d log(z i z j ) Ω 1 (C n ) End(V λ ) où C n = {(z 1,..., z n ) C n i j z i z j }. L image d un générateur σ i est conjuguée à exp (hiπ(i i +1) λ ).

64 Image de B n dans H n (α) : cas générique

65 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ).

66 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n

67 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n

68 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n engendrée par les transpositions.

69 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n engendrée par les transpositions. H n = (i j); 1 i, j n Lie = (i i +1); 1 i n 1 Lie ks n

70 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n engendrée par les transpositions. H n = (i j); 1 i, j n Lie = (i i +1); 1 i n 1 Lie ks n Cette algèbre de Lie admet des analogues pour tout groupe de Coxeter

71 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n engendrée par les transpositions. H n = (i j); 1 i, j n Lie = (i i +1); 1 i n 1 Lie ks n Cette algèbre de Lie admet des analogues pour tout groupe de Coxeter (et même tout groupe de réflexions complexes),

72 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n engendrée par les transpositions. H n = (i j); 1 i, j n Lie = (i i +1); 1 i n 1 Lie ks n Cette algèbre de Lie admet des analogues pour tout groupe de Coxeter (et même tout groupe de réflexions complexes), et mérite donc le nom d algèbre de Hecke infinitésimale de type A.

73 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n engendrée par les transpositions. H n = (i j); 1 i, j n Lie = (i i +1); 1 i n 1 Lie ks n Cette algèbre de Lie admet des analogues pour tout groupe de Coxeter (et même tout groupe de réflexions complexes), et mérite donc le nom d algèbre de Hecke infinitésimale de type A. C est une algèbre de Lie réductive, son centre est de dimension 1.

74 Image de B n dans H n (α) : cas générique Ceci permet de calculer l enveloppe algébrique de R λ (B n ). Son algèbre de Lie est l image dans la représentation λ de la sous-algèbre de Lie H n de l algèbre de groupe ks n engendrée par les transpositions. H n = (i j); 1 i, j n Lie = (i i +1); 1 i n 1 Lie ks n Cette algèbre de Lie admet des analogues pour tout groupe de Coxeter (et même tout groupe de réflexions complexes), et mérite donc le nom d algèbre de Hecke infinitésimale de type A. C est une algèbre de Lie réductive, son centre est de dimension 1. Comprendre sa structure revient donc à comprendre ses idéaux simples.

75 Image de B n dans H n (α) : cas générique

76 Image de B n dans H n (α) : cas générique Détail technique :

77 Image de B n dans H n (α) : cas générique Détail technique : Pour alléger la description, on a intérêt à se concentrer sur l image du sous-groupe des commutateurs de B n.

78 Image de B n dans H n (α) : cas générique Détail technique : Pour alléger la description, on a intérêt à se concentrer sur l image du sous-groupe des commutateurs de B n. On le note B n.

79 Image de B n dans H n (α) : cas générique Détail technique : Pour alléger la description, on a intérêt à se concentrer sur l image du sous-groupe des commutateurs de B n. On le note B n. On a une suite exacte 1 B n B n Z 1

80 Image de B n dans H n (α) : cas générique Détail technique : Pour alléger la description, on a intérêt à se concentrer sur l image du sous-groupe des commutateurs de B n. On le note B n. On a une suite exacte 1 B n B n Z 1 qui est presque scindée :

81 Image de B n dans H n (α) : cas générique Détail technique : Pour alléger la description, on a intérêt à se concentrer sur l image du sous-groupe des commutateurs de B n. On le note B n. On a une suite exacte 1 B n B n Z 1 qui est presque scindée : Z(B n ) Z est envoyé sur un sous-groupe d indice n(n 1)/2 de Z.

82 Image de B n dans H n (α) : cas générique Détail technique : Pour alléger la description, on a intérêt à se concentrer sur l image du sous-groupe des commutateurs de B n. On le note B n. On a une suite exacte 1 B n B n Z 1 qui est presque scindée : Z(B n ) Z est envoyé sur un sous-groupe d indice n(n 1)/2 de Z. On ne perd donc pas grand-chose à se restreindre à B n.

83 Image de B n dans H n (α) : cas générique

84 Image de B n dans H n (α) : cas générique Définitions :

85 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n}

86 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ }

87 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ }

88 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004)

89 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004) 1. R [n 1,1] (B n ) = SL(V [n 1,1] ) = SL n 1 (k)

90 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004) 1. R [n 1,1] (B n ) = SL(V [n 1,1] ) = SL n 1 (k) 2. R [n r,1 r ] Λ r R [n 1,1]

91 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004) 1. R [n 1,1] (B n ) = SL(V [n 1,1] ) = SL n 1 (k) 2. R [n r,1 r ] Λ r R [n 1,1] 3. λ E R λ (B n ) = SL(V λ ).

92 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004) 1. R [n 1,1] (B n ) = SL(V [n 1,1] ) = SL n 1 (k) 2. R [n r,1 r ] Λ r R [n 1,1] 3. λ E R λ (B n ) = SL(V λ ). De plus, R λ Rλ,

93 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004) 1. R [n 1,1] (B n ) = SL(V [n 1,1] ) = SL n 1 (k) 2. R [n r,1 r ] Λ r R [n 1,1] 3. λ E R λ (B n ) = SL(V λ ). De plus, R λ Rλ, d où SL(V λ ) R λ λ (B n ) = {(x, t x 1 )} SL(V λ ) SL(V λ )

94 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004) 1. R [n 1,1] (B n ) = SL(V [n 1,1] ) = SL n 1 (k) 2. R [n r,1 r ] Λ r R [n 1,1] 3. λ E R λ (B n ) = SL(V λ ). De plus, R λ Rλ, d où SL(V λ ) R λ λ (B n ) = {(x, t x 1 )} SL(V λ ) SL(V λ ) 4. λ F R λ (B n ) = OSP(V λ ),

95 Image de B n dans H n (α) : cas générique Définitions : Eq = {Equerres} = {[n r, 1,..., 1] n} E = {λ n; λ λ } F = {λ n; λ = λ } Théorème. (I.M., 2004) 1. R [n 1,1] (B n ) = SL(V [n 1,1] ) = SL n 1 (k) 2. R [n r,1 r ] Λ r R [n 1,1] 3. λ E R λ (B n ) = SL(V λ ). De plus, R λ R λ, d où SL(V λ ) R λ λ (B n ) = {(x, t x 1 )} SL(V λ ) SL(V λ ) 4. λ F R λ (B n ) = OSP(V λ ), groupe d isométrie d une forme orthogonale ou symplectique issue de sgn V λ V λ dans Rep(S n ).

96 Image de B n dans H n (α) : cas générique

97 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin

98 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004)

99 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α)

100 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F

101 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) Idée de la démonstration : λ E/ SL(V λ ) λ F

102 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes,

103 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes, et observées les factorisations,

104 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes, et observées les factorisations, on a un morphisme injectif bien défini.

105 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes, et observées les factorisations, on a un morphisme injectif bien défini. On montre qu il est surjectif par récurrence sur n.

106 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes, et observées les factorisations, on a un morphisme injectif bien défini. On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP

107 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes, et observées les factorisations, on a un morphisme injectif bien défini. On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP on est ramené à la détermination des R λ (B n ).

108 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes, et observées les factorisations, on a un morphisme injectif bien défini. On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP on est ramené à la détermination des R λ (B n ). Par récurrence, on connait R λ (B n 1 ).

109 Image de B n dans H n (α) : cas générique Globalement, on obtient enfin Théorème. (I.M., 2004) L image de B n dans H n (α) a pour adhérence SL n 1 (k) OSP(V λ ) λ E/ SL(V λ ) λ F Idée de la démonstration : une fois définies les formes invariantes, et observées les factorisations, on a un morphisme injectif bien défini. On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP on est ramené à la détermination des R λ (B n ). Par récurrence, on connait R λ (B n 1 ). Alors

110 Image de B n dans H n (α) : cas générique On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP on est ramené à la détermination des R λ (B n ). Par récurrence, on connait R λ (B n 1 ). Alors

111 Image de B n dans H n (α) : cas générique On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP on est ramené à la détermination des R λ (B n ). Par récurrence, on connait R λ (B n 1 ). Alors Comme R λ est irréducible, si (dim V λ )/rg R λ (B n ) (dim V λ )/rg R λ (B n 1 ) est petit, les possibilités pour R λ (B n ) sont très contraintes

112 Image de B n dans H n (α) : cas générique On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP on est ramené à la détermination des R λ (B n ). Par récurrence, on connait R λ (B n 1 ). Alors Comme R λ est irréducible, si (dim V λ )/rg R λ (B n ) (dim V λ )/rg R λ (B n 1 ) est petit, les possibilités pour R λ (B n ) sont très contraintes (exemple : si < 2, alors R λ (B n ) = SL(V λ )).

113 Image de B n dans H n (α) : cas générique On montre qu il est surjectif par récurrence sur n. A l aide de la simplicité de SL et OSP on est ramené à la détermination des R λ (B n ). Par récurrence, on connait R λ (B n 1 ). Alors Comme R λ est irréducible, si (dim V λ )/rg R λ (B n ) (dim V λ )/rg R λ (B n 1 ) est petit, les possibilités pour R λ (B n ) sont très contraintes (exemple : si < 2, alors R λ (B n ) = SL(V λ )). Pour n petit, on caclule la dimension de R λ (B n ), par calcul (informatique) de l image de H n.

114 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire.

115 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes.

116 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes. Proposition

117 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes. Proposition 1. R λ R λ

118 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes. Proposition 1. R λ R λ 2. R [n r,1 r ] Λ r R [n 1,1]

119 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes. Proposition 1. R λ R λ 2. R [n r,1 r ] Λ r R [n 1,1] 3. Il existe une forme bilinéaire non-degénérée invariante par B n is λ = λ.

120 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes. Proposition 1. R λ R λ 2. R [n r,1 r ] Λ r R [n 1,1] 3. Il existe une forme bilinéaire non-degénérée invariante par B n is λ = λ. On veut en plus une preuve suffisamment explicite pour déterminer le type sur F q des formes orthogonales en question.

121 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes. Proposition 1. R λ R λ 2. R [n r,1 r ] Λ r R [n 1,1] 3. Il existe une forme bilinéaire non-degénérée invariante par B n is λ = λ. On veut en plus une preuve suffisamment explicite pour déterminer le type sur F q des formes orthogonales en question. Hoefsmit (1974) a donné des modèles explicites, si o(α) > n.

122 Image de B n dans H n (α) : cas fini Pour adapter l argument, il faut d abord exhiber algébriquement une factorisation similaire. En termes de théorie des représentations, il faut montrer les propriétés suivantes. Proposition 1. R λ R λ 2. R [n r,1 r ] Λ r R [n 1,1] 3. Il existe une forme bilinéaire non-degénérée invariante par B n is λ = λ. On veut en plus une preuve suffisamment explicite pour déterminer le type sur F q des formes orthogonales en question. Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ.

123 Image de B n dans H n (α) : cas fini Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ.

124 Image de B n dans H n (α) : cas fini Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ. L action de σ i est de la forme σ i.t = αt si i et i + 1 se trouvent dans la même ligne de T σ i.t = T si i et i + 1 se trouvent dans la même colonne de T σ i.t = m i (T)T + (1 + m i (T))T i i+1 sinon.

125 Image de B n dans H n (α) : cas fini Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ. L action de σ i est de la forme σ i.t = αt si i et i + 1 se trouvent dans la même ligne de T σ i.t = T si i et i + 1 se trouvent dans la même colonne de T σ i.t = m i (T)T + (1 + m i (T))T i i+1 sinon. On montre qu il existe de bons poids,

126 Image de B n dans H n (α) : cas fini Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ. L action de σ i est de la forme σ i.t = αt si i et i + 1 se trouvent dans la même ligne de T σ i.t = T si i et i + 1 se trouvent dans la même colonne de T σ i.t = m i (T)T + (1 + m i (T))T i i+1 sinon. On montre qu il existe de bons poids, w(t) k

127 Image de B n dans H n (α) : cas fini Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ. L action de σ i est de la forme σ i.t = αt si i et i + 1 se trouvent dans la même ligne de T σ i.t = T si i et i + 1 se trouvent dans la même colonne de T σ i.t = m i (T)T + (1 + m i (T))T i i+1 sinon. On montre qu il existe de bons poids, w(t) k tels que les σ i préservent la forme bilinéaire

128 Image de B n dans H n (α) : cas fini Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ. L action de σ i est de la forme σ i.t = αt si i et i + 1 se trouvent dans la même ligne de T σ i.t = T si i et i + 1 se trouvent dans la même colonne de T σ i.t = m i (T)T + (1 + m i (T))T i i+1 sinon. On montre qu il existe de bons poids, w(t) k tels que les σ i préservent la forme bilinéaire < T 1, T 2 >= w(t 1 )δt 1,T 2

129 Image de B n dans H n (α) : cas fini Hoefsmit (1974) a donné des modèles explicites, si o(α) > n. Une base de V λ est donnée par les tableaux standard T de forme λ. L action de σ i est de la forme σ i.t = αt si i et i + 1 se trouvent dans la même ligne de T σ i.t = T si i et i + 1 se trouvent dans la même colonne de T σ i.t = m i (T)T + (1 + m i (T))T i i+1 sinon. On montre qu il existe de bons poids, w(t) k tels que les σ i préservent la forme bilinéaire < T 1, T 2 >= w(t 1 )δt 1,T 2 On en déduit la proposition, et un analogue fini du groupe algébrique précédent.

130 Image de B n dans H n (α) : cas fini, n petit

131 Image de B n dans H n (α) : cas fini, n petit Comme B n = (B n, B n ), on n a pas à se soucier des représentations de dimension 1.

132 Image de B n dans H n (α) : cas fini, n petit Comme B n = (B n, B n ), on n a pas à se soucier des représentations de dimension 1.

133 Image de B n dans H n (α) : cas fini, n petit

134 Image de B n dans H n (α) : cas fini, n petit

135 Image de B n dans H n (α) : cas fini, n petit Dickson : classification des sous-groupes irréducibles de SL 2 (F q ).

136 Image de B n dans H n (α) : cas fini, n petit

137 Image de B n dans H n (α) : cas fini, n petit La représentation [2, 2] provient de [2, 1] via un morphisme spécial B 4 B 3.

138 Image de B n dans H n (α) : cas fini, n petit

139 Image de B n dans H n (α) : cas fini, n petit Pour λ = [n 1, 1], les σ i agissent par des pseudo-réflexions.

140 Image de B n dans H n (α) : cas fini, n petit Pour λ = [n 1, 1], les σ i agissent par des pseudo-réflexions. Théorème de Wagner : en dimension 3, les sous-groupes de SL n (q) engendrés par des pseudo-réflexions d ordre au moins 3

141 Image de B n dans H n (α) : cas fini, n petit Pour λ = [n 1, 1], les σ i agissent par des pseudo-réflexions. Théorème de Wagner : en dimension 3, les sous-groupes de SL n (q) engendrés par des pseudo-réflexions d ordre au moins 3 sont SL n (q )

142 Image de B n dans H n (α) : cas fini, n petit Pour λ = [n 1, 1], les σ i agissent par des pseudo-réflexions. Théorème de Wagner : en dimension 3, les sous-groupes de SL n (q) engendrés par des pseudo-réflexions d ordre au moins 3 sont SL n (q ) ou SU n (q ), q q

143 Image de B n dans H n (α) : cas fini, n petit Pour λ = [n 1, 1], les σ i agissent par des pseudo-réflexions. Théorème de Wagner : en dimension 3, les sous-groupes de SL n (q) engendrés par des pseudo-réflexions d ordre au moins 3 sont SL n (q ) ou SU n (q ), q q (à une exception près).

144 Image de B n dans H n (α) : cas fini, n petit

145 Image de B n dans H n (α) : cas fini, n petit Par récurrence, à partir des représentations de réflexion, on obtient l image de B n dans la somme des représentations à deux colonnes [n p, p] (Brunat-M., 2012).

146 Image de B n dans H n (α) : cas fini, n petit Par récurrence, à partir des représentations de réflexion, on obtient l image de B n dans la somme des représentations à deux colonnes [n p, p] (Brunat-M., 2012). Mais comment distingue-t-on entre SU et SL?

147 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh.

148 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique.

149 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer,

150 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer, en considérant la représentation de monodromie :

151 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer, en considérant la représentation de monodromie : Proposition R λ (B n ) UN ε (k), où ε Aut(k) est h h. (I.M., 2005)

152 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer, en considérant la représentation de monodromie : Proposition R λ (B n ) UN ε (k), où ε Aut(k) est h h. (I.M., 2005) On remarque que ε(α) = α 1.

153 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer, en considérant la représentation de monodromie : Proposition R λ (B n ) UN ε (k), où ε Aut(k) est h h. (I.M., 2005) On remarque que ε(α) = α 1. Si k = F q = F p (α) est fini,

154 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer, en considérant la représentation de monodromie : Proposition R λ (B n ) UN ε (k), où ε Aut(k) est h h. (I.M., 2005) On remarque que ε(α) = α 1. Si k = F q = F p (α) est fini, il existe ε Aut(k) = Gal(F q F p ) d ordre 2 tel que ε(α) = α 1

155 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer, en considérant la représentation de monodromie : Proposition R λ (B n ) UN ε (k), où ε Aut(k) est h h. (I.M., 2005) On remarque que ε(α) = α 1. Si k = F q = F p (α) est fini, il existe ε Aut(k) = Gal(F q F p ) d ordre 2 tel que ε(α) = α 1 si et seulement si F p (α + α 1 ) = F q.

156 Image de B n dans H n (α) : unitarisabilité Retour sur le cas générique : k = C((h)), α = exp iπh. On ne voit pas l unitarisabilité sur l enveloppe algébrique. Mais on peut montrer, en considérant la représentation de monodromie : Proposition R λ (B n ) UN ε (k), où ε Aut(k) est h h. (I.M., 2005) On remarque que ε(α) = α 1. Si k = F q = F p (α) est fini, il existe ε Aut(k) = Gal(F q F p ) d ordre 2 tel que ε(α) = α 1 si et seulement si F p (α + α 1 ) = F q. Proposition Si F p (α + α 1 ) = F q, alors R λ (B n ) SU N (q). (Brunat-M, 2012)

157 Image de B n dans H n (α) : n grand Le cas n petit étant réglé, on peut supposer les V λ de dimension assez grande, et raisonner par récurrence.

158 Image de B n dans H n (α) : n grand Le cas n petit étant réglé, on peut supposer les V λ de dimension assez grande, et raisonner par récurrence. Pour n = 6, V [3,2,1] est déjà de dimension 16.

159 Image de B n dans H n (α) : n grand Le cas n petit étant réglé, on peut supposer les V λ de dimension assez grande, et raisonner par récurrence. Pour n = 6, V [3,2,1] est déjà de dimension 16. Théorème (Guralnick-Saxl) Soit V un F p -espace vectoriel de dimension d > 10, G GL(V ) fini, irréductible, primitif, tenseur-indécomposable. Si il existe g G \ F p et λ Fp tel que dim Im(g λ) 2, alors

160 Image de B n dans H n (α) : n grand Le cas n petit étant réglé, on peut supposer les V λ de dimension assez grande, et raisonner par récurrence. Pour n = 6, V [3,2,1] est déjà de dimension 16. Théorème (Guralnick-Saxl) Soit V un F p -espace vectoriel de dimension d > 10, G GL(V ) fini, irréductible, primitif, tenseur-indécomposable. Si il existe g G \ F p et λ Fp tel que dim Im(g λ) 2, alors soit G est un groupe classique dans une représentation naturelle

161 Image de B n dans H n (α) : n grand Le cas n petit étant réglé, on peut supposer les V λ de dimension assez grande, et raisonner par récurrence. Pour n = 6, V [3,2,1] est déjà de dimension 16. Théorème (Guralnick-Saxl) Soit V un F p -espace vectoriel de dimension d > 10, G GL(V ) fini, irréductible, primitif, tenseur-indécomposable. Si il existe g G \ F p et λ Fp tel que dim Im(g λ) 2, alors soit G est un groupe classique dans une représentation naturelle soit G est alterné ou symétrique dans une représentation naturelle

162 Image de B n dans H n (α) : n grand Théorème (Guralnick-Saxl) Soit V un F p -espace vectoriel de dimension d > 10, G GL(V ) fini, irréductible, primitif, tenseur-indécomposable. Si il existe g G \ F p et λ Fp tel que dim Im(g λ) 2, alors soit G est un groupe classique dans une représentation naturelle soit G est alterné ou symétrique dans une représentation naturelle

163 Image de B n dans H n (α) : n grand Théorème (Guralnick-Saxl) Soit V un F p -espace vectoriel de dimension d > 10, G GL(V ) fini, irréductible, primitif, tenseur-indécomposable. Si il existe g G \ F p et λ Fp tel que dim Im(g λ) 2, alors soit G est un groupe classique dans une représentation naturelle soit G est alterné ou symétrique dans une représentation naturelle En utilisant la règle de branchement,

164 Image de B n dans H n (α) : n grand Théorème (Guralnick-Saxl) Soit V un F p -espace vectoriel de dimension d > 10, G GL(V ) fini, irréductible, primitif, tenseur-indécomposable. Si il existe g G \ F p et λ Fp tel que dim Im(g λ) 2, alors soit G est un groupe classique dans une représentation naturelle soit G est alterné ou symétrique dans une représentation naturelle En utilisant la règle de branchement, à partir de l image de B n 1 on montre que l on est dans les hypothèses du théorème,

165 Image de B n dans H n (α) : n grand Théorème (Guralnick-Saxl) Soit V un F p -espace vectoriel de dimension d > 10, G GL(V ) fini, irréductible, primitif, tenseur-indécomposable. Si il existe g G \ F p et λ Fp tel que dim Im(g λ) 2, alors soit G est un groupe classique dans une représentation naturelle soit G est alterné ou symétrique dans une représentation naturelle En utilisant la règle de branchement, à partir de l image de B n 1 on montre que l on est dans les hypothèses du théorème, et l on exclut le cas des groupes symétriques/alternés.

166 Image de B n dans H n (α) : conclusion

167 Image de B n dans H n (α) : conclusion Il faut ensuite montrer que le groupe classique en question est sur le bon corps.

168 Image de B n dans H n (α) : conclusion Il faut ensuite montrer que le groupe classique en question est sur le bon corps. La quasi-simplicité des groupes classiques permet alors de conclure via lemme de Goursat.

169 Image de B n dans H n (α) : conclusion Il faut ensuite montrer que le groupe classique en question est sur le bon corps. La quasi-simplicité des groupes classiques permet alors de conclure via lemme de Goursat. Théorème, premier cas. (Brunat-Magaard-M., 2014) Si o(α) > n et o(α) {2, 3, 4, 5, 6, 10}, avec F q = F p (α), alors l image de B n dans H n (α) est SL n 1 (q) dès que F p (α + α 1 ) = F q. λ E/ SL(V λ ) λ F OSP(V λ )

170 Image de B n dans H n (α) : conclusion Théorème, deuxième cas. (Brunat-Magaard-M., 2014) Si o(α) > n et o(α) {2, 3, 4, 5, 6, 10}, avec F q = F p (α), alors l image de B n dans H n (α) est SU n 1 (q) λ E/ SU(V λ ) λ F OSP( ˇV λ )

171 Image de B n dans H n (α) : conclusion Théorème, deuxième cas. (Brunat-Magaard-M., 2014) Si o(α) > n et o(α) {2, 3, 4, 5, 6, 10}, avec F q = F p (α), alors l image de B n dans H n (α) est SU n 1 (q) dès que F p (α + α 1 ) = F q, λ E/ SU(V λ ) λ F OSP( ˇV λ )

172 Image de B n dans H n (α) : conclusion Théorème, deuxième cas. (Brunat-Magaard-M., 2014) Si o(α) > n et o(α) {2, 3, 4, 5, 6, 10}, avec F q = F p (α), alors l image de B n dans H n (α) est SU n 1 (q) λ E/ SU(V λ ) λ F OSP( ˇV λ ) dès que F p (α + α 1 ) = F q, avec V λ = ˇV λ F q F q.

173 Image de B n dans H n (α) : conclusion Théorème, deuxième cas. (Brunat-Magaard-M., 2014) Si o(α) > n et o(α) {2, 3, 4, 5, 6, 10}, avec F q = F p (α), alors l image de B n dans H n (α) est SU n 1 (q) λ E/ SU(V λ ) λ F OSP( ˇV λ ) dès que F p (α + α 1 ) = F q, avec V λ = ˇV λ F q F q.

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

et Transversalité par Pierre Vogel

et Transversalité par Pierre Vogel Université Paris 7 Denis Diderot Institut de Mathématiques de Jussieu Géométrie des Variétés et Transversalité par Pierre Vogel Introduction Ce cours est destiné à l étude des variétés différentiables

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

À propos des limites inductives filtrantes et du théorème de Lazard sur les modules plats

À propos des limites inductives filtrantes et du théorème de Lazard sur les modules plats 1 À propos des limites inductives filtrantes et du théorème de Lazard sur les modules plats Cette note est écrite comme une section 7 du chapitre VIII du livre Algèbre Commutative. Méthodes Constructives.

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

1. La notion d espace fibré au sens de Steenrod

1. La notion d espace fibré au sens de Steenrod FIBRES, CONNEXIONS ET HOMOLOGIE CYCLIQUE par Max KAROUBI. La notion d espace fibré au sens de Steenrod.. Dans l acceptation la plus simple, un espace fibré ξ de base B et de fibre F est la donnée d une

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail

1 Séancs du 14/21.11.08

1 Séancs du 14/21.11.08 1 1 Séancs du 14/21.11.08 1.1 Le rayon spectral Le spectre d un opérateur (ici, élément d une algèbre stellaire) est un compact non vide. La compacité est immédiate, car, pour z > u, u zi peut être inversé

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux

Plus en détail

Classes Caratéristiques.

Classes Caratéristiques. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

Algèbre linéaire avancée I Jeudi 8 Octobre 2015 Prof. A. Abdulle J =

Algèbre linéaire avancée I Jeudi 8 Octobre 2015 Prof. A. Abdulle J = Algèbre linéaire avancée I Jeudi 8 Octobre 205 Prof. A. Abdulle EPFL Série 4 (Corrigé) Exercice Soit J M 2n 2n (R) la matrice définie par J 0 In, I n 0 où I n est la matrice identité de M n n (R) et 0

Plus en détail

Agrégation de Mathématiques Exercices d algèbre linéaire

Agrégation de Mathématiques Exercices d algèbre linéaire Agrégation de Mathématiques Exercices d algèbre linéaire P. HUBERT La plupart des exercices ci-dessous se trouvent dans les livres suivants : - E. Leichtnam, X. Schaeur, Exercices corrigés de mathématiques

Plus en détail

2010/2011. Espaces vectoriels

2010/2011. Espaces vectoriels Université Paris-Est Marne-la-Vallée 010/011 M1 enseignement CD/Préparation au CAPES Espaces vectoriels Dans toute la suite on considèrera des espaces vectoriels sur un corps commutatif K de caractéristique

Plus en détail

arxiv:1204.2368v2 [math.rt] 18 Apr 2012

arxiv:1204.2368v2 [math.rt] 18 Apr 2012 STRUCTURE INTERNE DES REPRÉSENTATIONS MODULO p DE SL 2 (Q p ) RAMLA ABDELLATIF AND STEFANO MORRA arxiv:1204.2368v2 [math.rt] 18 Apr 2012 Résumé. Soit p 5 un nombre premier. À l aide de travaux antérieurs

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Les formes modulaires, la «cinquième opération de l arithmétique»

Les formes modulaires, la «cinquième opération de l arithmétique» Les formes modulaires, la «cinquième opération de l arithmétique» Cécile Armana, Institut de Mathématiques de Jussieu Séminaire lambda, Institut de Mathématiques de Bordeaux, 16 mai 2007 Selon une citation

Plus en détail

Placements de tours sur les diagrammes de permutations

Placements de tours sur les diagrammes de permutations Placements de tours sur les diagrammes de permutations 5 août 0 Résumé Le problème des placements de tours consiste à compter le nombre de manières de placer k tours sur un échiquier sans que les tours

Plus en détail

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES CHAPITRE SUITES RÉELLES ET COMPLEXES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autres sciences. Nous verrons dans ce cours et les travaux

Plus en détail

Le fer à cheval de Smale

Le fer à cheval de Smale Le fer à cheval de Smale Selim GHAZOUANI, ENS Lyon Novembre 2010, Groupe de lecture dirigé par Alexey GLUSTYUK sur les systèmes dynamiques Le fer à cheval de Smale est un exemple de transformation continue

Plus en détail

Estimation indirecte en sciences humaines : une méthode bayésienne

Estimation indirecte en sciences humaines : une méthode bayésienne Estimation indirecte en sciences humaines : une méthode bayésienne Henri Caussinus, Institut de Mathématiques de Toulouse, en collaboration avec Daniel Courgeau, INED Isabelle Séguy, INED Luc Buchet, CNRS

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Jacobiennes modulaires non hyperelliptiques de dimension 3

Jacobiennes modulaires non hyperelliptiques de dimension 3 Jacobiennes modulaires non hyperelliptiques de dimension 3 Roger Oyono University of Waterloo Séminaire de Théorie des nombres, Limoges 2007 Jacobiennes modulaires de dimension 3 1 Courbes non hyperelliptiques

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24)

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24) Espaces de Sobolev Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002 medp-sobolevtex (2001nov24) Sauf mention explicite du contraire, toutes les fonctions considérées seront à valeurs réelles

Plus en détail

Sous la direction de Nikita Karpenko. Gilles Tauzin

Sous la direction de Nikita Karpenko. Gilles Tauzin Sous la direction de Nikita Karpenko Gilles Tauzin Années universitaires 20042007 Théorème de Bézout et applications Ici, k est un corps algébriquement clos. Lorsque l'on étudie des courbes dans le plan

Plus en détail

Le texte qui suit, rédigé en septembre 1958, diffère sensiblement de l exposé oral, ne serait ce que par sa longueur.

Le texte qui suit, rédigé en septembre 1958, diffère sensiblement de l exposé oral, ne serait ce que par sa longueur. Séminaire Chevalley 21 avril 1958 1958, exposé n o 1 ESPACES FIBRÉS ALGÉBRIQUES Le texte qui suit, rédigé en septembre 1958, diffère sensiblement de l exposé oral, ne serait ce que par sa longueur. Sommaire

Plus en détail

Quelques Remarques sur les Opérateurs et les q-algèbres de Banach

Quelques Remarques sur les Opérateurs et les q-algèbres de Banach E extracta mathematicae Vol. 19, Núm. 2, 233 241 (2004) Quelques Remarques sur les Opérateurs et les q-algèbres de Banach R. El Harti Département de Mathématiques, Faculté des Sciences et Techniques Université

Plus en détail

Autour de la diagonalisation

Autour de la diagonalisation Autour de la diagonalisation Cédric Gérot, Pierre Granjon, Nicolas Le Bihan Laboratoire des Images et des Signaux Grenoble January 22, 2003 Contents 1 Eléments d algèbre 2 11 Espace vectoriel 2 111 Définition

Plus en détail

Fonctions modulaires. Caroline Dumoulin. Université de Fribourg (Suisse) 25.10.2007

Fonctions modulaires. Caroline Dumoulin. Université de Fribourg (Suisse) 25.10.2007 Fonctions modulaires Caroline Dumoulin Université de Fribourg (Suisse) 25.0.2007 Table des matières Introduction 2 La fonction modulaire 3 La fonction modulaire J de Klein 6 Introduction Dans ce proséminaire,

Plus en détail

Courbes elliptiques, fonctions L et conjecture de Zagier

Courbes elliptiques, fonctions L et conjecture de Zagier Courbes elliptiques, fonctions L et conjecture de Zagier François Brunault Exposé au séminaire de mathématiques pures, Université de Clermont-Ferrand, mardi 15 novembre 25 Les courbes elliptiques sont

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Espaces affines. 2 Applications affines 7. 2.2 Projections et symétries affines ; affinités... 8 2.3 Alignement et parallélisme...

Espaces affines. 2 Applications affines 7. 2.2 Projections et symétries affines ; affinités... 8 2.3 Alignement et parallélisme... Maths PCSI Cours Espaces affines Table des matières 1 Espaces et sous-espaces affines 2 1.1 Espaces affines et translations.................................... 2 1.2 Exemples d espaces affines......................................

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Variétés dont le fibré cotangent est ample

Variétés dont le fibré cotangent est ample Variétés dont le fibré cotangent est ample Olivier Benoist Mémoire de magistère sous la direction d Olivier Debarre Table des matières Introduction 2 1 Variétés projectives lisses 3 1.1 Généralités..............................

Plus en détail

PC* Espaces préhilbertiens réels

PC* Espaces préhilbertiens réels I. Espace préhilbertien réel................................... 3 I.1 Produit scalaire dans un espace vectoriel réel................... 3 I.2 Inégalités de Cauchy-Schwarz et de Minkowski..................

Plus en détail

Espérances et variances

Espérances et variances [http://mp.cpgedupuydelome.fr] édité le 29 décembre 201 Enoncés 1 Espérances et variances Exercice 1 [ 04018 ] [Correction] Soit X une variable aléatoire discrète à valeurs dans [a ; b]. a Montrer que

Plus en détail

Information Quantique DM- à rendre avant le 7 Avril 2015, à midi

Information Quantique DM- à rendre avant le 7 Avril 2015, à midi ENSEIRB-MATMECA- Section Informatique, 2ième année Option second semestre, 2014/2015 Information Quantique DM- à rendre avant le 7 Avril 2015, à midi Indications : Chaque partie dépend des parties précédentes.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Université de Metz Licence de Mathématiques L3. Département de Mathématiques Année universitaire 2007/2008. Examen de Structures algébriques

Université de Metz Licence de Mathématiques L3. Département de Mathématiques Année universitaire 2007/2008. Examen de Structures algébriques Université de Metz Licence de Mathématiques L3 U.F.R. M.I.M. Unité Structures algébriques Département de Mathématiques Année universitaire 2007/2008 Examen de Structures algébriques par Jean-Pierre Dax

Plus en détail

Table des Matières de la Longue Marche à travers la théorie de Galois Première Partie: 1 à 37

Table des Matières de la Longue Marche à travers la théorie de Galois Première Partie: 1 à 37 Table des Matières de la Longue Marche à travers la théorie de Galois Première Partie: 1 à 37 Nous donnons ci-dessous la table des matières intégrale de l ouvrage, compilée par l auteur lui-même. La pagination

Plus en détail

TP-cours n 7 : Câble coaxial

TP-cours n 7 : Câble coaxial TP-cours n 7 : Câble coaial Matériel disponible : Câble coaial enroulé de 100m, GBF Centrad, adaptateurs BNC-banane, boite à décade de résistances. I Équation de propagation dans le câble coaial I.1 Introduction

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

Ezra Getzler. Department of Mathematics and Society of Fellows Harvard University, Cambridge MA 02138

Ezra Getzler. Department of Mathematics and Society of Fellows Harvard University, Cambridge MA 02138 INÉGALITÉS ASYMPTOTIQUES DE DEMAILLY POUR LES FIBRÉS VECTORIELS Ezra Getzler Department of Mathematics and Society of Fellows Harvard University, Cambridge MA 02138 Abstrait. On démontre une généralisation

Plus en détail

Table des matières. 1. Espaces propres et espaces caractéristiques

Table des matières. 1. Espaces propres et espaces caractéristiques RÉDUCTION DES ENDOMORPHISMES OLIVIER DEBARRE Table des matières 1. Espaces propres et espaces caractéristiques 1 2. Décomposition de Dunford 4 3. Structure des endomorphismes nilpotents et réduite de Jordan

Plus en détail

Formes quasi-modulaires. Formes modulaires presque holomorphes

Formes quasi-modulaires. Formes modulaires presque holomorphes Formes quasi-modulaires Formes modulaires presque holomorphes Nancy, 18 septembre 2003 Emmanuel Royer Formes modulaires sur SL(2,Z) (Euler, Jaob Bernoulli, Gauss, Abel, Hermite, Klein, Poincaré) f ( )

Plus en détail

COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 2013-2014 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, COMPLÉMENT DE COURS : FIBRÉS VECTORIELS

COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 2013-2014 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, COMPLÉMENT DE COURS : FIBRÉS VECTORIELS COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 203-204 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, DÉRIVÉE DE LIE COMPLÉMENT DE COURS : FIBRÉS VECTORIELS ALEXANDRU OANCEA Exercice. (crochet, flots,

Plus en détail

QUOTIENT D UNE VARIÉTÉ AFFINE PAR UN GROUPE LINÉAIREMENT RÉDUCTIF. par. David

QUOTIENT D UNE VARIÉTÉ AFFINE PAR UN GROUPE LINÉAIREMENT RÉDUCTIF. par. David QUOTIENT D UNE VARIÉTÉ AFFINE PAR UN GROUPE LINÉAIREMENT RÉDUCTIF par David Le but de l exposé est de montrer que le quotient catégorique d une variété affine par un groupe algébrique linéairement réductif

Plus en détail

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012.

Université Paris 6 Année universitaire 2011-2012 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 21 mai 2012. Université Paris 6 Année universitaire 011-01 Cours Groupes finis et leurs représentations Corrigé de l examen terminal du 1 mai 01 Exercice 1 Questions de cours Soit G un groupe fini et soit p un nombre

Plus en détail

Chapitre 8. Transformateur. 8.1 Introduction

Chapitre 8. Transformateur. 8.1 Introduction Chapitre 8 Transformateur 8.1 Introduction Le transformateur permet de transférer de l énergie (sous forme alternative) d une source à une charge, tout en modifiant la valeur de la tension. La tension

Plus en détail

DESCENTES DES DÉRANGEMENTS ET MOTS CIRCULAIRES(*)

DESCENTES DES DÉRANGEMENTS ET MOTS CIRCULAIRES(*) DESCENTES DES DÉRANGEMENTS ET MOTS CIRCULAIRES(*) Jacques DÉSARMÉNIEN (**) ET Michelle WACHS (***) RÉSUMÉ. Au moyen de deux bijections, dues à Macdonald et à Gessel, nous établissons que l ensemble des

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v)

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v) Rappels (1) On considère le problème modèle, supposé bien posé, { Chercher u V tel que a(u, v) = b(v) v V (1) Éléments finis en 2D Alexandre Ern ern@cermics.enpc.fr http://cermics.enpc.fr/cours/cs (V Hilbert,

Plus en détail

Autour de la conjecture ε de Serre

Autour de la conjecture ε de Serre Autour de la conjecture ε de Serre M. Tibouchi 29 novembre 2006 Résumé On se propose de présenter, à un niveau aussi élémentaire que possible, un certain nombre des idées intervenant dans la preuve par

Plus en détail

Unicité et minimalité des solutions d une équation de Ginzburg-Landau.

Unicité et minimalité des solutions d une équation de Ginzburg-Landau. Unicité et minimalité des solutions d une équation de Ginzburg-Landau. Gilles arbou.m.l.a Ecole Normale Supérieure de achan 61, avenue du Président Wilson 9435 achan edex Résumé. - On étudie les solutions

Plus en détail

SUR QUELQUES REPRÉSENTATIONS MODULAIRES ET p-adiques DE GL 2 (Q p ) I. par. Christophe Breuil

SUR QUELQUES REPRÉSENTATIONS MODULAIRES ET p-adiques DE GL 2 (Q p ) I. par. Christophe Breuil SUR QUELQUES REPRÉSENTATIONS MODULAIRES ET -ADIQUES DE GL 2 (Q ) I ar Christohe Breuil Résumé. Soit un nombre remier et F un cors local comlet de cors résiduel fini de caractéristique. En 993, Barthel

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Charles Cochet GÉNÉRALITÉS SUR LES FIBRÉS

Charles Cochet GÉNÉRALITÉS SUR LES FIBRÉS GÉNÉRALITÉS SUR LES FIBRÉS Charles Cochet C. Cochet Université Paris 7 Denis Diderot, UFR de mathématiques, UMR7586, 2, place Jussieu, 75251 Paris cedex 05, France. E-mail : cochet@math.jussieu.fr Url

Plus en détail

1 Contrôle des connaissances 2010/2011

1 Contrôle des connaissances 2010/2011 1 Contrôle des connaissances 2010/2011 Remarque préliminaire On s attachera dans la rédaction à être aussi précis que possible. Ainsi, lors de l écriture de chaque problème d optimisation et de chaque

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

ALGÈBRE BILINÉAIRE 1

ALGÈBRE BILINÉAIRE 1 3-8- 213 J.F.C. Eve p. 1 ALGÈBRE BILINÉAIRE 1 P mentionne des résultats particulièrement utiles et souvent oubliés dans la pratique de l algèbre bilinéaire... mentionne des erreurs à ne pas faire où des

Plus en détail

Enveloppe vectorielle ou. Transformer de l affine en du vectoriel

Enveloppe vectorielle ou. Transformer de l affine en du vectoriel Préparation à l Agrégation Année 2009 2010 ENS Cachan Vincent Beck Enveloppe vectorielle ou Transformer de l affine en du vectoriel 0 Mode d emploi. Cette note propose la construction de l enveloppe vectorielle

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) c 2 µ 2 m (2) σ 2

Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) c 2 µ 2 m (2) σ 2 Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) Soit h = c n 1/5. Donc, par conséquent d un TCL, pour n : Estimateur localement linéaire :

Plus en détail

ALGEBRE: GROUPES ET ANNEAUX 1

ALGEBRE: GROUPES ET ANNEAUX 1 Université Blaise Pascal U.F.R. Sciences et Technologies Département de Mathématiques et Informatique Licence de Mathématiques Troisième année, U.E. 35MATF2 ALGEBRE: GROUPES ET ANNEAUX 1 Polycopié du cours

Plus en détail

Un sujet pour l épreuve B (modélisation et informatique)

Un sujet pour l épreuve B (modélisation et informatique) Un sujet pour l épreuve B modélisation et informatique) Présentation Le texte proposé ci-après est conçu pour l épreuve B, portant plus particulièrement sur la modélisation et l informatique l épreuve

Plus en détail

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1 Questions de cours 3 Exercices 1. Énoncer et montrer le théorème de la base incomplète. 2. Soit E de dimension finie n et F un sousespace de E. Montrer que F est

Plus en détail

IV. Espaces L p. + tx 1. (1 t)x 0

IV. Espaces L p. + tx 1. (1 t)x 0 cours 13, le lundi 7 mars 2011 IV. spaces L p IV.1. Convexité Quand deux points x 0, x 1 R sont donnés, on peut parcourir le segment [x 0, x 1 ] qui les joint en posant pour tout t [0, 1] x t = (1 t)x

Plus en détail

1.1. Le moment cinétique en mécanique classique

1.1. Le moment cinétique en mécanique classique c M Dunseath-Terao - Master 1 de Physique UR1 2006 2007 1 Complément 1 Le moment cinétique 1.1. Le moment cinétique en mécanique classique L équation du mouvement d un corps en rotation en mécanique classique

Plus en détail

EXERCICE 1. Corrigé ECRICOME Eco 2012 par Pierre Veuillez

EXERCICE 1. Corrigé ECRICOME Eco 2012 par Pierre Veuillez Corrigé ECRICOME Eco par Pierre Veuillez EXERCICE (M 3 (R), +,.) désigne l espace vectoriel des matrices carrées d ordre 3 à coeffi cients réels. Deux matrices A et B de M 3 (R) étant données, on suppose

Plus en détail

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R TOPOLOGIE 1) DISTANCE, ESPACES MÉTRIQUES a : distances : d'après le cours de M. Nicolas Tosel professeur en MP* au Lycée du Parc, Lyon Année 2004 2005 une distance est une application d de E dans R + telle

Plus en détail

3D Compléments de cours. Guy GREISEN

3D Compléments de cours. Guy GREISEN 3D Compléments de cours Guy GREISEN 14 septembre 2009 3D 3 Table des matières 1 SECOND DEGRÉ 6 1.1 Introduction................................................ 6 1.2 Formule générale.............................................

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }.

I. SYMÉTRIES. F = {x E σ(x) =x }, G = {x E σ(x) = x }. Dans tout ce qui suit on désigne par k un corps commutatif de caractéristique différente de 2 (par exemple R ou C) etpare un k-espace vectoriel de dimension finie n>0. On appelle L(E) l anneau des endomorphismes

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

Algèbre Année 2007-2008 ENS Cachan Vincent Beck. Action de groupes

Algèbre Année 2007-2008 ENS Cachan Vincent Beck. Action de groupes Algèbre Année 2007-2008 ENS Cachan Vincent Beck Action de groupes L idée centrale de cette note est de mettre en évidence le fait fondamental suivant une action d un groupe G sur un ensemble X, «c est»

Plus en détail

1.1.1.1 La construction algébrique de C et correspondance géométrique

1.1.1.1 La construction algébrique de C et correspondance géométrique Chapitre 1 Nombres Complexes 1.1 Le Corps C des complexes 1.1.1 Ecriture algébrique et correspondance Géométrique 1.1.1.1 La construction algébrique de C et correspondance géométrique Il y a plusieurs

Plus en détail