1 Projection tache Airy sur mode propre capillaire

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1 Projection tache Airy sur mode propre capillaire"

Transcription

1 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire de ryon et d xe z s écrit ~E (,z,t)= X ³ A m J u m cos [ωt k mz z ψ m ] ~u x mº1 q k mz = k u m, k = ω/c =π/λ, est l distnce à l xe, les u m sont les m ième zéros de l fonction de Bessel J m u m 1,4486 5, , , , , , , ,49348 Les A m et ψ m sont donnés pr rcordement du chmp en z =. On suppose que À λ, doncsim n est ps trop grnd k mz k. Prenons un chmp incident qui en z =àlforme ~E inc (,z =,t)=e i ()cos[ωt φ ] ~u x lors, pour, ondoitvoir E i () = X ³ A m J u m mº1 (1) On montre, en utilisnt les propriétés des fonctions de Bessel, que cette éqution toujours une solution si E i () est nlytique et borné entre et. En fit l ensemble des J um forme une bse, vec l propriété Z ³ ³ J u m J u n d =,sim 6= n () En multiplint les deux membres de l éqution (1) pr J un et en intégrnt de à on obtient ½Z ³ A n = E i () J u n ¾ d / ½Z ³ ³ J u n J u n ¾ d (3) 1

2 Le chmp mgnétique, en z =correspondnt u chmp électrique ~E inc (,z =,t) peut s écrire pour (toujours pproximtion petits ngles). ~B = X m k ³ mz A m ω J u m cos [ωt φ ] ~u y Le vecteur de Poyinting est lors ~Π = ~E ~ B = µ 1 X ³ A m J u m ωµ m ( X ³ A n k nz J u n n cos [ωt φ ] cos [ωt φ ] ) ~u z Le flux d énergie F (t) instntné dns le tube est égl u flux du vecteur de Poyinting à trvers une section du tube Appelons I mn = = F (t) = 1 π Z 1 Z Z πd~π ~u z ³ ³ πdj u n J u m (4) dj (u n ) J (u m ) (5) I mn =si m 6= n, eti mm = J1 (u m) F(t) = π X I mm k mz [A m cos [ωt φ ωµ ]] et s vleur moyenne u cours du temps est m F = π X I mm k mz A m (6) ωµ m F = X m F m F m = π ωµ I mm k mz A m (7) L intensité est donc donnée pr l somme des intensités de chque mode

3 1.1 Projectiondumodegussienfondmentl L entrée du tube est plcé u niveu du col du fisceu (voir biln_prop.pdf). Le pln z =, est un pln d onde. Pour le cs d un fisceu gussien dns son mode fondmentl, l mplitude du chmp peut s écrire s 4µ E = cp πw exp /w (8) dns l pproximtion prxile B = E/c, et l vleur moyenne du vecteur de Poyinting est 1 Π inc = EB µ = P πw exp /w l puissnce incidente moyenne est le flux de Π inc utrversduplnd onde P inc = P Z πd exp /w (9) = P πw Projetons Π inc sur les modes propres du tube à l ordre zéro s 4µ cp πw exp /w X ³ = A n J u n n (1) Multiplions les deux membres de cette éqution pr J um / et intégrons sur. Ceci donne A m = 1 I mm l intégrle peut se noter s Z 4µ cp d πw exp ³ w J I m,exp (α) = Z 1 u m tdt exp α t J (u n t) (11) vec α = /w. Le résultt que nous vons trouvé, dns l section précédente F m = π ωµ I mm k mz A m donne, en prennt l pproximtion k mz = k = ω/c : F m P =α [I m,exp (α)] I mm = F m P inc (1) F m P inc représente l proportion de l énergie incidente qui se couple sur le mode m. Elle ne dépend que de m et de α = /w. S vrition vec α est reportée sur 3

4 1..8 Projection sur les modes m1 m m3 m4 F m / I / w Figure 1: l figure 1 pour les qutres premiers modes. Le résultt ssez extrordinire, est que le mximum pour le premier mode à α = α M 1.5 (en fit 1/.64) correspond à un minimum proche de zéro pour les utres modes. Ceci donne un excellent couplge vec le mode 1 de l ordre de 98%. Si l on désire un couplge supérieur à 8%, w doit être compris entre,48 et, l mrge de mneuvre est donc ssez lrge. On peut remrquer que pour α < α M, l somme des F mi est inférieure à un (elle tend vers zéro qund α ), c est simplement du u fit que l tche focle devient plus grnde que l section du tube: qund α diminue, une prtie de plus en plus grnde de l énergie ne rentre ps dns le tube. Pr contre, pour α > α M l somme des F mi est très proche de un. Toute l énergie rentre dns le tube, et les J um formnt une bse complête, toute l énergie peut se coupler ux modes de propgtion. Notons cependnt que pour des grndes vleurs de α beucoup de modes contribuent, et cel conduit à une perte rpide de l énergie dns le tube. L expliction en est que l divergence du fisceu ugmente qund w diminue. A l rencontre du bord du tube, le fisceu fit donc un grnd ngle vec l surfce et le coefficient de réflexion devient fible. 1. Projection de l tche d Airy 4

5 Si le fisceu est diphrgmé vnt l lentille de foclistion pr un trou circulire de ryon w c 1 très inférieur à l tille du fisceu, lors l figure de diffrction dns le pln focl de l lentille est l tche d Airy. Le chmp électrique (polristion rectiligne) dns le pln z = lors une mplitude donnée pr r cµ P E A = π J 1 (v 1 /w c ) (13) où, J 1 est l fonction de Bessel, v 1 est le premier zéro de J 1, v 1 = , w c est donc l distnce à l xe correspondnt u centre du premier nneu sombre. Onlreltion f étnt l focle de l lentille, soit v 1 w c = πwc 1 λf (14) w c = λf πw c 1 (15) à comprer vec le cs gussien w = λf (16) πw 1 En suivnt l même procédure que pour le cs gussien on trouve Et l puissnce incidente est Π inc = P π J1 (v 1 /w c ) (17) P inc = Z Z π Π inc d (18) = P J1 (x) dx x (19) = P. () Posons r cµ P π J 1 (v 1 /w c ) = X n ³ A n J u n (1) Multiplions les deux membres de cette éqution pr J um / et intégrons sur. Ceci donne A m = 1 r cµ P I mm π Z d J 1 (v 1 /w c) ³ J u m 5

6 F m / P inc Projection de l tche d'airy sur les modes du cpillire m1 m m3 m4 somme α Figure : Soit l intégrle I m,exp (α) = Z 1 dtj 1 (v 1 αt) J (u m t) () vec α = /w c. Le résultt que nous vons trouvé, dns l section précédente F m = π ωµ I mm k mz A m donne, en prennt l pproximtion k mz = k = ω/c : F m F m P = 4[I m,exp (α)] I mm = F m P inc (3) P inc représente l proportion de l énergie incidente qui se couple sur le mode m. Elle ne dépend que de m et de α = /w c. S vrition vec α est reportée sur l figure pour les qutres premiers modes. Ici le mximum pour le premier mode est à α = α M = 1 ( correspondnt à un minimum proche de zéro pour les utres modes), soit = w c. Ceci donne un couplge vec le mode 1 de l ordre de 83%. Le couplge est moins bon que dns le cs gussien, l énergie perdue (17%) v à l extérieur du tube, et non sur les modes supérieurs. 6

7 1.3 Tritement générl de l vrition vec z de I () Soit une lentille L, situéednsleplnz = f où f est l focle de l lentille. Je suppose que dns ce pln (en fit juste vnt l lentille) je connis l mplitude du chmp électrique (pr exemple fisceu gussien ou mplitude uniforme sur un trou, ou une combinison des deux). Je peux lors clculer simplement l mplitude du chmp dns le pln focl de l lentille, pr une trnsformée de Fourier, ceci correspond u clcul de l diffrction à l infini de Frunhofer. Qu en est il du chmp de prt et d utre du pln focl? Ceci correspond à l diffrction àdistncefinie, c est à dire à l diffrction de Fresnel, qui est plus difficile à déterminer. Ci-dessous je décris une méthode générle mis ps stndrd, de détermintion de l mplitude, pr projection sur une bse de modes propres de propgtion dns l espce libre, dpté u cs d une symétrie cylindrique. Le mode gussien, est le mode propre fondmentl de propgtion dns l espce libre. Plus générlement, dns le cs d une symétrie cylindrique, l mplitude du chmp électrique (polristion rectiligne suivnt ~u x ) peut s écrire: r X 4µ c ~E (,z)= π α me m (,z) ~u x (4) m= vec Ã! Ã! ik E m (,z)=exp R(z) w (z) iφ 1 m(z) L m w (z) (5) w (z) L m (x) étnt le polynome de Lguerre. Pour m =, L (x) =1 et on retrouve le mode fondmentl : w (z) =w s 1 + z z, (6) Les polynomes de Lguerre vérifient R (z) =z + z z, (7) z = πw λ, (8) µ z φ m (z) = φ (m + 1) (rctn z (9) = φ (z) mθ (z) (3) µ z θ (z) = rctn (31) Z z exp ( x) L m (x) L n (x) dx = δ mn, (3) l puissnce trversnt un pln z = cte pour chque mode est égle à P m = α m. 7

8 1.4 Clcul de l intensité I () en z L intensité I () dns un pln z = cste est donnée pr l vleur moyenne du vecteur de Poyinting en ce point (pproximtion des petits ngles, le vecteur de Poyniting est perpendicire à l surfce z = cste). L vleur moyenne du vecteur de Poyinting s écrit, en notnt η = w (z) ( " #) X X Π (,z)= exp [ η] α πw(z) ml m (η)+ α m α n L m (η) L n (η)cos[(n m)θ (z)] m= 1.5 Cs de l fonction d Airy n>m (33) Clcul des α m en prtnt du pln focl Considérons en z =, une tche d Airy de puissnce totle unité. Le ryon du premier zéro de J 1 est w. c A priori, on peut choisir le ryon w pour projeter sur les modes gussiens. Nous llons prendre plusieurs exemples de w =.64w c à w =w c.lescoefficients des modes gussiens doivent stisfire r s cµ P J 1 (v 1 /w c) X 4µ = c π πw α m exp m= w L m µ w (34) Posons t = /w et γ = v 1 α, α = w /w, c cel donne J 1 (γt) X = αm exp t L m t (35) t m= Multiplions chque membre de l éqution pr exp t L n t 4tdt et intégrons de zéro à l infini. L othogonlité des L m donne α n = 4 Z J 1 (γt)exp t L n t dt. (36) En reportnt ces vleurs dns l éqution (33), on peut déterminer l intensité en tout pln z. L mplitude obtenue en projetnt sur les premiers modes est reportée sur les figure 3-5, pour différentes vleurs de w. On voit que le choix de w n est ps critique, mis qu il est préférble de prendre une vleur ssez grnde pour pouvoir reproduire les oscilltions plus fcilement. Clcul des α m en prtnt de l lentille Nous fisons l pproximtion z /f, et l fce d entrée de l lentille est un pln d onde. Prés de l fce d entrée est plcé un diphrgme circulire de ryon w1. c L mplitude du chmp électrique est donc de l forme s µ E c () = cp i π (w Θ 1 c (wc ) 1 ) (37) 8

9 1.4 Y Axis Title w =.64 w c besj p p1 p p5 p1 p15 p.. -. / w Figure 3: 9

10 . Y Axis Title w = w c besj p p1 p p5 p1 p15 p p / w Figure 4: 1

11 .4 Y Axis Title w = 1.5 w c besj p p1 p p5 p1 p15 p p / w Figure 5: 11

12 P i étnt l puissnce incidente et Θ (x) est l fonction esclier (= si x<, =1 sinon). L lentille est en z = f. Après trversée de l lentille, l mplitude du chmp, projetée sur les modes gussien l forme r X E c + 4µ c (, f) = π β me m (, f) (38) m= E m (, f) = exp Notons à ik R( f) w ( f) iφ m( f)! L m à w ( f)! 1 (39) w ( f) µ f w 1 = w ( f) =w s1 + (4) z β = w 1 w1 c (41) t = (4) w 1 A un fcteur de phse contnt près, que l on prend égl à zéro, on peut écrire r µ r µ cp i 1 X βθ π β t 4µ c = π β m exp t iφ m ( f) L m t (43) m= Multiplions chque membre de l éqution pr exp t L n t 4tdt et intégrons de zéro à l infini. L othogonlité des L m donne Z 1/β βn exp [ iφ n ( f)] = β exp t L n t 4tdt (44) α n = exp[ iφ n ( f)] β Z 1/β exp [ t] L n (t) dt(45) On peut choisir comme solution α n = Z 1/β β exp [ t] L n (t) dt (46) exp [ iφ n ( f)] = 1 (47) Ce qui donne iφ n ( f) = µ f φ n +(n + 1)rctn = z (48) = φ n +(n + 1) π = (49) φ n = (n + 1) π (5) 1

13 Pour retrouver le même résultt que dns l section précédente, il fut relier les vleurs de α et de β, de on déduit dns ce cs on doit voir w c = v 1 λf π w1 c (51) w = λf πw 1 (5) β = v 1 α α (53) (54) α n =( 1) n β n (55) Soit Z 4 J 1 (v 1 αt)exp t L n t dt =( 1) n Z 1/β β exp [ t] L n (t) dt (56) Ce qui n est ps évident priori, mis vérifié numériquement sous Mple. Il est bien évident que l deuxième intégrle est plus simple à déterminer que l première (on peut l clculer pr récurrence). De plus on peut l ppliquer à une forme quelconque de l mplitude à l entrée de l lentille. Dns le fichier imges_t5.pdf, on reporté le profil rdile de l intensité pour dix distnces z depuis le pln focl d une lentille de 5 cm de focl, pour un trou de 5,15 mm de ryon. 13

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ ICNA - SESSION 9 ÉPREUVE OPTIONNEE DE PHYSIQUE CORRIGÉ Diffusion thermique dns un câble électrique.. puissnce volumique dissipée pr effet Joule dns le conducteur est donnée pr P. Je J J.E e γ I e vecteur

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2002/2003 Sénce 7 21 novmre 2002 Stéreo et l Géometrie Epipolire Pln de l Sénce: L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Formation et Analyse d'images. La Vision Stéréoscopique

Formation et Analyse d'images. La Vision Stéréoscopique Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2007/2008 Sénce 11 21 décemre 2007 Pln de l Sénce : L Vision Stéréoscopique L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2 Chpitre 7: Bndes d énergie On ne fer ps le modèle de Kronig-Penney: p. 165-7,171- ppel Gz d électrons libres: Modèle le plus simple pour un métl Électrons libres dns une boîte de LLL On résout l éqution

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Quantification et échantillonnage

Quantification et échantillonnage numérique à l et échntillonnge Signl physique (onde lumineuse, onde sonore) : vrition d une grndeur physique (éclirement, pression) en temps et/ou espce Sénce 4 et échntillonnge Contrintes de l représenttion

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Recherche des prmètres de préréglge en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Appliction et utilistion des préréglges : Les données de

Plus en détail

201-NYC SOLUTIONS CHAPITRE 8

201-NYC SOLUTIONS CHAPITRE 8 Chpitre 8 Nombres complexes 7 -NYC SOUTIONS CHAPITRE 8 8. EXERCICES. ) Re() 5, Im() b) Re(), Im() 8 c) Re() 5, Im() d) Re(), Im() e) Re(), Im() f) Re(), Im() 6. ) x + i et x i b) x + i et x i c) x + i

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

FAQ sur l utilisation d Ecoline-solo

FAQ sur l utilisation d Ecoline-solo FAQ sur l utilistion d Ecoline-solo De quel mtériel i-je esoin pour compléter les informtions demndées dns Ecoline-solo? Pour remplir rpidement toutes les informtions demndées dns Ecoline-solo, vous devez,

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

Interféromètres à division d amplitude

Interféromètres à division d amplitude DUT Mesures Physiques MP S3 Interféromètres à division d mplitude Exercice 1 : Détection de fibles signux optiques Dns cet exercice on souhite détecter un très fible chmp électrique sclire (se propgent

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

CORRIGE TD n 4. EXERCICE 1 : les trous d Young

CORRIGE TD n 4. EXERCICE 1 : les trous d Young EXERCICE 1 : les trous d Young CORRIGE TD n 4 On considère une onde plne monochromtique de longueur d onde =656,3 nm, se propgent le long de l xe Oz On intercle sur le trjet de cette onde un écrn percé

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Développement de modèles et d outils de cosimulation EM / Circuit pour application aux antennes agiles actives

Développement de modèles et d outils de cosimulation EM / Circuit pour application aux antennes agiles actives Développement de modèles et d outils de cosimultion EM / Circuit pour ppliction ux ntennes giles ctives Présentée pr : Georges ZAKKA EL NASHEF Responsbles : Thierry MONÉDIÈRE Frnçois TORRÈS Edourd NGOYA

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

CHAMP MAGNÉTIQUE EN RÉGIME STATIONNAIRE

CHAMP MAGNÉTIQUE EN RÉGIME STATIONNAIRE CAMP MAGNÉTIQUE EN ÉGIME STATIONNAIE Mgnétoésistnce En 7 Albet Fet et Pete Günbeg se sont vus décene le pix Nobel de Physique pou l mgnétoésistnce génte (GM) Ils ont monté qu une fine couche d un mtéiu

Plus en détail

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques COURS DE MATHÉMATIQUES SEMESTRE Jen-Mrie De Conto Université Joseph Fourier IUT Déprtement Mesures Phsiques Me contcter: sns hésiter À l IUT Au lbortoire: Lbortoire de Phsique Subtomique et de Cosmologie

Plus en détail

Biostatistiques et statistiques appliquées aux sciences expérimentales

Biostatistiques et statistiques appliquées aux sciences expérimentales Biosttistiques et sttistiques liquées ux sciences exérimentles ANOVA à deux fcteurs Pscl Bessonneu, Christohe Llnne et Jérémie Mttout* Cogmster A4 2006-2007 * jeremiemttout@yhoo.fr. 1/16 Progrmme de l

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

OP 3: Diffraction & réseaux

OP 3: Diffraction & réseaux M.Bosco BTS OL2 OP 3: Diffrction & réseux CH 3 : Le phénomène de diffrction Appliction ux réseux BTS ISO I. Le phénomène de diffrction I.1.Présenttion L diffrction est un phénomène physique qui été mis

Plus en détail

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION 6.1 STRUTURES PLES FOREES DE POUTRES RELTIOS ETRE HRGES ET ELEETS DE REDUTIO Les vritions des éléments de réduction,,, lorsqu'on psse d'une section à l'utre, sont liées pr des reltions fondmentles que

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

correction TD8 : De Fresnel à Fraunhofer

correction TD8 : De Fresnel à Fraunhofer ycle d ingénieur 1 nnée 011-01 ptique hysique V. osse, obroc, E. imbrd,. ellegrino correction T8 : e resnel à runhofer iffrction de resnel 6) ien que trité en T, je reproduis ici l réponse à cette question

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE

CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE Prof. H. NAJIB Optique Physique Version : sept. 006 CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE II.1- Définition On dit que deux ondes (ou plusieurs) interfèrent lorsque

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

O4 : Diffraction à l infini

O4 : Diffraction à l infini O4 : Diffrction à l infini 1 Phénomène de diffrction 1.1 Mise en évidence Si l on cherche à "isoler" un ryon lumineux, modèle de l optique géométrique, grâce à une fente très fine de lrgeur, on n observe

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Filtrage en lumière cohérente

Filtrage en lumière cohérente Chpitre Filtrge en lumière cohérente. Diffrction de Frunhofer u foyer d une lentille convergente L diffrction de Frunhofer est séduisnte pr s cpcité à produire instntnément des trnsformées de Fourier bidimensionnelles.

Plus en détail

1 Réflexion et réfraction

1 Réflexion et réfraction 1 Réflexion et réfraction 1.1 Rappel sur la propagation dans les milieux linéaires isotropes Equations de Maxwell dans les milieux Dans un milieu diélectrique sans charges libres (ni courants libres) les

Plus en détail

Notion de qualité de l énergie

Notion de qualité de l énergie BULLEIN DE L UNION DES PHYSICIENS 509 Notion de qulité de l énergie pr Pul ROUX et JenRobert SEIGNE Lycée Clude Furiel 42022 SintÉtienne Cedex RÉSUMÉ L conservtion de l énergie est insuffisnte pour ustifier

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Ater Lucis. La lumière maîtrisée

Ater Lucis. La lumière maîtrisée Ater Lucis L lumière mîtrisée 09/2009 Contenu A propos de Bonhomme Bâtiments Industriels Ater Lucis Démrche Qulités Focus pr modèle Circeo Xelios Arboris A propos de Bonhomme Bâtiments Industriels Bonhomme

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier.

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier. Chitre 3 : Résidus qudrtiques Dns ce chitre on v essyer d extrire des rcines crrés dns ZnZ. Dns le cors des nombres réels tous les nombres ositifs sont des crrés et les nombres négtifs ne le sont s, dns

Plus en détail

Conduction à travers un mur plan homogène

Conduction à travers un mur plan homogène Conduction à travers un mur plan homogène I- Exemple d application: Calculer le flux traversant une vitre de 1 m² de surface et de 3,5 mm d épaisseur. La température de la face interne de la vitre est

Plus en détail

1. Contribution au raccordement

1. Contribution au raccordement TARIFS 215 CHAUFFAGE A DISTANCE CONTRIBUTIONS AU RACCORDEMENT 1. Contribution u rccordement 1.1 L contribution u rccordement est clculée en fonction des kw th souscrits dns le cdre des puissnces normlisées.

Plus en détail

TD D2 - Correction. 1 Figures d'interférence à deux ondes

TD D2 - Correction. 1 Figures d'interférence à deux ondes PSI - 2012/2013 1 TD D2 - Correction 1 Figures d'interférence à deux ondes 1. () On reconnît ici l congurtion clssique des trous Young, vec un écrn prllèle à l'xe (S 1 S 2 ). L diérence de mrche en M s'exprime

Plus en détail

Éléments de correction du TD

Éléments de correction du TD Septembre 011 Éléments de correction du TD Stéphane Blin Introduction Je donne ici les éléments de correction de la question - de la marche de potentiel, ainsi que les éléments de corrections pour les

Plus en détail

Production des rayons X en imagerie par projection et en scanographie

Production des rayons X en imagerie par projection et en scanographie 5-050--0 Production des ryons X en imgerie pr projection et en scnogrphie D. Régent, D. Mndry, V. Croise-Lurent,. Oliver, F. Jusset, V. Lombrd Le tube rdiogène reste le fcteur limitnt dns les techniques

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Transformations géodésiques en France Métropolitaine

Transformations géodésiques en France Métropolitaine Trnsformtions géodésiques en Frnce Métropolitine 1 Processus de chngement de système... 1.1 Définitions... 1. Similitude 3D à 7 prmètres... 1.3 Modèle «à 7 prmètres»... 3 1.4 Coordonnées géogrphiques (,,h)

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Physique Numérique TP9 Etude de surfaces cristallines par diffraction des rayons X

Physique Numérique TP9 Etude de surfaces cristallines par diffraction des rayons X Etude de surfces cristllines pr diffrction des ryons Physique Numérique TP9 Etude de surfces cristllines pr diffrction des ryons Victor Lnvin Introduction Dns ce TP, on se propose d étudier numériquement

Plus en détail

La lumière : une onde

La lumière : une onde P g e TS Physique Exercice résolu Enoncé Remrque : les 3 prties sont indépendntes. e texte ci-dessous retrce succinctement l évolution de quelques idées à propos de l nture de l lumière : Pr nlogie à l

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

Chapitre 3.5a La diffraction

Chapitre 3.5a La diffraction Chpitre. L diffrction Le phénomène de l diffrction L diffrction est le comportement ondultoire déformnt une onde plne en onde sphérique lorsque celle-ci rencontre un obstcle ou une ouverture. L déformtion

Plus en détail

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs.

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs. S e produit scalaire Eercices Diverses epressions du produit scalaire et calcul de grandeurs. Eercice. est un triangle et I est le milieu de []. Données : I 6, I I et I. alculer : ) (introduire le point

Plus en détail

Programmation des éléments nis P1 en 1D

Programmation des éléments nis P1 en 1D Notes du cours d'équtions ux Dérivées Prtielles de l'isima, deuxième nnée http://wwwisimfr/leborgne Progrmmtion des éléments nis P1 en 1D Gilles Leborgne 8 mrs 2005 Tble des mtières 1 Le problème 2 11

Plus en détail

- 2a= 50 à 200µm pour l =0.8 à 1.6µm ( fibre de silice) - 2a=0.5 à 2mm pour l= 0.4 à 0.7µm ( fibre de plastique)

- 2a= 50 à 200µm pour l =0.8 à 1.6µm ( fibre de silice) - 2a=0.5 à 2mm pour l= 0.4 à 0.7µm ( fibre de plastique) Electricité et Optique 6-7 II. Les fibres optiques L'indice de réfrction du cœur de l fibre est supérieur à celui de l gine ce qui empêche le ryon lumineux de sortir du cœur de l fibre, le ryon étnt lors

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 2013-2014 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, COMPLÉMENT DE COURS : FIBRÉS VECTORIELS

COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 2013-2014 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, COMPLÉMENT DE COURS : FIBRÉS VECTORIELS COURS M2 GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES 203-204 FEUILLE D EXERCICES NO. 2 : CHAMPS DE VECTEURS, DÉRIVÉE DE LIE COMPLÉMENT DE COURS : FIBRÉS VECTORIELS ALEXANDRU OANCEA Exercice. (crochet, flots,

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Développement d un Code de Calcul Permettant l Optimisation des Systèmes de Chauffage de Planchers ou Sols à l Aide de Tubes Enterrés 1.

Développement d un Code de Calcul Permettant l Optimisation des Systèmes de Chauffage de Planchers ou Sols à l Aide de Tubes Enterrés 1. Rev Ener Ren : Journées de Thermique (001) 85-90 éveloppement d un Code de Clcul Permettnt l Optimistion des Systèmes de Chuffe de Plnchers ou Sols à l Aide de Tubes Enterrés O Guerri 1, A Hrhd et K Bouhdef

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

DM2-2014_CORRIGE. «Marquage Laser»

DM2-2014_CORRIGE. «Marquage Laser» C Grin / DM-4_crrigedc (ver: 9//5) pge /6 DM-4_CRRIGE Présenttin du système : «Mrquge Lser» Sur les lignes de frictin, n utilise de plus en plus fréquemment des dispsitifs de mrquge pur identifier les

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

TDC Diffraction de la lumière

TDC Diffraction de la lumière PSI Moissn TD Diffrction Février 3 TDC Diffrction de l lumière I Apodistion. On peut écrire, compte tenu de l trnsprence du diphrgme qui s intègre en ż { spα, tq Ks piωtq { pα α qx dx spα, tq Ks piωtq

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

METHADOSE MC Dépendance aux opiacés

METHADOSE MC Dépendance aux opiacés METHADOSE MC Dépendnce ux opicés OCTOBRE 2013 Mrque de commerce : Methdose Dénomintion commune : Méthdone (chlorhydrte de) Fbricnt : Mllinckro Forme : Solution Orle Teneur : Ajout ux listes de médicments

Plus en détail

Sujet Centrale 2012 Physique Option MP

Sujet Centrale 2012 Physique Option MP I Le Satellite Jason 2 IA1) IA - Etude l orbite Sujet Centrale 2012 Physique Option MP Cf cours : IA2) a) Le référentiel géocentrique est le référentiel de centre Terre en translation par rapport au référentiel

Plus en détail

dans un EVMPS Moindres carrés

dans un EVMPS Moindres carrés Meilleure pproximtion dns un EVMPS Moindres crrés Meilleure pproximtion Définition. Soit V un EVMPS, W un sous-espce quelconque de V, et u un vecteur quelconque de V. On ppelle meilleure pproximtion de

Plus en détail