N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres :

Dimension: px
Commencer à balayer dès la page:

Download "N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9"

Transcription

1 N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : N2 : LES NOMBRES Avec ces chiffres, on peut écrire des nombres. Avec le nombre, il y a la notion de compter. Il y a 9 fleurs dans la jardinière. Il y a 20 élèves dans la classe. N3 : LES DIFFERENTS SYSTEMES DE NUMERATION Il existe plusieurs systèmes pour compter et écrire les nombres. Le système de numération que nous utilisons utilise les chiffres de 0 à 9, et la place des chiffres dans les nombres est très importante. 10 unités = 1 dizaine 100 unités = 10 dizaines = 1 centaine Il y a d autres systèmes de numération : égyptienne, maya, chinoise. N4 : ECRIRE et LIRE LES NOMBRES CLASSE CLASSE CLASSE CLASSE DES DES DES DES MILLIARDS MILLIONS MILLIERS UNITES c d u c d u c d u c d u Pour lire les nombres, on les regroupe par 3 : 123 mille 456 1

2 Pour écrire les nombres : 0 Zéro 10 Dix 20 Vingt 100 Cent 1 Un 11 Onze 21 Vingt et un Mille 2 Deux 12 Douze 30 Trente Un million 3 Trois 13 Treize 40 Quarante 4 Quatre 14 Quatorze 50 Cinquante 5 Cinq 15 Quinze 60 Soixante 6 Six 16 Seize 70 Soixante-dix 7 Sept 17 dix-sept 80 Quatre-vingt 8 Huit 18 Dix-huit 90 Quatre-vingt-dix 9 Neuf 19 Dix-neuf : cent vingt-trois mille quatre cent cinquante-six Nouvelle Orthographe : On met des tirets entre tous les nombres. Cent-vingt-trois-mille-quatre-cent-cinquante-six N5 : DECOMPOSER UN NOMBRE ENTIER On décompose les nombres par unités, dizaines, centaines = Décomposition additive : Décomposition multiplicative : (1 x ) + (2 x ) + (3 x 1 000) + (4 x 100) + (5 x 10) + (6 x 1) Les puissances de 10 : 10 = = = = 10 4 (1 x 10 5 ) + (2 x 10 4 ) + (3 x 10 3 ) + (4 x 10 2 ) + (5 x 10 1 ) + 6 N6 : COMPARER et RANGER DES NOMBRES ENTIERS - On regarde celui qui a le plus de chiffres : c est le plus grand est plus grand que On écrit alors S ils ont le même nombre de chiffres, on compare les chiffres en commençant par la gauche : car 7 4 2

3 car 1 8 Plus grand s écrit Plus petit s écrit - Ranger dans l ordre croissant, c est ranger du plus petit au plus grand nombre Ranger dans l ordre décroissant, c est ranger du plus grand au plus petit nombre N7 : ENCADRER DES NOMBRES ENTIERS Encadrement à l unité : (on écrit le nombre juste avant et celui juste après) Encadrement à la dizaine : (on écrit la dizaine avant et la dizaine après du nombre) Encadrement à la centaine : (on écrit la centaine avant et la centaine après du nombre) Encadrement au millier :

4 N8 : LES FRACTIONS 4

5 5

6 N9 : LES FRACTIONS DECIMALES 6

7 N10 : LES NOMBRES DECIMAUX 7

8 8

9 C1 : L ADDITION C1.1 : TECHNIQUE DE L ADDITION DES NOMBRES ENTIERS C1.2 : TECHNIQUE DE L ADDITION DES NOMBRES DECIMAUX La technique est la même que pour l addition des nombres entiers, si ce n est qu il faut penser que les virgules doivent être alignées entre elles , , , 8 4 9

10 C2 : LA SOUSTRACTION C2.1 : TECHNIQUE DE LA SOUSTRACTION DES NOMBRES ENTIERS C2.2 : TECHNIQUE DE LA SOUSTRACTION DES NOMBRES DECIMAUX La technique est la même que pour la soustraction des nombres entiers, si ce n est qu il faut penser que les virgules doivent être alignées entre elles. Le nombre le plus grand doit toujours être en haut , 6-3 2, 12 4 rajouter 1 0 3, S il manque un zéro, on peut le 75 est plus grand que 38,45, il se trouve donc en haut. Attention il faut penser à rajouter les zéros inutiles (75 = 75,00) car on ne peut enlever 5 à rien , , ,

11 C3 : LA MULTIPLICATION C3.1 : SENS DE LA MULTIPLICATION - On utilise la multiplication pour écrire le nombre d objets d une collection disposée en rectangle. Nombre de losange : 3 x 6 = x 3 = Calculer une addition de nombres identiques = 8 x 7 = 56 (8 fois le 7) = 7 x 8 = 56 (7 fois le 8) C3.2 : TECHNIQUE DE LA MULTIPLICATION DES NOMBRES ENTIERS 11

12 C3.3 : TECHNIQUE DE LA MULTIPLICATION DES NOMBRES DECIMAUX , 6 x 1, , On ne s occupe pas des virgules pendant qu on calcule l opération. A la fin du calcul, on compte combien de chiffres se trouvent derrière la virgule dans le calcul de départ (ici 3), et on reporte au résultat le nombre de chiffres derrière la virgule (ici 3 chiffres doivent se trouver derrière) alors on place la virgule. C4 : LA DIVISION C4.1 : SENS DE LA DIVISION La division est une situation de partage. Ex : Il y a 5 enfants, j ai 20 bonbons. Combien chacun d eux en recevra-t-il? Vocabulaire dividende diviseur quotient reste 12

13 C4.2 : TECHNIQUE DE LA DIVISION DES NOMBRES ENTIERS Avec un reste ) On cherche à savoir combien de fois on peut mettre 7 dans 4 impossible ) On cherche donc combien de fois 7 dans fois car 7x6= ) Il reste 3. Je vérifie que 3 est inférieur à Puis j abaisse le ) Dans 36, combien de fois je peux mettre le fois car 7x5= ) Il reste 1. Je vérifie que 1 est inférieur à Je n ai plus rien à abaisser, mon opération est finie. 456 = (7 x 65)

14 Sans reste (avec un résultat décimal) ) Il reste 1. Je vérifie que 1 est inférieur à Je n ai plus rien à abaisser, mon opération est finie ) Je rajoute un 0 au reste ce qui donne , Et je mets une virgule au quotient ) Dans 10, combien de fois je peux mettre , 1 1 fois car 7x1= Et ainsi de suite. En général, on s arrête au millième près (3 chiffres après la virgule) 14

15 C4.3 : TECHNIQUE DE LA DIVISION DES NOMBRES DECIMAUX 1 er cas 4 5, 6 7 1) On vérifie tout d abord que 7 est plus petit que la partie entière (ici 45). On peut alors commencer la division sans s occuper de la virgule. 4 5, 6 7 2) Au moment d abaisser le chiffre des dixièmes, on , place la virgule au quotient , 6 7 3) Au moment de rajouter un 0 au reste, il n y a pas , 5 1 besoin de rajouter une virgule car on en a déjà une ème cas 4, ) On vérifie tout d abord que 7 est plus petit que la 0, partie entière (ici 4). Ce n est pas le cas, donc 7 va 0 fois dans 4. 4, ) Et on continue sa division ,

16 C.M1 : TABLES D ADDITION 16

17 C.M 2 : LES COMPLEMENTS CM 2.1 : à = = = = = = = = 40 C.M 2.2 : à = = = = = = = = = 100 C.M 2.3 : à = = =

18 C.M3 : TABLES DE MULTIPLICATION 18

19 C.M4 : ADDITIONNER OU SOUSTRAIRE 9, 19, 29 On part du principe que 9 = = = = = = = 54 On part du principe que 19 = = = = 43 C.M5 : ADDITIONNER OU SOUSTRAIRE 11 On part du principe que 11 = = = = 37 C.M 6 : DOUBLE ET MOITIÉ Le double La moitié 1 = 2 6 = 12 2 = 1 12 = 6 2 = 4 7 = 14 4 = 2 14 = 7 3 = 6 8 = 16 6 = 3 16 = 8 4 = 8 9 = 18 8 = 4 18 = 9 5 = = = 5 20 = = = = = = = = = = = = = = = = = = = = = 20 1,5 = 3 6,5 = 13 2,5 = 5 7,5 = 15 3,5 = 7 8,5 = 17 4,5 = 9 9,5 = 19 5,5 = 11 10,5 = 21 19

20 11,5 = 23 16,5 = 33 12,5 = 25 17,5 = 35 13,5 = 27 18,5 = 37 14,5 = 29 19,5 = 39 15,5 = 31 20,5 = 41 C.M 7 : ADDITIONNER EN DECOMPOSANT = Les centaines = 600 Les dizaines = 170 Les unités = = = =

21 G1 : POINTS, SEGMENTS, DROITES VOCABULAIRE 21

22 22

23 G2 : ANGLES G3 : DROITES PERPENDICULAIRES (d) (f) (h) (e) Les droites (d) et (e) ne sont pas perpendiculaires (g) Les droites (f) et (g) ne sont pas perpendiculaires (i) Les droites (h) et (i) sont perpendiculaires 23

24 G4 : DROITES PARALLELES (f) (i) (d) (g) (h) (e) Les droites (d) et (e) se coupent : elles ne sont pas parallèles. Les droites (f) et (g) ne se coupent pas dans la feuille, mais vont se couper si on les prolonge : elles ne sont pas parallèles. Les droites (h) et (i) sont parallèles. 24

25 G5 : REPERAGE ET DEPLACEMENT SUR QUADRILLAGE 25

26 2 cm 4 cm 2 cm 6 cm G6 : AGRANDIR / REDUIRE UNE FIGURE Réduire une figure, c'est diviser toutes ses longueurs par le même nombre. 6 cm 3 cm : 2 Agrandir une figure, c'est multiplier toutes ses longueurs par le même nombre. 9 cm 3 cm x 3 Pour réduire (ou agrandir) plus facilement une figure, on peut utiliser un quadrillage. Il suffit ensuite de reproduire la même figure dans un quadrillage réduit (ou agrandi). 26

27 G7 : LES POLYGONES Les noms des polygones Les polygones qui ont... s'appellent... Les polygones qui ont... s'appellent... 3 côtés triangles 7 côtés heptagones 4 côtés quadrilatères 8 côtés octogones 5 côtés pentagones 9 côtés ennéagones 6 côtés hexagones 10 côtés décagones Les polygones réguliers Un polygone régulier est un polygone dont : tous les côtés ont le même longueur tous les angles ont la même mesure 27

28 G7.1 : LES QUADRILATERES 28

29 LE CARRÉ Le carré est un quadrilatère : il a 4 côtés. Le carré est régulier : tous ses côtés ont la même longueur tous ses angles sont égaux (ils sont tous droits) Les diagonales du carré : ont la même longueur sont perpendiculaires se coupent en leur milieu LE RECTANGLE Le rectangle est un quadrilatère : il a 4 côtés. Le rectangle n'est pas régulier : tous ses angles sont égaux (ils sont tous droits) mais tous ses côtés n'ont pas la même longueur, le côté le plus long s'appelle longueur (L), Le côté le plus court s'appelle largeur ( l ). largeur longueur Les diagonales du rectangle : ont la même longueur se coupent en leur milieu ne sont pas perpendiculaires. 29

30 G7.2 : LES TRIANGLES Un triangle c est un polygone qui a 3 côtés. Chaque sommet est nommé par une lettre. Et chaque côté par les segments les reliant. AC A AB C B BC Certains triangles sont particuliers. Isocèle Equilatéral Rectangle 2 côtés égaux 3 côtés égaux 1 angle droit 30

31 G8 : LE CERCLE Un cercle est l'ensemble des points situés à la même distance d'un point appelé centre. On appelle rayon un segment qui relie le centre et un point du cercle. C rayon O centre cercle qui relie deux points du cercle. Cercle C de centre O On appelle corde un segment On appelle diamètre une corde qui passe par le centre. La mesure du diamètre est le double de celle du rayon. Un arc de cercle est une portion de cercle délimitée par deux points. C B C Dans le cercle C de centre O : [OA] est un rayon F D O A G [BC] est une corde DE est un arc [FG] est un diamètre E 31

32 G9 : LA SYMÉTRIE Quand une figure géométrique peut être pliée, le long d'une droite, en deux parties superposables, on dit que cette figure est symétrique par rapport à la droite. On appelle cette droite axe de symétrie de la figure. Une même figure peut avoir plusieurs axes de symétrie. Exemples : Axe de symétrie Axe de symétrie Axe de symétrie Axe de symétrie Tracer le symétrique d une figure par rapport à une droite. Tracer le symétrique d'une figure par rapport à une droite, c'est compléter la figure pour que la droite devienne axe de symétrie de l'ensemble. La figure symétrique est l'image de la figure de départ (comme dans un miroir). Axe de symétrie 32

33 Sur un quadrillage : On peut construire l'image de chaque point en comptant les carreaux entre le point et l'axe de symétrie. L'image se trouve alors au même nombre de carreaux de l'autre côté de l'axe. Sans quadrillage : Pour chaque point, il faut construire l'image en traçant la perpendiculaire à l'axe de symétrie passant par le point. Il faut ensuite mesurer la distance du point à l'axe, puis la reporter de l'axe à l'image (on peut aussi utiliser un compas). 33

34 G10 : LES SOLIDES Un solide est un objet qui délimite un volume. Un solide présente des faces, des arêtes et des sommets. arête sommet face Les faces d'un solide peuvent être planes ou courbes. 34

35 Les différents types de solides Solide Nom Types de faces Sphère 1 face courbe Cylindre Cône Cube Pavé (parallélépipède rectangle) 2 faces planes 1 face courbe 1 face plane 1 faces courbe 6 faces planes 6 faces planes Pyramide faces planes Prisme faces planes Construire des solides Les patrons Un solide est souvent constitué de faces planes, qu'il est possible de représenter sur une feuille de papier. Un patron est le dessin de ses faces, qui permet par pliage de reconstruire ce solide. ATTENTION : Certains solides ne peuvent pas être représentés par un patron. Un cube est constitué de 6 faces carrées identiques. Pour construire son patron, il faut «déplier» le cube pour représenter les 6 carrés à plat. 35

36 ATTENTION : D'autres patrons sont possibles. Les patrons suivants par exemple : G11 : SUIVRE UN PROGRAMME DE CONSTRUCTION Définition : Un programme de construction est un texte qui donne des instructions pour tracer précisément une figure géométrique. Tracer un cercle C de centre O. tracer un diamètre [AB] C A O B Lire un programme de construction Un programme de construction est un texte de géométrie : il utilise le vocabulaire de géométrie. Il faut s'assurer de bien comprendre tous les mots. Il faut suivre les instructions dans l'ordre où elles sont écrites. Avant de tracer précisément, on doit faire un brouillon. On essaie de suivre le programme, rapidement, à main levée. Cela permet de voir si on a bien compris toutes les étapes, et de savoir de quels outils on va avoir besoin. 36

37 programme brouillon outils Tracer 3 points P, Q, R distincts*. crayon * à des endroits différents Tracer un carré ABCD de côté 4 cm. Tracer le point M, milieu de [AB]. Tracer le point N, milieu de [CD]. crayon règle graduée équerre Tracer le segment [MN]. Tracer une droite (d). Placer un point A sur la droite (d). Tracer la droite (e), perpendiculaire à (d) et passant par A. Placer le point B sur la droite (e), tel que AB = 5 cm. crayon règle graduée équerre compas Tracer le cercle de centre A et de rayon AB. 37

38 M1 : LES MESURES DE LONGUEURS M1.1 : LES UNITES L'unité principale de mesure des longueurs est le mètre Tableau des mesures de longueur. km hm dam m dm cm mm kilomètre hectomètre décamètre mètre décimètre centimètre millimètre 1 hm = 100 m 1 km = 1000 m 1 dam = 10 m 1 m = 10 dm 1 m = 1000 mm 1 m = 100 cm Tu remarqueras que chaque unité de longueur commence un préfixe (kilo, hecto, déca ). Chaque préfixe a une signification bien précise que tu retrouveras dans d'autres unités de mesures. kilo mille fois plus grand milli mille fois plus petit hecto cent fois plus grand déca dix fois plus grand centi cent fois plus petit déci dix fois plus petit 38

39 Comment effectuer des conversions? On place toujours le chiffre des unités dans la colonne de l'unité de longueur utilisée. On place un seul chiffre par colonne. km hm dam m dm cm mm 5 6 Plaçons 56 m dans le tableau. 6 est le chiffre des unités. L'unité de longueur utilisée est le mètre. Je place donc 6 dans la colonne des mètres km hm dam m dm cm mm Pour lire 56 m en centimètres. Je complète avec de zéros les colonnes vides. Je lis le nombre obtenu cm On peut donc écrire : 56 m = 5600 cm Attention avec les nombres décimaux : 56 m = 0,056 km 1,5 m = 15 dm Remarque 56 m peut aussi s'écrire : 5 dam et 6 m ; 560 dm ; mm M1.2 : COMPARER Pour comparer des mesures de longueurs ensembles, il faut les convertir dans la même unité de longueur. 152 dm. 142 cm On ne peut pas comparer directement les nombres. 39

40 152 dm = 1520 cm donc 1520 cm 142 cm. Il faut les mettre dans la même unité de longueur, en général la plus petite (ici les cm). Pour additionner des mesures de longueur, c est la même chose. Il faut tout convertir dans la même unité (la plus petite) : 125 cm + 45 m mm =? 1250 mm mm mm = mm On n oublie jamais de noter l unité de longueur. 125 mm 45 m M2 : LES MESURES DE DUREES M2.1 : LIRE L HEURE La petite aiguille indique les heures, la grande aiguille indique les minutes. Lorsque tu dois placer les aiguilles sur une pendule, fais attention à leur taille! Fais aussi très attention à la position de l aiguille des heures. En effet, celle-ci avance très lentement, mais elle avance! Tu dois donc être très précis(e). Exemples : Quand il est 9 h 10 mn, la petite aiguille n est plus sur le 9. Elle a légèrement avancé. 9 h 10 min Quand il est 9 h 30 mn, la petite aiguille est à mi-chemin entre 9 et 10. Quand il est 9 h 45 (ou 10 h moins le quart) la petite aiguille est proche du 10! 9 h 30 min 9 h 45 min Pour passer de l heure du matin à l heure du soir, il suffit d ajouter 12 heures. Exemples : 3 h 10 min (l après-midi) je calcule = 15, on dit donc 15 h 10 8 h 30 min (le soir) je calcule = 20, on dit donc 20 h h 45 min (le soir) je calcule = 22, on dit donc 22 h 45 40

41 M2.2 : CALCUL DE DUREE Pour calculer des durées, tu peux créer une ligne du temps avec les heures. 11h 12h 13h 14h 15h 16h Il faut bien connaître les compléments à de 10h15 à 11h : il s est passé 45 min de 10h15 à 11h30 : il s est passé 1 h jusqu à 11h15 et 15 min ensuite. Transformer l écriture des durées Ecrire en minutes (min) 1 h = 60 min On multiplie le nombre d heures par 60 pour les transformer en minutes, et on ajoute si besoin le nombre de minutes qu on avait déjà. Ex : 3 h 06 min = ( 3 x 60 ) + 06 min = min = 186 min Ecrire en secondes (s) 1 min = 60 s On multiplie le nombre de minutes par 60 pour les transformer en secondes, et on ajoute si besoin le nombre de secondes qu on avait déjà. Ex : 18 min 23 s = ( 18 x 60 ) + 23 s = s = 1103 s Ecrire en heures, minutes, secondes (h, min, s) 60 s = 1 min 60 min = 1 h On échange autant de fois que possible 60 s contre 1 min jusqu à ce qu il reste moins de 60 s. On échange autant de fois que possible 60 min contre 1 h jusqu à ce qu il reste moins de 60 min. On additionne les heures, les minutes et les secondes qu il nous reste après les échanges. Ex : 185 min = min 180 = 60 x 3 41

42 = 1 h + 1 h + 1 h + 05 min = 3 h 05 min. Ex : 318 s = s 300 = 60 x 5 = 1 min + 1 min + 1 min + 1 min + 1 min + 18 s = 5 min 18 s Ex : 3908 s = 3900 s + 08 s 3900 = 60 x 65 = 65 min + 08 s = ( ) min + 08 s = 1 h + 05 min + 08s = 1 h 05 min 08 s Additionner et Soustraire des durées 42

43 M3 : LA MONNAIE Payer avec des euros : Voici les pièces et billets que nous utilisons pour payer : Pour payer, on peut constituer une somme d'argent de nombreuses manières. Pour constituer 25, on peut utiliser : 1 billet de 20, 1 billet de 5 2 billets de 10 et 1 billet de 5 5 billets de 5 75 pièces de 1, etc. Rendre la monnaie... c'est calculer la différence entre l'argent donné et la somme à payer. Un objet coute 35,75. Je paie avec un billet de 50. On doit me rendre 5 c 20 c 4 10 On a rendu : c + 5 c = 14,25 35,75 35,80 36,00 40,00 50,00 Je vérifie : 14, ,75 =

44 M4 : LES MESURES DE MASSES 1kg = 1000 g 1 g = 1000 mg 1t = 1000 kg t q kg hg dag g dg cg mg , t : tonne q : quintal (500 kg) On place toujours l unité du nombre dans l unité de masse demandée. Dans le tableau, on peut lire : 2500 g = 2 kg 500 g 1,320 kg = 1320 g 50 g = 5 dag 44

45 M5 : LES MESURES DE CAPACITES (VOLUMES) Mesurer le volume (ou la capacité) d'un objet, c'est mesurer la place qu'il occupe dans l'espace. Comme pour les aires, on veut savoir combien il faut de volumes-unités pour le remplir complètement. Cube unité Volume rempli = 8 cubes unités Les unités de volumes On mesure le volume en litres*. Un litre est le volume d'un cube-unité de 10 cm de côté. (*L'unité officielle est le mètre cube : m 3.) hl dal L dl cl ml hectolitre décalitre litre décilitre centilitre millilitre 1 hl = 100 L 1 dal = 10 L 10 dl = 1 L 100 cl = 1 L ml = 1 L 45

46 M6 : LE PÉRIMÈTRE Calculer le périmètre d une figure plane Le périmètre d'une figure, c'est la longueur de son contour. Pour un polygone, on ajoute la longueur de chaque côté. Formule de calcul Pour un polygone régulier, on peut déterminer des formules de calcul. Périmètre d un carré : 2 cm P = = 2 x 4 = 8 cm. P = C x 4 C est la longueur d'un côté. 2 cm 2 cm Périmètre d un rectangle : P = = (2 x 3) + (2 x 2) = 2 x (3 + 2) 2 cm = 10 cm. P = 2 x (L + l) L est la longueur, l est la largeur. 2 cm L 3 cm l Périmètre d un cercle : P = 2,5 x π 2,5 x 3,14 7,85 cm. P = D x π D est la longueur du diamètre. π 3,14 2,5 cm M7 : LES AIRES Mesurer une aire Mesurer l'aire (l'étendue) d'une surface plane, c'est savoir combien il faut de surfaces-unités pour la recouvrir complètement. Exemple : 1 carreau-unité L'aire du rectangle est de 12 carreauxunités 46

47 Trouver des surfaces de même aire Si deux surfaces se superposent exactement, elles ont la même aire. Ces deux carrés ont la même aire. Les deux parties du disque ont la même aire. Ces deux figures de forme différente ont la la même aire, mais ne se superposent pas. Les unités d aire L'unité principale de mesure d'aire est le mètre carré. Il s'agit d'un carré-unité de 1 m de côté. Il s'écrit m². km² hm² dam² m² dm² cm² mm² cm² = 100 mm² 1 m² = cm² Aire d un carré c x c c étant la mesure du côté. Aire d un rectangle L x l L : longueur l : largeur On n oublie pas de noter l unité de mesure en cm² ou m² 47

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Technique opératoire de la division (1)

Technique opératoire de la division (1) Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP Version 2: 13.11.2014 Livret de formules Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP Economie d entreprise Boulangère-Pâtissière-Confiseuse CFC Boulanger-Pâtissier-Confiseur

Plus en détail

CM2B Ste Marthe NOMBRES CROISES

CM2B Ste Marthe NOMBRES CROISES CMB Ste Marthe NOMBRES CROISES Règles Les nombres croisés sont des grilles à remplir en suivant les instructions. Les consignes ne sont données que pour les nombres à plus de deux chiffres. Si plusieurs

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Effectuer un paiement par chèque

Effectuer un paiement par chèque 1ère séance Effectuer un paiement par chèque Objectif Lire et comprendre ce qui est inscrit sur un chèque Matériel nécessaire Un chèque vierge par adulte Un tableau et de quoi écrire dessus Activité 1

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Je découvre le diagramme de Venn

Je découvre le diagramme de Venn Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme

Plus en détail

LES NOMBRES DECIMAUX. I. Les programmes

LES NOMBRES DECIMAUX. I. Les programmes LES NOMBRES DECIMAUX I. Les programmes Au cycle des approfondissements (Cours Moyen), une toute première approche des fractions est entreprise, dans le but d aider à la compréhension des nombres décimaux.

Plus en détail

Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un

Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un escalier de 1 marche? De 2 marches? De 3 marches? De 4 marches?

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

a)390 + 520 + 150 b)702 + 159 +100

a)390 + 520 + 150 b)702 + 159 +100 Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses

Plus en détail

Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un

Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches Combien y a-t-il de façons de monter un escalier de marche? De marches? De marches? De marches? De

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

CORRECTION EVALUATION FORMATIVE TEST DE NIVEAU Date : PROMOTION :

CORRECTION EVALUATION FORMATIVE TEST DE NIVEAU Date : PROMOTION : CORRECTION EVALUATION FORMATIVE TEST DE NIVEAU Date : PROMOTION : OJECTIFS : 1/ Evaluer le degré des connaissances acquises nécessaires à l administration des médicaments à diluer. 2/ Evaluer les capacités

Plus en détail

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi! Jour Prêt(e) pour le CE Tu es maintenant au CE. vant de commencer les leçons, nous allons réviser avec toi! Géométrie Retrouver un itinéraire en tenant compte des informations. Lis les explications de

Plus en détail

SÉQUENCE 4 Séance 1. Séquence. Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1

SÉQUENCE 4 Séance 1. Séquence. Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1 c Séquence 4 Ce que tu devais faire Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1 SÉQUENCE 4 Séance 1 Les commentaires du professeur 1) Pour calculer combien Paul dépense, on effectue

Plus en détail

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................

Plus en détail

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement. «Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

PRATIQUE DU COMPAS ou

PRATIQUE DU COMPAS ou PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par

Plus en détail

MATHEMATIQUES GRANDEURS ET MESURES

MATHEMATIQUES GRANDEURS ET MESURES FICHE GM.01 Objectif : Choisir la bonne unité de mesure Pour chaque objet, choisis entre les trois propositions celle qui te paraît la plus juste : ta règle ton cahier une coccinelle ta trousse la Tour

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES) EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005 UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.

Plus en détail

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE PROPORTIONNALITÉ LES ÉCHELLES 0 000 000 Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C.D.R. AGRIMEDIA

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

2 Nombres. 1. Les nombres cardinaux 2. Les nombres ordinaux. Nous venons d'assister au lancement de la première mission humaine vers Mars!

2 Nombres. 1. Les nombres cardinaux 2. Les nombres ordinaux. Nous venons d'assister au lancement de la première mission humaine vers Mars! 2 Nombres 1. Les nombres cardinaux 2. Les nombres ordinaux...3, 2, 1, 0! Nous venons d'assister au lancement de la première mission humaine vers Mars! Unité 2.1 Les nombres cardinaux On utilise les nombres

Plus en détail

Note de cours. Introduction à Excel 2007

Note de cours. Introduction à Excel 2007 Note de cours Introduction à Excel 2007 par Armande Pinette Cégep du Vieux Montréal Excel 2007 Page: 2 de 47 Table des matières Comment aller chercher un document sur CVMVirtuel?... 8 Souris... 8 Clavier

Plus en détail

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice) Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés

Plus en détail

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Q.C.M. Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Exercice 1 On considère les trois nombres A, B et C : 2 x (60 5 x 4 ²) (8 15) Calculer

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français

Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,

Plus en détail

V- Manipulations de nombres en binaire

V- Manipulations de nombres en binaire 1 V- Manipulations de nombres en binaire L ordinateur est constitué de milliards de transistors qui travaillent comme des interrupteurs électriques, soit ouverts soit fermés. Soit la ligne est activée,

Plus en détail

Le verbe être au présent - 1

Le verbe être au présent - 1 Le verbe être au présent - 1 A. Je conjugue le verbe être. Je.............................. B. Je réponds aux questions à la forme affirmative. Exemples : Est-elle malade? Oui, elle est malade. Sont-ils

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés Réseau d Éducation Prioritaire de Harnes Défis-math 2001-2009 Énoncés Défi-math 2001 Défi-math 2001 Défi n 1 On ne peut se déplacer dans ce labyrinthe qu en montant vers une case contenant un nombre plus

Plus en détail

Math 5 Dallage Tâche d évaluation

Math 5 Dallage Tâche d évaluation Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.

Plus en détail

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Plus petit, plus grand, ranger et comparer

Plus petit, plus grand, ranger et comparer Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit

Plus en détail

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie? Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Document d aide au suivi scolaire

Document d aide au suivi scolaire Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Activités de mesures sur la masse à l aide d unités de mesure conventionnelles. L unité de mesure la plus appropriée

Activités de mesures sur la masse à l aide d unités de mesure conventionnelles. L unité de mesure la plus appropriée Activités de mesures sur la masse à l aide d unités de mesure conventionnelles L unité de mesure la plus appropriée Dans cette activité, l élève choisit l unité de mesure la plus appropriée pour déterminer

Plus en détail

My Custom Design ver.1.0

My Custom Design ver.1.0 My Custom Design ver.1.0 Logiciel de création de données de broderie Mode d emploi Avant d utiliser ce logiciel, veuillez lire attentivement ce mode d emploi pour bien l utiliser correctement. Conservez

Plus en détail

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur I- Ouverture d une nouvelle feuille de travail Fichier / Nouveau (ou ctrl + N) Indiquer dans la fenêtre qui s ouvre

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,

Plus en détail

Je fais le point 1. PrénoM :... Il y a... oiseaux. Guide de l enseignant p.64. Écris les nombres dictés. Écris les nombres effacés par Gribouille.

Je fais le point 1. PrénoM :... Il y a... oiseaux. Guide de l enseignant p.64. Écris les nombres dictés. Écris les nombres effacés par Gribouille. 1 Guide de l enseignant p.64 Écris les nombres dictés. Je fais le point 1 PrénoM :.... 2 Écris les nombres effacés par Gribouille. 2 20 1 4 11 10 1 16 1 3 Écris combien il y a d oiseaux. sur l image d

Plus en détail

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral Chapitre 3 cent NOMBRS 5 T RPÉRAGȘ RLATIFS Notion de nombre relatif 3 Comparaison 9 mille Repérage sur une droite et dans le plan Calcul littéral ACTIVITÉS USAG DS NOMBRS RLATIFS ACTIVITÉ Dans la vie quotidienne

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

L addition mentale. Entrée en matière. À ton tour. Évaluation : Question 4. Évaluation continue : Observer et écouter

L addition mentale. Entrée en matière. À ton tour. Évaluation : Question 4. Évaluation continue : Observer et écouter L addition mentale LA LEÇON EN BREF de 40 à 50 min Objectif du curriculum : Utiliser différentes stratégies pour résoudre mentalement des calculs portant sur l addition de nombres à 3 chiffres. (N12) Matériel

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail