Le modèle du gaz parfait

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Le modèle du gaz parfait"

Transcription

1 Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses Énergie interne d un GPM Équation d état du GPM Cas du GPP En résumé Capacité thermique 5.1 Définition Cas du gaz parfait Variations de U Cas du gaz parfait monoatomique Cas du gaz parfait polyatomique /7

2 La physique est une science dont le but principal est d expliquer, de comprendre le monde qui nous entoure. Pour y parvenir, nous faisons des expériences, et tentons d en expliquer les résultats théoriquement. Pour cela, le physicien utilise des modèles, c est-à-dire un ensemble d hypothèses simplifiant la réalité et permettant de bâtir une théorie confortant des résultats expérimentaux. Si un modèle, aussi simple soit-il, permet d expliquer l expérience, il est satisfaisant. Un modèle n existe donc que dans les limites de ce qu il permet d expliquer. fait des hypothèses simplificatrices qui peuvent paraître violentes, cependant, tant que l on reste dans "conditions raisonnables", il permet d appréhender nombre de phénomènes. 1 : énergie interne, équation d état 1.1 Hypothèses Les hypothèses du modèle du gaz parfait sont les suivantes : Les molécules sont ponctuelles. Il n y a aucune interaction entre les molécules. Ce modèle est usuellement subdivisé en deux "sous-modèles", celui des gaz parfaits monoatomiques (GPM : les gaz sont monoatomiques (gaz rares comme l hélium,... )), et polyatomiques (GPP : les gaz sont polyatomiques). 1. Énergie interne d un GPM L énergie interne (notée généralement U ) est l énergie totale du système d origine microscopique. C est donc la somme de toutes les énergies de chacune des molécules composant le système : énergie sous forme cinétique et sous forme d énergie potentielle a. Dans le cas du gaz parfait qui nous intéresse ici il n y a par hypothèse pas d interactions entre molécules et pas de mouvement propre des molécules car le gaz est monoatomique, donc pas d énergie potentielle d origine microscopique : la seule forme d énergie est l énergie cinétique. En admettant que l énergie du système est la somme des énergies de toutes les molécules on a : U = 1 mv Or les molécules sont très nombreuses, donc on va prendre la moyenne de cette expression : U = 1 mv où v =< v >. On peut sortir la vitesse quadratique moyenne de la somme et pour n moles on obtient : U = n 1 M v où M est la masse molaire du gaz. Or on a défini au chapitre précédent la température cinétique de telle sorte que RT = N amv. 3 On en déduit donc l expression de l énergie interne du gaz parfait monoatomique : a D origine microscopique uniquement : si le système a une énergie cinétique ou potentielle macroscopique (par exemple une bonbonne de gaz en chute libre soumise au champ de pesanteur) cette énergie ne rentre pas en compte dans l énergie interne. /7

3 U = 3 nrt pour n moles Conséquences : U m = 3 RT pour 1 mole L énergie interne du GPM ne dépend que de la température. On a donc défini une nouvelle grandeur macroscopique, et on a une relation entre cette grandeur et le paramètre d état T. On en déduit donc que l énergie interne est une fonction d état. En outre, U est une grandeur extensive (on a vu que U = nu m ) et U m est donc intensive b. Ordre de grandeur : pour 1 mole de GPM à 0 C, on obtient U m = 340J (notez que c est très grand, cela correspond à l énergie cinétique qu aurait une masse de 1 kg après une chute dans le vide de 340m!). U m est donc l énergie cinétique totale d une mole de gaz. On en déduit que l énergie cinétique moléculaire moyenne est < E c >= 3 R T. La grandeur R est la constante de Boltzman notée k B (k B = 1, J.K 1 ). L énergie cinétique moyenne d une molécule de GPM N a N a à la température T est donc < E c >= 3 k B T Pour résumer : U m = 1 M v = 3 RT Énergie interne d une mole de GPM < E c >= 1 mv = 3 k B T Énergie cinétique moyenne d une molécule de GPM Dans la suite du cours de thermodynamique, c est évidemment l expression de U faisant intervenir T que l on utilisera le plus. 1.3 Équation d état du GPM On l a déjà vu plusieurs fois donc on rappelle juste l équation d état du GPM : 1.4 Cas du GPP PV = nrt On garde l hypothèse majeure d absence d interactions entre les molécules, mais on ne suppose plus les molécules ponctuelles car le gaz est polyatomique. Cela implique qu outre son mouvement de translation dans l enceinte, une molécule va avoir un mouvement propre (rotation, vibration : voir figure 1). En outre, ce modèle suppose que les mouvements propres ne perturbent pas le mouvement de translation. b De manière générale, à partir d une grandeur extensive Z, on définit généralement des grandeurs intensives en en faisant le rapport par la quantité de matière (grandeur molaire Z m = Z n ), la masse (grandeur massique z = Z ), ou le m volume (grandeur volumique). 3/7

4 v v (a) Mouvement propre de vibration (b) Mouvement propre de rotation FIG. 1 : Exemple des mouvements propres possibles dans le cas d une molécule diatomique : mouvements de vibrations (cas (a) : on modélise la liaison entre les atomes par un ressort de raideur k) et mouvements de rotation (cas (b) : la molécule peut tourner autour de son centre de gravité suivant 3 axes de l espace). Dans tout les cas, les mouvements propres ne modifient pas le mouvement de translation. On peut en déduire les résultats suivants : Le mouvement de translation n étant pas perturbé, cela veut dire que la valeur de v n est pas modifiée par rapport au GPM. Les calculs effectué au premier chapitre restent donc valables : cela signifie que les gaz parfaits polyatomiques vérifient l équation d état du gaz parfait PV = nrt. En revanche, les mouvements propres ajoutent des termes à l énergie microscopique de chaque molécule (termes d énergie cinétique propre, d énergie potentielle propre ( 1 kx par exemple)). Ces termes d énergie propre sont positifs donc on peut écrire : U GPP = 3 nrt +U pr opr e > 3 nrt = U GP M Ne connaissant pas l expression des termes d énergie propres, le seul résultat que l on peut donner est : U GPP > U GP M On admet en outre que U pr opr e ne dépend que de T. 1.5 En résumé L énergie interne d un gaz parfait, quelquesoit son atomicité, ne dépend que de la température T : U = U (T ). On dit que le gaz parfait obéit à la première loi de Joule. Un gaz parfait vérifie l équation d état PV = nrt quelquesoit son atomicité. L énergie interne de n moles de GPM est U = 3 nrt. U GPP > U GP M 4/7

5 Capacité thermique.1 Définition Pour décrire un gaz (dans un système fermé) on peut utiliser les couples de variables (P,V ), (P,T ) ou (T,V ). Pour l étude de l énergie interne on choisit généralement le couple c (T,V ). Dans le cas d un fluide quelconque l énergie interne dépend a priori des variables T et V. Il est difficile de mesurer l énergie interne, par contre il est plus aiser de mesurer ses variations : comment varie U quand je fais varier V? comment varie U quand je fais varier T? Cela revient à étudier la dérivée de U par rapport à V et la dérivée de U par rapport à T d. On les note : ) ) U U et V T T Ce sont les dérivées partielles de U par rapport à T et V. La première dérivée partielle signifie donc : «je dérive la fonction U (T,V ) par rapport à la variable V en considérant T comme une constante e» ; et la seconde : «je dérive la fonction U (T,V ) par rapport à la variable T en considérant V comme une constante». Notons qu à priori chacune de ces dérivées partielles est elle-même une fonction des deux variable T et V (voir note précédente). V On appelle capacité thermique à volume constant la grandeur : C V (T,V ) = U ) T V en J.K 1 Autres définitions : U étant une grandeur extensive, C V l est également. Par conséquent il sera particulièrement utilise de définir des grandeurs intensives associées. On définit les grandeurs intensives suivantes : La capacité thermique molaire à volume constant : C V m = U ) m = C V T V n en J.K 1.mol 1 (rappelons qu on est en système fermé et que donc n est une constante). La capacité thermique massique à volume constant masse totale de gaz. : c V = C V m en J.K 1.kg 1, où m est la On a évidemment m = nm où M est la masse molaire du gaz ce qui entraîne les relations suivantes : C V = nc V m = mc V = nmc V c C est ce qu on appelle les variables naturelles de l énergie interne. d Ici, U (T,V ) est une fonction de variables. e Soit par exemple la fonction f (x, y) = x y 3 3y. On a les dérivées partielles suivantes : f ) x y = y 3 et f ) = 3x y 3. y x 5/7

6 . Cas du gaz parfait On vient de voir que le gaz parfait obéissait à la première loi de Joule. Cela signifie que U n est une fonction que de T dans le cas du gaz parfait. On a donc dans ce cas :..1 Variations de U C V (T ) = du dt Une autre de manière d écrire l expression précédente est de le faire sous la forme d une différentielle : du = C V (T )dt = nc V m dt qui signifie : «quand la température passe de T à T + dt (T varie donc de dt : transformation infinitésimale ou élémentaire), alors l énergie interne varie de C V dt». Quand la température du système passe d une température T 1 à la température T (transformation finie), il suffit de sommer toutes les variations élémentaires : T T U = U U 1 = du = T 1 C V (T )dt T 1 On voit donc ici que même si on ne connaît pas l expression de l énergie interne en fonction de T (ce qui sera le cas pour les GPP), la connaissance de la capacité thermique permet de calculer des variations d énergie interne. C est important car il se trouve que les capacités thermiques sont des grandeurs assez facilement mesurables expérimentalement... Cas du gaz parfait monoatomique On a vu que dans ce cas U = n 3 RT. On a donc pour le GPM : C V = 3 nr C V m = 3 R C est cette dernière expression que l on utilisera le plus souvent, préférant travailler sur des grandeurs intensives. Remarques : La capacité thermique du gaz parfait monoatomique est une constante. Numériquement on a C V m 1,5J.K 1.mol 1 Du paragraphe précédent on déduit donc : U m = 3 RdT, soit quand T passe de T 1 à T : U m = C V m (T T 1 ) = 3 R(T T 1 ) Pour n moles, U = C V (T T 1 ) = 3 nr(t T 1 ). 6/7

7 ..3 Cas du gaz parfait polyatomique Dans ce cas, on a vu que U ne dépend toujours que de T, mais on ne sait pas comment. Le calcul théorique des capacités thermiques devient alors très compliqué. La seule chose que l on sait c est que U m = 3 RT +U pr opr e où U pr opr e dépend de T uniquement. Donc a priori, contrairement au cas du GPM : la capacité thermique à volume constant dépend de la température. Expérimentalement, on constate cependant pour l hydrogène (gaz diatomique) : C V m 3 R pour T < 60K C V m 5 R pour 60K < T < 7000K C V m 7 R pour T > 7000K C est logique que C V augmente avec la température : plus T croît, plus les molécules s agitent et donc plus la molécule a de mouvements propres f On constate que pour une large plage de températures C V m 5 R. C est cette expression que l on utilisera le plus souvent dans le cas des gaz parfaits diatomiques. f Ces résultats peuvent être interprétés rigoureusement grâce au théorème d équipartition de l énergie (hors programme) qui dit pour résumer qu un degré de liberté de mouvement contribue à l énergie interne à hauteur de 1 RT (pour le GPM par exemple on a 3 degrés de liberté de translation et on retrouve donc le U = 3 RT ). Pour le GPP, quand T augmente, on a successivement des degrés de liberté de mouvement propres qui se débloquent. 7/7

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations 4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce

Plus en détail

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule Thermodynamique Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression Ludwig Boltzmann (1844-1906), Température et Energie Dégrés de liberté d'une molécule Equation d'état du gaz parfait Théorie

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

Thermodynamique de l atmosphère

Thermodynamique de l atmosphère Thermodynamique de l atmosphère 1 Introduction Notion de parcelle d air L atmosphère est composée d un ensemble de molécules. Pour la description de la plupart des phénomènes étudiés, le suivi des comportements

Plus en détail

Introduction à la description des systèmes thermodynamiques

Introduction à la description des systèmes thermodynamiques Introduction à la description des systèmes thermodynamiques 1. Définitions et généralités : La Thermodynamique est l étude des échanges d énergie ou de matière. La thermodynamique ne délimite a priori

Plus en détail

Cours CH4. Description d un système physico-chimique Transformation chimique

Cours CH4. Description d un système physico-chimique Transformation chimique Cours CH4 Description d un système physico-chimique Transformation chimique David Malka MPSI 2014-2015 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Description d un système

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

Chapitre 3 Bilans d énergie : le premier principe de lathermodynamique

Chapitre 3 Bilans d énergie : le premier principe de lathermodynamique Chapitre 3 Bilans d énergie : le premier principe de lathermodynamique 29 3.1. Les di érentes formes d énergie; la notion d énergie interne 3.1.1. Les énergies 3.1.1.1. Exemple 1 ressort air masse enceinte

Plus en détail

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques S3 PMCP 2015/2016 D de thermodynamique n 5 Conséquences des deux principes Machines thermiques Potentiels thermodynamiques 1 Cycle avec une seule source de chaleur. Soit un système pouvant, pendant un

Plus en détail

Devoir Surveillé n 2

Devoir Surveillé n 2 Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

Un modèle simple de formation d étoiles

Un modèle simple de formation d étoiles Un modèle simple de formation d étoiles [Exercice classique] Un modèle simple d étoile consiste à supposer que celle-ci est constituée d une masse M d atomes d hydrogène, adoptant une configuration sphérique

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE

Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE Dans le chapitre précèdent, nous avons étudié l expression du travail et de la puissance d une force constante. Ce travail correspond à un transfert

Plus en détail

( ) ( ) U. c,e. Remarque : On s intéressera quasiment systématiquement à un système au repos dans le référentiel d étude. tot

( ) ( ) U. c,e. Remarque : On s intéressera quasiment systématiquement à un système au repos dans le référentiel d étude. tot herodnaique Le paragraphe I. est consacré à l introduction (d une partie) du vocabulaire de base de la therodnaique. Dans le paragraphe II., l étude d un sstèe particulier, le gaz parfait, peret une preière

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits.

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits. 1 er cycle universitaire. BS. C. Haouy, professeur de hysique Appliquée Cours de hermodynamique n 4 : chaleur, travail et énergie interne des gaz parfaits. Mise à jour du 21-02-07. Colonne de gauche =

Plus en détail

LIQUIDES, GAZ, SOLUTIONS

LIQUIDES, GAZ, SOLUTIONS LIQUIDES, GAZ, SOLUTIONS UE3 I) Niveaux d organisation de la matière A. Caractéristiques des 3 états de la matière 1 er niveau = atome. 2 ème niveau = molécule (H2O ; Buthane ; ADN). 3 ème niveau = état

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

Échange d énergie 1 er principe de la thermodynamique

Échange d énergie 1 er principe de la thermodynamique Échange d énergie 1 er principe de la thermodynamique Table des matières 1) MISE EN PLACE DU PREMIER PRINCIPE 2 1.1) ENERGIE INTERNE D UN SYSTEME 2 1.2) CADRE DU PROGRAMME 2 1.3) ENONCE DU PREMIER PRINCIPE

Plus en détail

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr.

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr. COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015 Pr. Aziz OUADOUD Table des matières 1 Introduction 3 1.1 Définitions générales.......................

Plus en détail

Partie II TEMPERATURES DANS LE REACTEUR

Partie II TEMPERATURES DANS LE REACTEUR Spé y 2001-2002 Devoir n 2 THERMODYNAMIQUE Ce problème étudie quelques aspects des phénomènes intervenants dans une centrale nucléaire de type Réacteur à Eau Pressurisée (ou PWR en anglais) qui est le

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE mini INTERROS de Prépas & Deug MPSI-PCSI-PTSI SUP-SPÉ Thermodynamique MP-MP*-PC-PC*-PT-PT* Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE pages 1. Introduction à la thermodynamique.......................

Plus en détail

PROBLÈME 1 : Étude de l'eau en physique

PROBLÈME 1 : Étude de l'eau en physique Banque «Agro» A - 0304 PHYSIQUE Durée : 3 h 30 L usage d une calculatrice est autorisé pour cette épreuve L usage d abaques et de tables est interdit pour cette épreuve Les trois problèmes sont indépendants

Plus en détail

Daniel Bernoulli 1700 1782

Daniel Bernoulli 1700 1782 Capacités C1 mesurer la pression à l aide d un manomètre ; C2 calculer une pression et la convertir en bar ou en pascal ; C3 vérifier expérimentalement la loi de Boyle-Mariotte (pv = n RT ); C4 calculer

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES

CONCOURS COMMUNS POLYTECHNIQUES CONCOURS COMMUNS POLYTECHNIQUES la liaison étant supposée parfaite. Le rouleau n est entraîné en rotation par un moteur extérieur non figuré, sa vitesse de rotation est ω > constante au cours du temps.

Plus en détail

LES 2 PRINCIPES DE LA THERMODYNAMIQUE

LES 2 PRINCIPES DE LA THERMODYNAMIQUE PSI Brizeux Ch. T1 : Les deux principes de la thermodynamique 1 C H A P I T R E 1 LES 2 PRINCIPES DE LA THERMODYNAMIQUE APPLICATIONS 1. LES FONDEMENTS DE LA THERMODYNAMIQUE 1.1. La variable température

Plus en détail

G.P. DS 07 6 février 2008

G.P. DS 07 6 février 2008 DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 4 heures Sujet Modulateur optique... 2 I.Interférence à deux ondes...2 II.Étude d une séparatrice...2 III.Interférométre de Mach-Zehnder...

Plus en détail

Thermodynamique : les fondamentaux

Thermodynamique : les fondamentaux Thermodynamique : les fondamentaux Extrait du programme Thermodynamique : fondamentaux Notions et contenus Capacités exigibles Énergie interne U d un système Vocabulaire et définitions : système, état

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

PHYSIQUE II A. Durée : 4 heures SUJET DE THERMODYNAMIQUE

PHYSIQUE II A. Durée : 4 heures SUJET DE THERMODYNAMIQUE PHYSIQUE II A Durée : 4 heures SUJET DE THERMODYNAMIQUE (Durée conseillée : 2 heures) PRESENTATION DU SUJET Il était proposé au candidat d effectuer l étude d un système énergétique réel, en l occurrence

Plus en détail

UE 303 - Thermodynamique - 2010/2011

UE 303 - Thermodynamique - 2010/2011 UE 303 - Thermodynamique - 2010/2011 Contrôle Continu du 03/11/2010. Durée: 2h00mn Exercice 1 : On suppose que l atmosphère est un gaz réel en équilibre dans le champ de pesanteur. L équation d état de

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 004 EPREUVE SPECIFIQUE FILIERE MP PYSIQUE Durée : 4 heures Les calculatrices sont autorisées. N : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de

Plus en détail

Complements de mathématiques

Complements de mathématiques Complements de mathématiques Maria Barbi Ces notes représentent un complement aux outils mathématiques (OM) du module de biophysique (1 ère année deug SVT). Elles ne fournissent pas un cours complet de

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique

Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique (1) (2) (3) (4) (5) (6) Classe de TS Partie D-chap 16 Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique Connaissances et savoir-faire exigibles : Connaître les expressions

Plus en détail

MÉCANIQUE DES FLUIDES

MÉCANIQUE DES FLUIDES spé y 2003-2004 DS n 3 rapport MÉCANIQUE DES FLUIDES Rapport du jury CENTRALE 2002 Partie I. Caractérisation d un écoulement I A Ordres de grandeurs I A 1 - Parfois confusion

Plus en détail

LA THERMODYNAMIQUE. La thermodynamique est l étude de l énergie thermique, son transfert, sa transformation, sa dégradation et sa dispersion.

LA THERMODYNAMIQUE. La thermodynamique est l étude de l énergie thermique, son transfert, sa transformation, sa dégradation et sa dispersion. LA THERMODYNAMIQUE La thermodynamique est l étude de l énergie thermique, son transfert, sa transformation, sa dégradation et sa dispersion. La thermodynamique étudie le comportement thermique de la matière.

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

TD Thermodynamique. Diffusion de particules

TD Thermodynamique. Diffusion de particules TPC2 TD Thermodynamique Diffusion de particules Exercice n o 1 : Diffusion du CO 2 On observe la diffusion du CO 2 dans l air, en régime stationnaire, à l intérieur d un tube de longueur L = 0, 25 m et

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - I. Limites de la mécanique de Newton : Au niveau macroscopique : un satellite peut graviter à une distance quelconque d un

Plus en détail

Corps remorqué dans l eau

Corps remorqué dans l eau ACCUEIL Corps remorqué dans l eau Frédéric Elie, août 2007 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures,

Plus en détail

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques Thermodynamique du grec Thermos: chaud du grec Dunamis: puissance Pr. Alfonso San Miguel Laboratoire de Physique de la Matière Condensée et Nanostructures Bât L. Brillouin Définition La thermodynamique

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

Principe de fonctionnement d un véhicule à roues

Principe de fonctionnement d un véhicule à roues Mécanique «Chapitre» 4 Principe de fonctionnement d un véhicule à roues Parties du programme de PCSI à revoir Notions et contenus Lois de Coulomb du frottement de glissement dans le seul cas d un solide

Plus en détail

LA OTIO DU TRAVAIL E SCIE CES PHYSIQUES

LA OTIO DU TRAVAIL E SCIE CES PHYSIQUES L OTIO DU TRVIL E SCIE CES PHYSIQUES Par nne artini 1. Travail et énergie Dans la vie courante, il y a des termes qui sont souvent utilisés et dont la signification fait penser à celle donnée aux concepts

Plus en détail

CHAPITRE 10 LES GAZ PARFAITS

CHAPITRE 10 LES GAZ PARFAITS 1 CHAPIRE 10 LES GAZ PARFAIS I PROPRIEES HERMODYNAMIQUES DES GAZ PARFAIS 1 Définition Dans un gaz parfait il n'y a aucune interaction entre les molécules. 2 Equation d'état L'équation d'état permet d'écrire

Plus en détail

CHAPITRE IV: ONDES DE CHOCS DROITES

CHAPITRE IV: ONDES DE CHOCS DROITES CHAPITRE IV: ONDES DE CHOCS DROITES Nous avons souligné au chapitre II, ainsi qu au chapitre III, que pour les écoulements à grande vitesse le modèle continu ne permettait pas de décrire la totalité des

Plus en détail

Thermochimie - TD 2 Corrigé

Thermochimie - TD 2 Corrigé Thermochimie - TD Corrigé Licence 1 «Groupes Concours & Polytech» - 007 / 008 Exercice 1 : combustion La combustion dans une bombe calorimétrique (volume constant) d une pastille de 3,76 g d acide benzoïque

Plus en détail

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies 1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies I. Les forces travaillent. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

Gaz et Fluides. Équilibre thermodynamique : 3 conditions sont nécessaires pour qu un système soit à l équilibre thermodynamique

Gaz et Fluides. Équilibre thermodynamique : 3 conditions sont nécessaires pour qu un système soit à l équilibre thermodynamique Gaz et Fluides 1 Généralités sur les systèmes thermodynamiques 1.1 Desription d un système Système thermodynamique : est un système omportant un grand nombre de partiules. Il est fermé s il n éhange pas

Plus en détail

Energie Mécanique. On dit qu'un système possède de l'énergie lorsqu'il peut fournir du travail. Ressort tendu de flipper pouvant lancer une bille.

Energie Mécanique. On dit qu'un système possède de l'énergie lorsqu'il peut fournir du travail. Ressort tendu de flipper pouvant lancer une bille. Energie Mécanique 1 - Energie Exemples : On dit qu'un système possède de l'énergie lorsqu'il peut fournir du travail. Eau d'un barrage pouvant faire tourner une turbine. Ressort tendu de flipper pouvant

Plus en détail

CH2 : Les mécanismes de transmission du mouvement

CH2 : Les mécanismes de transmission du mouvement BTS électrotechnique 2 ème année - Sciences physiques appliquées CH2 : Les mécanismes de transmission du mouvement Motorisation des systèmes. Problématique : En tant que technicien supérieur il vous revient

Plus en détail

De la cellule au champ PV

De la cellule au champ PV De la cellule au champ PV 1- De la cellule au module Tous les modules PV, quelque soit leur technologie fonctionnent grâce au même principe : l effet photoélectrique. Je ne vais pas entrer dans les détails

Plus en détail

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES NOM :. PRENOM : NUMERO DE CANDIDAT :... EPREUVE DE PHYSIQUE DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES Lire attentivement les consignes afin de vous placer dans les meilleures conditions de réussite

Plus en détail

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W MOTEUR ASYNCHRONE 1) Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor

Plus en détail

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE 1. DU MICROSCOPIQUE AU MACROSCOPIQUE BILANS THERMIQUES La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique: L approche microscopique décrit le comportement individuel

Plus en détail

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante.

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante. EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante - 2- L énergie potentielle de pesanteur du wagon dépend : du

Plus en détail

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10 Les calculatrices sont autorisées Les deux problèmes sont indépendants. On fera l application numérique chaque fois que cela est possible, en veillant à préciser l unité et à ne donner que les chiffres

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Cours de thermodynamique

Cours de thermodynamique Cours de thermodynamique Semestre 1 S. Poncet IUT de Marseille, département Génie Thermique et Énergie Année 2012-13 Table des matières 1 Introduction 6 1.1 Historique......................................

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

T1 THERMODYNAMIQUE : INTRODUCTION ET THÉORIE CINÉTIQUE DU GAZ PARFAIT

T1 THERMODYNAMIQUE : INTRODUCTION ET THÉORIE CINÉTIQUE DU GAZ PARFAIT T1 THERMODYNAMIQUE : INTRODUCTION ET THÉORIE CINÉTIQUE DU GAZ PARFAIT «Sauterelles, étincelles jaillies du sol en feu ; du sol sec qui par endroits se craquelle déjà. Herbes couleur de paille, légères,

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 2 heures Sujet Lampe à incandescence et bilans thermiques...2 I.Lampe à incandescence en régime permanent...2 A.Détermination de la température

Plus en détail

Chapitre 5.2 La pression d un gaz

Chapitre 5.2 La pression d un gaz Chapitre 5.2 La pression d un La pression d un Lorsqu on emprisonne un dans un ballon, le applique une force sur la du ballon, car celle-ci se déforme à mesure que le entre dans le ballon. Ainsi, un comprimé

Plus en détail

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides 1 Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides I Premier principe de la thermodynamique pour un système ouvert Certains systèmes échangent avec l extérieur, outre

Plus en détail

Vecteurs.nb 1. Collège du Sud 1-ère année. Mathématiques. Vecteurs. Edition 2003/2004 - DELM

Vecteurs.nb 1. Collège du Sud 1-ère année. Mathématiques. Vecteurs. Edition 2003/2004 - DELM Vecteurs.nb 1 Collège du Sud 1-ère année Mathématiques Vecteurs Edition 00/004 - DELM Supports de cours de mathématiques de degré secondaire II, lien hypertexte vers la page mère http://www.deleze.name/marcel/sec/index.html

Plus en détail

Calcul d erreur (ou Propagation des incertitudes)

Calcul d erreur (ou Propagation des incertitudes) Travaux Pratiques de Physique vers. septembre 014 Calcul d erreur (ou Propagation des incertitudes) 1) Introduction Le mot "erreur" se réfère à quelque chose de juste ou de vrai. On parle d erreur sur

Plus en détail

Questionnaire à choix multiple : Théorie générale des convertisseurs électromagnétiques

Questionnaire à choix multiple : Théorie générale des convertisseurs électromagnétiques Chapitre 2 : Théorie générale des convertisseurs électromagnétiques Questionnaire à choix multiple : Théorie générale des convertisseurs électromagnétiques Corrigé 1. Compléter la phrase : Le couple électromagnétique

Plus en détail

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures MASTER de Génie Civil, Lyon Année scolaire 6-7 Epreuve du 6 mars 7 DYNAMIQUE DES SOLS ET DES STRUCTURES GENIE PARASISMIQUE Sujet No, durée : heures Les copies doivent être rédigées en français et écrites

Plus en détail

Thermodynamique des gaz parfaits

Thermodynamique des gaz parfaits Chapitre 24 Sciences Physiques - BTS Thermodynamique des gaz parfaits 1 Le modèle du gaz parfait 1.1 Définition On appelle gaz parfait un ensemble de molécules sans interaction entre elles en dehors des

Plus en détail

Le rôle d un thermomètre est d assurer la liaison entre la grandeur thermométrique et la matière dont on veut repérer la température.

Le rôle d un thermomètre est d assurer la liaison entre la grandeur thermométrique et la matière dont on veut repérer la température. COURS DE THERMODYNAMIQUE de Mme F. Lemmini, Professeur STU-SVI CHAPITRE I : TEMPERATURE ET CHALEUR I.1 Température I.1.1 Notion de température La température est liée à la sensation physiologique du chaud

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Chapitre n 3 : LE GAZ PARFAIT

Chapitre n 3 : LE GAZ PARFAIT Chimie - 6 ème année - Ecole Européenne Chapitre n 3 : LE GAZ PARFAIT I) Modèle du gaz parfait : 1) L'état gazeux : Dans l'état gazeux, les atomes sont généralement associés en molécules déformables, très

Plus en détail

Conductivité conductimétrie

Conductivité conductimétrie Conductivité conductimétrie I. Généralités sur les milieux conducteurs Le courant électrique est dû à un mouvement d'ensemble des porteurs de charges sous l'action d'un champ électrique. Ils sont de trois

Plus en détail

Energie Travail Puissance Cours

Energie Travail Puissance Cours Energie Travail Puissance Cours. Introduction Les problèmes liés à l énergie sont d une grande importance : l énergie est en effet à l origine de tous les mouvements du monde de la technologie. Il existe

Plus en détail

A l échelle macroscopique, une phase est une quantité de matière homogène, on distingue la phase gazeuse, liquide et solide.

A l échelle macroscopique, une phase est une quantité de matière homogène, on distingue la phase gazeuse, liquide et solide. : Constitution de la matière: Différentes phases de la matière: A l échelle macroscopique, une phase est une quantité de matière homogène, on distingue la phase gazeuse, liquide et solide. o Phase gazeuse:

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Récupération d énergie

Récupération d énergie Récupération d énergie Le sujet propose d étudier deux dispositifs de récupération d énergie soit thermique (problème 1) soit mécanique (problème 2) afin de produire une énergie électrique. Chaque problème

Plus en détail

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION DÉFINITIONS L exergie d un système dans des conditions (T, S, U ) données correspond au travail utile maximal que ce système pourrait fournir en

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures ***

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures *** SESSION 003 PCP1006 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures L'utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants Une feuille de papier millimétré devra

Plus en détail

TD 4 : Systèmes, paramètres d'état et transformations

TD 4 : Systèmes, paramètres d'état et transformations TD 4 : Systèmes, paramètres d'état et transformations Applications de cours Thermodynamique Application 1 : échelles de température Le physicien allemand D.G. Fahrenheit établit en 1724 son échelle de

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

THERMODYNAMIQUE SUP. Sommaire. G.P. Thermodynamique Sup 2013

THERMODYNAMIQUE SUP. Sommaire. G.P. Thermodynamique Sup 2013 THERMODYNAMIQUE SUP Sommaire I.Fonctions d'état...3 A.Calcul direct du travail de compression W pour un système gazeux...3 B.Calcul de l'énergie thermique échangée en partant de W...3 C.Utilisation des

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP CHIMIE. Durée : 2 heures. Les calculatrices sont autorisées * * *

EPREUVE SPECIFIQUE FILIERE MP CHIMIE. Durée : 2 heures. Les calculatrices sont autorisées * * * SESSION 2006 EPREUVE SPECIFIQUE FILIERE MP CHIMIE Durée : 2 heures Les calculatrices sont autorisées * * * NB : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision

Plus en détail

Visiter notre Forum : http://prepa-book.forummaroc.net/ Visiter notre page : https://www.facebook.com/bibliotheque.electronique.des.classes.

Visiter notre Forum : http://prepa-book.forummaroc.net/ Visiter notre page : https://www.facebook.com/bibliotheque.electronique.des.classes. Visiter notre Forum : http://prepa-book.forummaroc.net/ Visiter notre page : https://www.facebook.com/bibliotheque.electronique.des.classes.prepa https://www.facebook.com/groups/bibliotheque.electronique.des.classes.prepa/

Plus en détail

M5 Oscillateur harmonique et régime forcé

M5 Oscillateur harmonique et régime forcé M5 Oscillateur harmonique et régime forcé Rappels des épisodes précédents... Au cours de la première période, nous avons rencontré le modèle de l Oscillateur Harmonique Amorti Cf Cours M4). Nous allons

Plus en détail

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur:

La méthode des deux wattmètres nous donne les puissance active et réactive absorbées par le moteur: EXERCICE N 1 Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor sont en

Plus en détail

Physique. chassis aimant. Figure 1

Physique. chassis aimant. Figure 1 Physique TSI 4 heures Calculatrices autorisées 2013 Les résultats numériques seront donnés avec un nombre de chiffres significatifs compatible avec celui utilisé pour les données. On s intéresse ici à

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Epreuve de Physique I-B Durée 4 h

Epreuve de Physique I-B Durée 4 h * Banque filière PT * BANQUE PT - EPREUVE I-B. Epreuve de Physique I-B Durée 4 h Etude d'une micropompe électrostatique Indications générales : On donnera tous les résultats avec leur unité. Les candidats

Plus en détail

Régression linéaire et corrélation

Régression linéaire et corrélation CHAPITRE 10 Régression linéaire et corrélation 1. Introduction Dans ce chapitre, nous regarderons comment vérifier si une variable à un influence sur une autre variable afin de prédire une des variables

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS Remarques préliminaires : Ce court document n a nullement la prétention de présenter la question de la recherche d extrema liés avec toute la rigueur qui lui serait

Plus en détail