Algèbre bilinéaire. Chapitre Forme bilinéaire, forme bilinéaire symétrique, forme quadratique

Dimension: px
Commencer à balayer dès la page:

Download "Algèbre bilinéaire. Chapitre Forme bilinéaire, forme bilinéaire symétrique, forme quadratique"

Transcription

1 Table des matières 8 Algèbre bilinéaire 81 Forme bilinéaire, forme bilinéaire symétrique, forme quadratique 8 Espaces euclidiens 4 81 Produit scalaire 4 8 Orthogonalité 8 83 Bases orthonormales 1 83 Diagonalisation des matrices symétriques Formes quadratiques sur R n 14 1

2 Chapitre 8 Algèbre bilinéaire Dans tout ce chapitre E désigne un R-espace vectoriel 81 Forme bilinéaire, forme bilinéaire symétrique, forme quadratique Dénition 811 On appelle forme bilinéaire sur E E (on dit aussi : sur E) toute application ϕ : E E E (u, v) ϕ(u, v) telle que : Pour tout triplet (u, v, v ) d'éléments de E et tout réel λ, ϕ(u, v + λv ) = ϕ(u, v) + λϕ(u, v ) (ϕ est linéaire par rapport à la seconde place) Pour tout triplet (u, u, v) d'éléments de E et tout réel λ, ϕ(u + λu, v) = ϕ(u, v) + λϕ(u, v) (ϕ est linéaire par rapport à la première place) Remarque 81 En particulier, si ϕ est une forme bilinéaire sur E, on a, pour tout vecteur u de E : ϕ(u, E ) = et ϕ( E, u) = Exercice 1 Exercice 1 de la feuille d'exercices distribuée Exemple 813 Les applications suivantes sont des formes bilinéaires : ϕ : R 3 R 3 R ((x, y, z), (x, y, z )) xx + yy + zz ϕ : R R R R R (f, g) f( 1)g() + f()g( 1) ϕ : R R R ((x 1, y 1 ), (x, y )) x 1 y + x y 1

3 Exercice Soient (u 1, u, u 3 ) et (v 1, v, v 3, v 4 ) deux familles d'éléments de E Soient (λ 1, λ, λ 3 ) et (µ 1, µ, µ 3, µ 4 ) deux familles de réels Soit ϕ une forme bilinéaire sur E En utilisant la bilinéarité de ϕ, exprimer ϕ (λ 1 u 1 + λ u + λ 3 u 3, µ 1 v 1 + µ v + µ 3 v 3 + µ 4 v 4 ) en fonction des éléments de la famille (ϕ(u i, v j )) 1 i 3,1 j 4 Proposition 814 Soient n et p deux entiers strictement positifs Soient (u 1,, u n ) et (v 1,, v p ) deux familles d'éléments de E Soient (λ 1,, λ n ) et (µ 1,, µ p ) deux familles de réels Soit ϕ une forme bilinéaire sur E On a l'égalité suivante : p p ϕ λ i u i, µ j v j = λ i µ j ϕ (u i, v j ) j=1 j=1 Démonstration : laissée au lecteur qui pourra s'inspirer de l'exercice précédent Dénition 815 Soit ϕ une forme bilinéaire sur E On dit que ϕ est une forme bilinéaire symétrique sur E si et seulement si, pour tout couple (u, v) de E, on a : ϕ(u, v) = ϕ(v, u) Exercice 3 Vérier que les trois formes bilinéaires de l'exemple vu plus haut sont symétriques Remarque 816 Pour montrer qu'une application ϕ de E E dans R est une forme bilinéaire symétrique, il (faut et il) sut d'établir que ϕ est symétrique et linéaire par rapport à la seconde place (le détail de la justication est laissée au lecteur : on obtient la linéarité par rapport à la première place en utilisant le caractère symétrique de ϕ, puis la linéarité de ϕ par rapport à la seconde place, puis de nouveau la symétrie de ϕ) Dénition 817 Etant donnée une forme bilinéaire symétrique ϕ sur E, on appelle forme quadratique associée à ϕ, l'application suivante : Φ : E R u ϕ(u, u) 3

4 Exercice 4 Exercices et 3 de la feuille d'exercices distribuée Proposition 818 (identités de polarisation ) Soit Φ une forme quadratique sur E Il existe une unique forme bilinéaire symétrique, appelée forme polaire de Φ telle que, pour tout vecteur u de E, Φ(u) = ϕ(u, u) Cette forme bilinéaire est dénie, pour tout couple (u, v) de E E, par l'une des trois égalités suivantes : ϕ(u, v) = 1 (Φ(u + v) Φ(u) Φ(v)) ϕ(u, v) = 1 (Φ(u) + Φ(v) Φ(u v)) ϕ(u, v) = 1 (Φ(u + v) Φ(u v)) 4 Démonstration : immédiat avec l'exercice précédent (l'existence découle de la dénition et l'unicité de l'une, au choix, des trois égalités -deux fomes bilinéaires convenant coïncident en tout couple (u, v) de E donc sont égales-) Remarque 819 La dernière partie de ce chapitre est dédiée à l'étude des formes quadratiques sur R n Les résultats de cette partie sont fondamentaux car ils seront réutilisés dans le chapitre sur les fonctions de plusieurs variables 8 Espaces euclidiens 81 Produit scalaire Dénition 81 Soit ϕ une forme bilinéaire symétrique dénie sur E On dit que ϕ est positive si et seulement si, pour tout vecteur u de E, on a ϕ(u, u) On dit que ϕ est dénie-positive si et seulement si, pour tout vecteur u de E non nul, on a ϕ(u, u) > Remarque 8 Le caractère positif ou déni-positif d'une forme bilinéaire ϕ se lit sur la forme quadratique Φ associée à ϕ puisque, pour tout vecteur u de E, on a ϕ(u, u) = Φ(u) C'est la raison pour laquelle on parle aussi du caractère positif et du caractère déni-positif d'une forme quadratique On dénit de manière analogue le caractère négatif et le caractère déni-négatif d'une forme bilinéaire symétrique (ou d'une forme quadratique) Dénition 83 (Produit scalaire, espace euclidien ) On appelle produit scalaire sur E, toute forme bilinéaire symétrique dénie-positive Un espace vectoriel muni d'un produit scalaire est appelé espace euclidien Remarque 84 On trouve aussi régulièrement les notations, < u, v >, (u, v) et uv à la place de ϕ(u, v) lorsque ϕ est un produit scalaire Nous utiliserons d'ailleurs systématiquement la notation <, > à partir de la partie 8 Exercice 5 Exercices 4 et 5 de la feuille d'exercices distribuée 4

5 Exemple 85 Soient n et p deux entiers strictement positifs Soient a et b deux réels tels que a < b Les applications suivantes sont des produits scalaires : ϕ : R n R n R ((x 1,, x n ), (y 1,, y n )) x i y i (ce produit scalaire est appelé produit scalaire usuel sur R n ) ϕ : M n,p (R) M n,p (R) R (A, B) tr (t AB ) (ce produit scalaire est appelé produit scalaire usuel sur M n,p (R)) ϕ : C ([a, b], R) C ([a, b], R) R (f, g) b a f(t)g(t) dt (ce produit scalaire est appelé produit scalaire usuel sur C ([a, b], R)) Théorème 86 (Inégalité de Cauchy-Schwarz ) Soit ϕ un produit scalaire sur E Soient u et v deux éléments de E On note Φ la forme quadratique associée à ϕ On a l'inégalité suivante : (ϕ(u, v)) Φ(u)Φ(v) Démonstration : Introduisons la fonction P suivante : P : R R λ Φ(u + λv) Comme ϕ est un produit scalaire sur E, ϕ est une forme bilinéaire positive sur E donc on a, pour tout réel λ : P (λ) = ϕ(u + λv, u + λv) De plus, pour tout réel λ, on a, par bilinéarité et symétrie du produit scalaire ϕ : P (λ) = ϕ (u + λv, u + λv) = ϕ(u, u) + λϕ(v, u) + λϕ(u, v) + λ ϕ(v, v) = λ ϕ(v, v) + λϕ(u, v) + ϕ(u, u) Donc P est un polynôme Dans le cas ϕ(v, v) =, on a v = E (car ϕ est un produit scalaire) et le résultat est donc clair (ϕ(u, v) = = ϕ(v, v)ϕ(u, u)) Dans le cas ϕ(v, v) >, P est un polynôme du second degré à valeurs positives Son discriminant est négatif ou nul, c'est-à-dire que l'on a : d'où le résultat 4 (ϕ(u, v)) 4ϕ(u, u)ϕ(v, v) Remarque 87 Du théorème précédent on déduit que l'on a aussi les inégalités (avec les mêmes notations) : ϕ(u, v) ϕ(u, v) Φ(u) Φ(v) ( Φ(u) et Φ(u) sont bien dénie car ϕ est une forme bilinéaire symétrique positive) On peut montrer (en utilisant le fait qu'un polynôme de degré de disciminant nul admet une racine et le caractère déni-positif de ϕ) que l'on a égalité dans l'inégalité de Cauchy-Schwarz si et seulement si la famille (u, v) est liée 5

6 Exemple 88 Soient x, y et z trois réels En appliquant l'inégalité de Cauchy-Schwarz avec le produit scalaire usuel de R 3 u = (x, y, z) et v = (1, 1, 1), on obtient que l'on a : et les vecteurs x + y + z x + y + z 3 x + y + z Exercice 6 Exercice 6 de la feuille d'exercices distribuée Théorème 89 (Inégalité de Minkowski ) Soit ϕ un produit scalaire sur E Soient u et v deux éléments de E On note Φ la forme quadratique associée à ϕ On a l'inégalité suivante : Φ(u + v) Φ(u) + Φ(v) Démonstration : On a : D'où : Φ(u + v) = ϕ(u + v, u + v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v) = Φ(u) + Φ(v) + ϕ(u, v) ( Φ(u) + Φ(v) ) ( Φ(u + v) ) = Φ(u) + Φ(v) + Φ(u) Φ(v) Φ(u + v) = Φ(u) + Φ(v) + Φ(u) Φ(v) (Φ(u) + Φ(v) + ϕ(u, v)) ( ) = Φ(u) Φ(v) ϕ(u, v) Or l'inégalité de Cauchy-Schwarz permet d'armer que l'on a Φ(u) ( ) ( ) Φ(v) ϕ(u, v), d'où Φ(u) + Φ(v) Φ(u + v) et donc le résultat Exemple 81 Soient f et g deux fonctions continues sur [, 1] à valeurs dans R On a l'inégalité : (f(t) + g(t)) dt (f(t)) dt + (g(t)) dt Théorème 811 Soit ϕ un produit scalaire sur E On note Φ la forme quadratique associée à ϕ L'application : : E R u ( Φ(u) = ) ϕ(u, u) est une norme sur E, appelée norme associée à ϕ Démonstration : le lecteur établira facilement, avec ce qui précède, que, pour tout u de E, on a u ; que, pour tout u de E, on a u = si et seulement si u = ; que, pour tout u de E et tout réel λ, on a λu = λ u et que, pour tout couple (u, v) de E, on a u + v u + v Remarque 81 L'inégalité de Cauchy-Schwartz se réécrit donc, en notant <, > le produit scalaire et la norme associée : (u, v) E, < u, v > u v 6

7 L'inégalité de Minkowski s'interprête facilement graphiquement dans le cas de R muni de son produit scalaire usuel (et aussi dans le cas de R 3 muni de son produit scalaire usuel) : Exercice 7 1) On munit R du produit scalaire usuel Déterminer la norme des vecteurs u = (3, ) et v = ( 1, 1) ) On rappelle que la représentation graphique des vecteurs u et v est la suivante : Comment peut-on interpréter la norme d'un vecteur (dans ce contexte)? Remarque 813 Dans R muni du produit scalaire usuel, l'inégalité de Minkowski s'interprête géométriquement de la façon suivante : 7

8 8 Orthogonalité Dénition 814 Soit <, > un produit scalaire sur E On note la norme associée à ce produit scalaire On dit que deux vecteurs u et v de E sont orthogonaux si et seulement si < u, v >= Lorsque c'est le cas, on note u v Une famille (u i ) i I d'éléments de E est dite orthogonale si et seulement si, pour tout couple (i, j) d'éléments distincts de I, on a u i u j Une famille (u i ) i I d'éléments de E est dite orthonormale (ou orthonormée) si et seulement si, elle est orthogonale et que, pour tout élément i de I, on a u i = 1 Exemple 815 Les matrices en eet : tr ( t( 1 1 ( 1 1 ) et ) ( 1 ( 1 )) ) sont orthogonales pour le produit scalaire usuel sur M (R), (( 1 1 = tr ) ( 1 )) ( 1 = tr 4 ) = + ( ) = La famille ( (1, 1, 1), (1, 1, ), ( 3 4, 3 4, 3 )) est une famille orthogonale pour le produit scalaire usuel de R 3 En eet : Cette famille n'est pas orthonormale car : < (1, 1, 1), (1, 1, ) > = 1 + ( 1) + = ( 3 < (1, 1, 1), 4, 3 4, 3 ) > = 3 ( ) = ( 3 < (1, 1, ), 4, 3 4, 3 ) > = = (1, 1, 1) = < (1, 1, 1), (1, 1, 1) > = = 3 1 La famille ((1, ), (, 1)) est une famille orthonormale pour le produit scalaire usuel de R Remarque 816 La bilinéraité du produit scalaire implique que si u et v sont deux vecteurs orthogonaux alors, pour tous réels λ et µ, les vecteurs λu et µv sont orthogonaux 8

9 Exemple 817 Comme les vecteurs (1, 1, 1) et (1, 1, ) sont orthogonaux pour le produit scalaire usuel de R 3 les vecteurs (3, 3, 3) et ( 5, 5, ) le sont aussi Proposition 818 (Théorème de Pythagore ) Soit <, > un produit scalaire sur E Soient u et v deux éléments de E On a l'équivalence : u + v = u + v u v Démonstration : On a les équivalences suivantes : u + v = u + v < u + v, u + v >=< u, u > + < v, v > < u, u > + < u, v > + < v, v >=< u, u > + < v, v > < u, v >= u v d'où le résultat Remarque 819 Dans R muni du produit scalaire usuel, le théorème de Pythagore s'interprête géométriquement de la façon suivante : Le triangle ABC est rectangle en B si et seulement si AC = AB + BC Proposition 8 Soit <, > un produit scalaire sur E Soient m un entier strictement positif et (u 1,, u m ) une famille de vecteurs de E On suppose que la famille (u 1,, u m ) est orthogonale (pour le produit scalaire <, >) On a le résultat suivant : m m u i = u i Démonstration : On a : m u i = < = = = m m u i, u j > j=1 m m < u i, u j > (d'après la proposition (814)) j=1 m < u i, u i > + < u i, u j > }{{} j [1,m ]\{i} = m u i (car la famille (u 1,, u m) est orthogonale) 9

10 Dénition 81 (orthogonal d'une partie ) Soient <, > un produit scalaire sur E et A une partie non vide de E L'ensemble des vecteurs de E orthogonaux (pour le produit scalaire <, >) à tous les vecteurs de A est appelé orthogonal de A et est noté A Autrement écrit on a : A = {w E ; u A, < w, u >= } Exemple 8 On considère le sous-ensemble A de R 3 déni par A = { (x,, z), (x, z) R } ( j ) On a, pour le produit scalaire usuel de R 3, A = {(, y, ), y R} (= Vect avec les notations de la représentation graphique) Exercice 8 Exercices 7 et 8 de la feuille d'exercices distribuée 83 Bases orthonormales Exercice 9 Soient <, > un produit scalaire sur E et (u 1, u, u 3, u 4 ) une famille orthogonale (pour le produit scalaire <, >) de vecteurs non nuls de E Montrer que la famille (u 1, u, u 3, u 4 ) est libre 1

11 Proposition 83 Soit <, > un produit scalaire sur E Toute famille orthogonale (pour le produit scalaire <, >) de vecteurs non nuls de E est libre Démonstration : laissée au lecteur (qui pourra raisonner par récurrence et s'inspirer de l'exercice précédent) Exercice 1 Exercice 9 de la feuille d'exercices distribuée Proposition 84 (Algorithme de Gram-Schmidt ) Soient <, > un produit scalaire sur E et (v 1,, v m ) une famille libre de vecteurs de E Il existe une famille orthogonale (pour le produit scalaire <, >) (V 1,, V m ) de vecteurs non nuls de E telle que, pour tout k de [1, m], Vect (V 1,, V k ) = Vect (v 1,, v k ) Démonstration : laissée au lecteur (qui pourra s'inspirer de l'exercice précédent) Remarque 85 On peut facilement déduire d'une famille orthogonale (V 1,, V m ) de vecteurs non ( nuls de E, une famille orthonormale de vecteurs de E, la famille suivante (par exemple) convient : ) V1 V 1,, V m V m Théorème 86 On suppose que E est de dimension nie strictement positive Soient <, > un produit scalaire sur E et F un sous-espace vectoriel de E de dimension strictement positive On a les résultats d'existence suivants : L'espace vectoriel F admet au moins une base orthonormale (pour le produit scalaire <, >) Toute base orthonormale de F peut être complétée en une base orthonormale de E (pour le produit scalaire <, >) Démonstration : immédiat avec l'algorithme de Gram-Schmidt qui permet d'obtenir une base orthonomale à partir d'une base Exemple 87 La base orthonormale ( u, v ) de F suivante peut être complétée en la base orthonormale ( u, v, w ) de R 3 (pour le produit scalaire usuel) : 11

12 Proposition 88 On suppose que E est de dimension nie strictement positive n Soient <, > un produit scalaire sur E et B = (e 1,, e n ) une base orthonormale de E (pour le produit scalaire <, >) Soient u et v deux vecteurs de E On note (λ 1,, λ n ) le n-uplet de coordonnées de u dans la base B, (µ 1,, µ n ) le n-uplet de coordonnées de v dans la base B, U la matrice-colonne de M n,1 (R) dénie par U = par V = < u, v >= u = Démonstration : µ 1 µ n λ 1 λ n (ie U = Mat B (u)) et V la matrice-colonne de M n,1 (R) dénie (ie V = Mat B (v)) On a les résultats suivants : λ i µ i = t UV λ i = t UU On a : < u, v > = < λ i e i, µ j e j > Or : D'où le résultat = = = j=1 λ i µ j < e i, e j > (d'après la proposition (814)) j=1 λ i µ i < e i, e i > + λ i µ j < e i, e j > }{{}}{{} j [1,n ]\{i} =1 = λ i µ i tuv = ( µ 1 ) λ 1 λ n = µ n (car la famille (e 1,, e n) est orthonormale) n λ i µ i C'est un cas particulier du 1 er point On peut aussi conclure avec la proposition (8) Proposition 89 Soient <, > un produit scalaire sur E et B = (e 1,, e n ) une base orthonormale de E (pour le produit scalaire <, >) Pour tout vecteur u de E, on a : u = < u, e i > e i Démonstration : Soit u un vecteur de E Comme la famille B est une base de E il existe un n-uplet de réels (λ 1,, λ n) de réels tels que u = λ i e i Pour tout j de [[1, n]], on a donc : D'où : u = < u, e j >=< λ i e i, e, j >= λ i < e i, e j >= λ j < e j, e j > + λ i < e i, e j > = λ j }{{}}{{} i [1,n ]\{j} =1 = λ i e i et donc le résultat 1

13 Remarque 83 Le deuxième point de la proposition précédente se réécrit donc (avec les mêmes notations) : u = < u, e i > 83 Diagonalisation des matrices symétriques Exercice 11 Exercice 1 de la feuille d'exercices distribuée Théorème 831 Soit A une matrice de M n (R) On suppose que A est symétrique Il existe une matrice inversible P de M n (R) et une matrice diagonale D de M n (R) telles que A = P DP 1 et P 1 = t P Démonstration : ce théorème est admis Remarque 83 On peut montrer que toute famille obtenue en juxtaposant des bases orthonormales de sous-espaces propres de A associés à des valeurs propres deux à deux distinctes est une famille orthonormale (pour le produit scalaire de R n ; on identie ici A et l'endomorphisme de R n qui lui est canoniquement associé, ce qui est la convention habituelle) On retiendra donc qu'étant donnée une matrice symétrique réelle A de M n (R), pour obtenir une matrice inversible P de M n (R) telle que P 1 = t P et P 1 AP soit une matrice diagonale, il sut de déterminer des bases orthonormales des sous-espaces propres de A puis de juxtaposer ces bases Exemple 833 La diagonalisation de la matrice A = et 1 A = 1 = permet d'armer que l'on a :

14 84 Formes quadratiques sur R n Exemple 841 Exercice 15 de la feuille d'exercices distribuée Proposition 84 Soient n un entier strictement positif Soit q une application dénie sur R n, à valeurs dans R Pour que q soit une forme quadratique, il faut et il sut qu'il existe une famille de réels (a i,j ) 1 i j n telle que, pour tout n-uplet (x 1,, x n ) de R n, on ait : q(x 1,, x n ) = a i,j x i x j Lorsque c'est le cas, cette famille est unique 1 i j n Démonstration : laissée au lecteur (qui pourra s'inspirer de l'exercice précédent) Exemple 843 L'application : q : R 3 R (x, y, z) x + 4xy 1xz + 3y + 5yz z (que l'on peut réécrire q : R 3 R ) est une forme quadratique sur R 3 (x 1, x, x 3 ) x 1 + 4x 1 x 1x 1 x 3 + 3x + 5x x 3 x 3 Dénition-Proposition 844 Soient n un entier strictement positif et q une forme quadratique sur R n On note (a i,j ) 1 i j n la famille de réels telle que, pour tout n-uplet (x 1,, x n ) de R n, q(x 1,, x n ) = a i,j x i x j et A la matrice dénie par A = a 1,1 a 1, a 1,n a 1, a a,n, a 1,n Pour tout n-uplet (x 1,, x n ) de R n : où X = x 1 x n a n 1,n a n,n q(x 1,, x n ) = t XAX 1 i j n La matrice A est symétrique et est appelée matrice de q (on dit aussi que q est la forme quadratique associée à la matrice A) Démonstration : laissée au lecteur (qui pourra s'inspirer de l'exercice précédent) Remarque 845 On se permet souvent de parler du caractère déni-positif, positif, négatif ou déni-négatif d'une matrice symétrique -alors qu'en toute rigueur ces notions ne sont dénies que sur la forme quadratique associée à cette matrice- 14

15 Exemple 846 L'application : q : R 3 R est une forme quadratique (x, y, z) x + 4xy 1xz + 3y + 5yz z Sa matrice est L'application : q : R 3 R (x, y, z) x + 5xz + 3y 6yz 5 est La forme quadratique associée à la matrice est une forme quadratique Sa matrice est l'application : q : R 4 R (x, y, z, t) x + 3xy xt + 3y + yz 7yt + 6zt t Exercice 1 Exercice 16 de la feuille d'exercices distribuée Théorème-Dénition 847 (Décomposition de Gauss d'une forme quadratique ) Soient n un entier strictement positif et q une forme quadratique, non nulle, sur R n Il existe un entier p appartenant à [1, n], des formes linéaires l 1,, l p appartenant à L(R n, R) linéairement indépendantes et des réels non nuls λ 1,, λ p tels que, pour tout n-uplet (x 1,, x n ) de R n : p q(x 1,, x n ) = λ i l i (x 1,, x n ) Le couple (s, t), où s désigne le nombre de réels de la famille (λ i ) 1 i p qui sont strictement positifs et t le nombre de réels de la famille (λ i ) 1 i p qui sont strictement négatifs est appelé signature de la forme quadratique q Le rang de la forme quadratique q est le nombre de réels de la famille (λ i ) 1 i n qui sont non nuls Démonstration : on admet ce résultat qui généralise ce qui a été constaté sur quelques cas particuliers dans l'exercice précédent Remarque 848 Par convention la signature d'une forme quadratique nulle est (, ) Si q est une forme quadratique de signature (s, t) alors le rang de q est égal à s + t 15

16 Proposition 849 Soient n un entier strictement positif et q une forme quadratique sur R n On note (s, t) la signature de q On a les résultats suivants : q est dénie-positive si et seulement si s = n q est positive si et seulement si t = q est dénie-négative si et seulement si t = n q est négative si et seulement si s = q n'est pas positive ni négative si et seulement si s > et t > Démonstration : laissée au lecteur Exercice 13 Exercices 17 et 18 de la feuille d'exercices distribuée Théorème 841 Soient n un entier strictement positif et q une forme quadratique, non nulle, sur R n On note A la matrice de q Comme A est symétrique, il existe un entier p appartenant à [1, n] et des a 1 ap réels non nuls a 1,, a p tels que A est semblable à la matrice On a les résultats suivants : q est dénie-positive si et seulement si p = n et, pour tout i de [1, n], a i > q est positive si et seulement si, pour tout i de [1, p], a i > q est dénie-négative si et seulement si p = n et, pour tout i de [1, n], a i < q est négative si et seulement si, pour tout i de [1, p], a i < q n'est pas positive ni négative si et seulement si il existe un couple (i, j) d'éléments de [1, p] tel que a i > et a j < Démonstration : laissée au lecteur qui pourra s'inspirer de l'exercice précédent Remarque 8411 Plus généralement, en notant s le nombre de réels de la famille (a i ) 1 i p qui sont strictement positifs et t le nombre de réels de la famille (a i ) 1 i p qui sont strictement négatifs, la signature de q est (s, t) On reprend les notations du théorème (847) : on note (λ i ) 1 i p la famille de réels intervenant dans la décomposition de Gauss de la forme quadratique associée à A Le nombre de réels positifs (respectivement négatifs) de la famille (a i ) 1 i p est égal au nombre de réels positifs (respectivement négatifs) de la famille (λ i ) 1 i p mais ces familles sont en général distinctes 16

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1 [http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume

Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume Introduction a l'algorithmique des objets partages Bernadette Charron{Bost Robert Cori Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France, charron@lix.polytechnique.fr cori@lix.polytechnique.fr Antoine

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2 33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Équations non linéaires

Équations non linéaires CHAPTER 1 Équations non linéaires On considère une partie U R d et une fonction f : U R d. On cherche à résoudre { x U 1..1) f x) = R d On distinguera les cas d = 1 et d > 1. 1.1. Dichotomie d = 1) 1.1.1.

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2 CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en

Plus en détail

108y= 1 où x et y sont des entiers

108y= 1 où x et y sont des entiers Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble

Plus en détail

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Licence de Mathématiques 3

Licence de Mathématiques 3 Faculté des sciences et techniques Département de mathématiques 2004-2005 Licence de Mathématiques 3 M62 : Fonctions réelles de plusieurs variables Laurent Guillopé www.math.sciences.univ-nantes.fr/~guillope/m62/

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Calcul Différentiel. I Fonctions différentiables 3

Calcul Différentiel. I Fonctions différentiables 3 Université de la Méditerranée Faculté des Sciences de Luminy Licence de Mathématiques, Semestre 5, année 2008-2009 Calcul Différentiel Support du cours de Glenn Merlet 1, version du 6 octobre 2008. Remarques

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3 Déterminants Marc SAGE 9 août 28 Table des matières Quid des formes n-linéaires alternées? 2 2 Inverses et polynômes 3 3 Formule de Miller pour calculer un déterminant (ou comment illustrer une idée géniale)

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

C1 : Fonctions de plusieurs variables

C1 : Fonctions de plusieurs variables 1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Cinétique et dynamique des systèmes de solides

Cinétique et dynamique des systèmes de solides Cinétique et dynamique des systèmes de solides Page 2/30 CINÉTIQUE des systèmes matériels... 3 1.) Notion de masse...3 2.) Centre de masse d'un ensemble matériel...4 3.) Torseurs cinétique et dynamique...6

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Fonctions de plusieurs variables et changements de variables

Fonctions de plusieurs variables et changements de variables Notes du cours d'équations aux Dérivées Partielles de l'isima, première année http://wwwisimafr/leborgne Fonctions de plusieurs variables et changements de variables Gilles Leborgne juin 006 Table des

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail