Institution Stanislas Brevet Blanc de Mathématiques Mai

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1"

Transcription

1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction : /4 ACTIVITES NUMERIQUES /12 Exercice 1 : On donne : A = B = ,6 0, C = ( )² ) Ecrire A sous la forme d une fraction irréductible. 2) Donner l écriture scientifique de B. 3) Montrer que C est un nombre entier. Exercice 2 : Pour chaque question, écrire la lettre correspondant à la bonne réponse. Vous reporterez le numéro de la question avec la lettre correspondant à votre réponse sur votre copie. Aucune justification n est demandée. Réponses A B C 1 Quelle expression est égale à 6 si on choisit la valeur x = -1? -3x² 6(x + 1) 5x² Le développement de (x + 3)(2x + 4) 2(5x + 6) est : 2x² 2x² + 20x x² La factorisation de 9x² - 16 est : (3x 4)² (3x + 4)(3x 4) (3x + 4)² 4 Les solutions de l équation (x 5)(3x + 4) = 0 sont : 4 3 et et et - 5 Institution Stanislas Brevet Blanc de Mathématiques Mai

2 Exercice 3 : ABCD est un rectangle et M est un point appartenant au côté [CD]. Toutes les longueurs sont exprimées en centimètres. On souhaite savoir où placer le point M pour que l aire du rectangle ADMT soit inférieure à l aire du rectangle MCRS x 1) On appelle x la longueur DM. Exprimer l aire du rectangle ADMT en fonction de x. 2) Exprimer l aire du rectangle MCRS en fonction de x. 3) Quelle inéquation permet de traduire l information suivante : «L aire du rectangle ADMT doit être inférieure à celle du rectangle MCRS»? 4) Résoudre l inéquation suivante : 4x < 3(7 x) Représenter ses solutions sur une droite graduée. 5) Conclure. Exercice 4 : 1) Résoudre le système d équations ci-dessous : 4a + 8b = 12 2a + b = 2,7 2) A la boulangerie, Marie achète deux croissants et quatre pains aux raisins pour 6. Dans la même boulangerie, Karim achète deux croissants et un pain aux raisins pour 2,70. Quel est le prix d un croissant? Quel est le prix d un pain aux raisins? Institution Stanislas Brevet Blanc de Mathématiques Mai

3 ACTIVITES GEOMETRIQUES /12 Exercice 1 : 1) Construire un triangle ABC tel que : AB = 7,5 cm ; BC = 10 cm et AC = 12,5 cm. 2) Prouver que le triangle ABC est rectangle en B. 3) a) Construire le point F appartenant au segment [AC] tel que CF = 5 cm. b) Construire le point G appartenant au segment [BC] tel que CG = 4 cm. 4) Montrer que les droites (AB) et (FG) sont parallèles. 5) Montrer que la longueur FG est égale à 3 cm. 6) Les droites (FG) et (BC) sont-elles perpendiculaires? Justifier. Exercice 2 En Travaux Pratiques de Chimie, les élèves utilisent des récipients, appelés erlenmeyers, comme celui schématisé ci-dessous à droite. Le récipient est rempli d eau jusqu au niveau maximum indiqué sur le schéma par une flèche. On note : C 1 le grand cône de sommet S et de base le disque de centre O et de rayon OB. C 2 le petit cône de sommet S et de base le disque de centre O et de rayon O B. On donne SO = 12 cm et OB = 4 cm. 1) Le volume d un cône de révolution de rayon R et de hauteur h est donné par la formule : Calculer la valeur exacte du volume du cône C 1. V = 1 3 π R² h 2) Le cône C 2 est une réduction du cône C 1. On donne SO = 3 cm. a) Quel est le coefficient de cette réduction? b) Prouver que la valeur exacte du volume du cône C 2 est égale à π cm 3. 3) a) En déduire que la valeur exacte du volume d eau contenue dans le récipient, en cm 3, est 63π. b) Donner la valeur approchée de ce volume d eau arrondie au cm 3 près. 4) Ce volume d eau est-il supérieur à 0,2 litres? Expliquer pourquoi. Institution Stanislas Brevet Blanc de Mathématiques Mai

4 PROBLEME /12 Partie 1 Un disquaire en ligne propose de télécharger légalement de la musique. Offre A : 1,20 par morceau téléchargé avec un accès gratuit au site. Offre B : 0,50 par morceau téléchargé moyennant un abonnement annuel de 35. 1) Calculer, pour chaque offre, le prix pour 30 morceaux téléchargés par an. 2) a) Exprimer, en fonction du nombre x de morceaux téléchargés, le prix avec l offre A. b) Exprimer, en fonction du nombre x de morceaux téléchargés, le prix avec l offre B. 3) Soit f et g les fonctions définies par f : x 1,2x et g : x 0,5x + 35 a) L affirmation ci-dessous est-elle correcte? Expliquer pourquoi. «f et g sont toutes les deux des fonctions linéaires.» b) Représenter sur la feuille de papier millimétré, dans un repère orthogonal les représentations graphiques de f et g. On prendra 1 cm pour 10 morceaux en abscisse et 1 cm pour 10 en ordonnée. 4) Déterminer le nombre de morceaux pour lequel les prix sont les mêmes. 5) Déterminer l offre la plus avantageuse si on achète 60 morceaux à l année. 6) Si on dépense 80, combien de morceaux peut-on télécharger avec l offre B? Partie 2 On admet qu un morceau de musique représente 3 Mo de mémoire. (1 Mo = 1 méga-octet) 1) Combien de morceaux de musique peut-on télécharger sur une clé USB d une capacité de 256 Mo? La vitesse de téléchargement d un morceau de musique sur le site est de 10 Mo/s (méga-octet par seconde) 2) Combien de morceaux peut-on télécharger en deux minutes? Institution Stanislas Brevet Blanc de Mathématiques Mai

5 ACTIVITES NUMERIQUES /12 Exercice 1 : On donne : A = B = ,6 0, C = ( )² ) Ecrire A sous la forme d une fraction irréductible. 2) Donner l écriture scientifique de B. 3) Montrer que C est un nombre entier. 1) A = = = = = ) B = = = 3, ) C = = C = est bien un entier. Exercice 2 : Pour chaque question, écrire la lettre correspondant à la bonne réponse. Vous reporterez le numéro de la question avec la lettre correspondant à votre réponse sur votre copie. Aucune justification n est demandée. Réponses A B C 1 Quelle expression est égale à 6 si on choisit la valeur x = -1? -3x² 6(x + 1) 5x² Le développement de (x + 3)(2x + 4) 2(5x + 6) est : 2x² 2x² + 20x x² La factorisation de 9x² - 16 est : (3x 4)² (3x + 4)(3x 4) (3x + 4)² 4 Les solutions de l équation (x 5)(3x + 4) = 0 sont : 4 3 et et et - 5 Institution Stanislas Brevet Blanc de Mathématiques Mai

6 Exercice 3 : ABCD est un rectangle et M est un point appartenant au côté [CD]. Toutes les longueurs sont exprimées en centimètres. On souhaite savoir où placer le point M pour que l aire du rectangle ADMT soit inférieure à l aire du rectangle MCRS x 1) On appelle x la longueur DM. Exprimer l aire du rectangle ADMT en fonction de x. 2) Exprimer l aire du rectangle MCRS en fonction de x. 3) Quelle inéquation permet de traduire l information suivante : «L aire du rectangle ADMT doit être inférieure à celle du rectangle MCRS»? 4) Résoudre l inéquation suivante : 4x < 3(7 x) Représenter ses solutions sur une droite graduée. 5) Conclure. 1) A ADMT = AD DM = 4x 2) A MCRS =CM CR = (7 x) 3 3) A ADMT < A MCRS 4x < 3(7 x) 4) 4x < 3(7 x) 4x < 21 3x 4x + 3x < 21 7x < 21 x < 21 7 x < 3 3 5) L aire du rectangle ADMT est inférieure à l aire du rectangle MCRS si DM < 3 cm. Institution Stanislas Brevet Blanc de Mathématiques Mai

7 Exercice 4 : 1) Résoudre le système d équations ci-dessous : 4a + 8b = 12 2a + b = 2,7 2) A la boulangerie, Marie achète deux croissants et quatre pains aux raisins pour 6. Dans la même boulangerie, Karim achète deux croissants et un pain aux raisins pour 2,70. Quel est le prix d un croissant? Quel est le prix d un pain aux raisins? 1) 4a + 8b = 12 2a + b = 2,7-2a - 4b =-6 2a + b = 2,7-4b + b = ,7 2a + b = 2,7-3,3 b = -3 = 1,1 2a +1,1 = 2,7 6,6 b = 6 = 1,1 2,7-1,1 a = 2 (On divise la première équation par -2.) a = 0,8 b =1,1 2) Si on désigne par a le prix d un croissant et par b le prix d un pain aux raisins. Le problème conduit au système suivant : 2a + 4b = 6 2a + b = 2,7 Ce système est équivalent à celui de la première question. Donc le prix d un croissant est 0,80 et le prix d un pain aux raisins 1,10. ACTIVITES GEOMETRIQUES /12 Exercice 1 : 1) Construire un triangle ABC tel que : AB = 7,5 cm ; BC = 10 cm et AC = 12,5 cm. 2) Prouver que le triangle ABC est rectangle en B. 3) a) Construire le point F appartenant au segment [AC] tel que CF = 5 cm. b) Construire le point G appartenant au segment [BC] tel que CG = 4 cm. 4) Montrer que les droites (AB) et (FG) sont parallèles. 5) Montrer que la longueur FG est égale à 3 cm. 6) Les droites (FG) et (BC) sont-elles perpendiculaires? Justifier. Institution Stanislas Brevet Blanc de Mathématiques Mai

8 1) Correction 2) AC² = 12,5² = 156,25 AB² + BC² = 7,5² + 10² = 156,25 On a AC² = AB² + BC², donc selon la réciproque du théorème de Pythagore le triangle ABC est rectangle B. 3) a) b) Institution Stanislas Brevet Blanc de Mathématiques Mai

9 4) CF CA = 5 12,5 = 2 5 CG CB = = 4 10 = 2 5 Les points C, F et A sont alignés dans cet ordre ainsi que les points C, G et B et CF CA = CG CB ; donc selon la réciproque du théorème de Thalès les droites (AB) et (FG) sont parallèles. 5) Les droites (AB) et (FG) étant parallèles, on peut appliquer le théorème de Thalès dans les triangles CFG et CAB : CF CA = CG CB = FG AB FG 7,5 = 2 5 FG = 7,5 2 5 = 3 cm 6) Les droites (AB) et (FG) sont parallèles et les droites (AB) et (BC) sont perpendiculaires. Si deux droites sont parallèles alors toute perpendiculaire à l une est perpendiculaire à l autre. Donc les droites (FG) et (BC) sont perpendiculaires. Exercice 2 En Travaux Pratiques de Chimie, les élèves utilisent des récipients, appelés erlenmeyers, comme celui schématisé ci-dessous à droite. Le récipient est rempli d eau jusqu au niveau maximum indiqué sur le schéma par une flèche. On note : C 1 le grand cône de sommet S et de base le disque de centre O et de rayon OB. C 2 le petit cône de sommet S et de base le disque de centre O et de rayon O B. On donne SO = 12 cm et OB = 4 cm. 1) Le volume d un cône de révolution de rayon R et de hauteur h est donné par la formule : Calculer la valeur exacte du volume du cône C 1. V = 1 3 π R² h 2) Le cône C 2 est une réduction du cône C 1. On donne SO = 3 cm. a) Quel est le coefficient de cette réduction? b) Prouver que la valeur exacte du volume du cône C 2 est égale à π cm 3. Institution Stanislas Brevet Blanc de Mathématiques Mai

10 3) a) En déduire que la valeur exacte du volume d eau contenue dans le récipient, en cm 3, est 63π. b) Donner la valeur approchée de ce volume d eau arrondie au cm 3 près. 4) Ce volume d eau est-il supérieur à 0,2 litres? Expliquer pourquoi. 1) V C1 = 1 π OB² SO = 64π cm3 3 2) a) Le coefficient de réduction est égal à SO SO = 3 12 = 1 4 b) V C2 = 1 3 V C1 4 = 1 64 Donc V C2 = π cm 3 3) a) V eau = V C1 V C2 = 64π - π = 63π cm 3 b) V eau 198 cm 3 4) V eau 0,198 L < 0,2 L (car 1 L = 1 dm 3 = cm 3 ) PROBLEME /12 Partie 1 Un disquaire en ligne propose de télécharger légalement de la musique. Offre A : 1,20 par morceau téléchargé avec un accès gratuit au site. Offre B : 0,50 par morceau téléchargé moyennant un abonnement annuel de 35. 1) Calculer, pour chaque offre, le prix pour 30 morceaux téléchargés par an. 2) a) Exprimer, en fonction du nombre x de morceaux téléchargés, le prix avec l offre A. b) Exprimer, en fonction du nombre x de morceaux téléchargés, le prix avec l offre B. 3) Soit f et g les fonctions définies par f : x 1,2x et g : x 0,5x + 35 a) L affirmation ci-dessous est-elle correcte? Expliquer pourquoi. «f et g sont toutes les deux des fonctions linéaires.» b) Représenter sur la feuille de papier millimétré, dans un repère orthogonal les représentations graphiques de f et g. On prendra 1 cm pour 10 morceaux en abscisse et 1 cm pour 10 en ordonnée. 4) Déterminer le nombre de morceaux pour lequel les prix sont les mêmes. 5) Déterminer l offre la plus avantageuse si on achète 60 morceaux à l année. 6) Si on dépense 80, combien de morceaux peut-on télécharger avec l offre B? Institution Stanislas Brevet Blanc de Mathématiques Mai

11 1) Offre A : 1,2 30 = 36 Offre B : 0, = 50 2) a) Offre A : 1,2x Offre B : 0,5x ) a) f est une fonction linéaire et affine. g est une fonction affine mais n est pas une fonction linéaire. L affirmation est donc fausse. b) 4) On détermine graphiquement l abscisse du point d intersection des deux droites : 50. Résolution algébrique : on résout l équation f(x) = g(x) 1,2x = 0,5x ,2x 0,5x = 35 0,7x = 35 x = 35 0,7 = 50 Les prix sont les mêmes pour 50 morceaux achetés. 5) Si l on achète 60 morceaux l offre B est la plus avantageuse. (On paie 72 avec l offre A et 65 avec l offre B) 6) On résout l équation : g(x) = 80 g(x) = 80 0,5x + 35 = 80 Institution Stanislas Brevet Blanc de Mathématiques Mai

12 > 0,5x = ,5x = 45 x = 45 2 = 90 On peut donc acheter 90 morceaux avec l offre B. Partie 2 On admet qu un morceau de musique représente 3 Mo de mémoire. (1 Mo = 1 méga-octet) 1) Combien de morceaux de musique peut-on télécharger sur une clé USB d une capacité de 256 Mo? La vitesse de téléchargement d un morceau de musique sur le site est de 10 Mo/s (méga-octet par seconde) 2) Combien de morceaux peut-on télécharger en deux minutes? 1) On peut donc télécharger environ 85 morceaux sur cette clé USB. 2) 2 minutes = 120 sec = 1200 Mo = 400 On peut donc télécharger 400 morceaux de 3 Mo en 2 minutes. Institution Stanislas Brevet Blanc de Mathématiques Mai

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%.

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%. 3 ème REVISIONS BREVET EXERCICE 1 : Soit P = (x 2) (2x + 1) (2x + 1)² 1. Développer et réduire P. 2. Factoriser P. 3. Résoudre l équation (2x + 1) (x + 3) = 0 4. Pour x = 3, écrire P sous forme fractionnaire.

Plus en détail

Correction du brevet blanc n 2

Correction du brevet blanc n 2 Correction du brevet blanc n 2 Rédaction et présentation : 4 points Applications numériques : 12 points 1 Exercice 1: On donne: A = 3 5 6 3 2 1.Je calcule Aet donne le résultat sous forme d'une fraction

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

Brevet Blanc de Mathématiques

Brevet Blanc de Mathématiques Brevet Blanc de Mathématiques 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Exercice 1 (En précisant les différentes étapes du calcul): 1. Calculer le nombre A et donner

Plus en détail

Correction du Brevet Blanc de Mathématiques - Mai 2014

Correction du Brevet Blanc de Mathématiques - Mai 2014 Correction du Brevet Blanc de Mathématiques - Mai 014 Exercice 1 Amérique du Sud 01 3 points Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque ligne du tableau trois réponses sont proposées,

Plus en détail

Feuille de révision n 3 pour le brevet

Feuille de révision n 3 pour le brevet Feuille de révision n 3 pour le brevet Cette feuille est constituée d exercices tirés des annales des brevets des années antérieures et traite les chapitres abordés en classe depuis le deuxième brevet

Plus en détail

Pondichéry Avril 2010 Brevet Page 1 sur 5

Pondichéry Avril 2010 Brevet Page 1 sur 5 Pondichéry Avril 2010 Brevet Page 1 sur 5 Exercice 1 : Activité numérique : 12 points Une classe de 3 ème est constituée de 25 élèves. Certains sont externes, les autres sont demi-pensionnaires. Le tableau

Plus en détail

Diplôme National du Brevet Brevet Blanc n 1

Diplôme National du Brevet Brevet Blanc n 1 Janvier 2011 Diplôme National du Brevet Brevet Blanc n 1 MATHÉMATIQUES Série Collège DURÉE DE L'ÉPREUVE : 2 h 00 L usage de la calculatrice est autorisé Le candidat remettra sa copie, accompagnée des documents

Plus en détail

8 + 12 1 + 3 = 20 4 = 5. 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes

8 + 12 1 + 3 = 20 4 = 5. 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes Exercice 1 3pts 1. Calculer le nombre A = 8 + 3 x 4 1 + 2 x 1,5 = 8 + 12 1 + 3 = 20 4 = 5 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes Expliquer pourquoi il

Plus en détail

DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007

DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-01-correction.php#c... DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction et la présentation

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Brevet Blanc de Mathématiques n 2

Brevet Blanc de Mathématiques n 2 Collège Liberté 93700 Drancy Brevet Blanc de Mathématiques n 2 Mercredi 7 mai 2008 Durée de l'épreuve : 2 heures Ce sujet comporte 5 pages numérotées de 1 à 5. La page 5, qui est sur une feuille annexe,

Plus en détail

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie.

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Brevet Blanc de Mathématiques 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Exercice 1 : Le graphique ci contre représente une fonction h. Pour chaque question, donner

Plus en détail

BREVET BLANC MATHÉMATIQUES AVRIL 2012 CORRECTION

BREVET BLANC MATHÉMATIQUES AVRIL 2012 CORRECTION BREVET BLANC MATHÉMATIQUES AVRIL 202 CORRECTION Barème présentation : point de présentation générale (propreté, clarté de l'écriture), 0,5 points pour l'orthographe (uniquement si trop de fautes simples),

Plus en détail

4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées..

4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées.. 3 ème CORRECTION détaillée du Brevet blanc n 2 4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées.. Vous devez vous efforcer

Plus en détail

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES CORRECTION DU BREVET BLANC ---- MAI 010 4 points sont attribués pour la qualité de la rédaction, le soin et la présentation. points correspondent au soin et à la propreté, ils sont proportionnels à la

Plus en détail

BREVET BLANC DES 5 et 6 février 2004 Corrigé MATHEMATIQUES

BREVET BLANC DES 5 et 6 février 2004 Corrigé MATHEMATIQUES Collège LANGEVIN WALLON BREVET BLANC DES et 6 février 004 Corrigé MATHEMATIQUES PARTIE I : ACTIVITES NUMERIQUES (1 points) Exercice I :1 1. En faisant apparaître les différentes étapes de calcul, écrire

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin.

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin. COLLÈGE LA PRÉSENTATION BREVET BLANC Mai 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Brevet blanc à rendre début mars. 1/7

Brevet blanc à rendre début mars. 1/7 Brevet blanc à rendre à la rentrée de mars 20 Partie Numérique Exercice 1. Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question une seule réponse est exacte. Aucune justification

Plus en détail

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2 PARTIE NUMÉRIQUE (14 points) Correction du brevet blanc du 12 Mai 2011 Exercice 1 1.a. Le nombre de départ est 1 1ère étape : 1 + 1 = 2 2ème étape : 2² = 4 3ème étape : 4 1² 4-1²= 4 1 = 3 Le résultat final

Plus en détail

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x Exercice Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x A B E F H G D Le fond de la boîte est le rectangle EFGH. La feuille est au format A4, donc

Plus en détail

CORRIGÉ DU BREVET BLANC 2011 Épreuve : MATHÉMATIQUES Collège Simone De Beauvoir Durée : 2 heures

CORRIGÉ DU BREVET BLANC 2011 Épreuve : MATHÉMATIQUES Collège Simone De Beauvoir Durée : 2 heures CORRIGÉ DU BREVET BLANC 2011 Épreuve : MATHÉMATIQUES Collège Simone De Beauvoir Durée : 2 heures Numéro de candidat : L'épreuve est notée sur 40 points. Elle est constituée de trois parties indépendantes

Plus en détail

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 ------------------------- Le candidat répondra sur une copie

Plus en détail

Exercice 2 On considère le triangle DNB tel que DN = 5 cm ; NB = 12 cm et BD = 13 cm. La figure ci-contre n est pas en vraie grandeur.

Exercice 2 On considère le triangle DNB tel que DN = 5 cm ; NB = 12 cm et BD = 13 cm. La figure ci-contre n est pas en vraie grandeur. BREVET BLANC de MATHEMATIQUES n 1 Janvier 2008 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques ( points) Exercice

Plus en détail

Question Réponse A Réponse B Réponse C Votre choix : Quelle est la forme factorisée de ( x 1) 9? ( x 2)( x 4) n m

Question Réponse A Réponse B Réponse C Votre choix : Quelle est la forme factorisée de ( x 1) 9? ( x 2)( x 4) n m Mathématiques TROISIEMES Brevet Blanc, Mai 01 Durée h Calculatrice autorisée. Total sur 40 points dont 4 points réservés à la rédaction. Vous pouvez traiter les exercices dans le désordre. Les exercices

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0)

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0) Fonction affine I Définition Étant donné deux nombres m et p, on définit une fonction affine f lorsque, à tout nombre x, on associe le nombre f(x) = mx+p. On note f : x mx+p cette fonction. Remarque :

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

LYCEE VICTOR HUGO 3.3 Exercice 1 : (6 points) Partie A : Partie B : Partie C :

LYCEE VICTOR HUGO 3.3 Exercice 1 : (6 points) Partie A : Partie B : Partie C : LYCEE VICTOR HUGO 3.3 L attention est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements entrent pour une part importante dans l appréciation des copies. Exercice

Plus en détail

Le tricercle de Mohr

Le tricercle de Mohr Sujet 1 Épreuve pratique de mathématiques en troisième Fiche élève Le tricercle de Mohr On considère un segment [AB] tel que AB = 10 cm et un point C quelconque du segment [AB]. Soit 1 le demi-cercle de

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges AMÉRIQUE DU SUD Décembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour. Indication portant

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2012 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Coefficient 2 Le candidat répondra sur une copie Éducation Nationale. Ce sujet comporte 7 pages numérotées

Plus en détail

;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées.

;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées. 3 èmes 1 à 9 Lundi 18 novembre 2013 DS de mathématiques n 2 1h50 calculatrice autorisée Consignes : - Coller l énoncé, plié en 4, sur la 1 ère page de la copie. - Souligner les résultats à la règle ; séparer

Plus en détail

Métropole juin 2009 Brevet Corrigés Page 1 sur 7

Métropole juin 2009 Brevet Corrigés Page 1 sur 7 Métropole juin 2009 Brevet Corrigés Page 1 sur 7 Exercice 1 : sur 2 points 1. (1 pt) A = 8 + 3 4 1 + 2 1, A = 8 + 12 1 + 3 A = 20 4 A = 4 4 1 A = Activité numérique 2. (1 pt) En l absence de parenthèses,

Plus en détail

DIPLOME NATIONAL DU BREVET AVRIL 2013- CORRIGE

DIPLOME NATIONAL DU BREVET AVRIL 2013- CORRIGE DIPLOME NATIONAL DU BREVET AVRIL 2013- CORRIGE Exercice 1 : 3 points Voici les réponses proposées par un élève à un exercice. Pour chaque réponse, expliquer pourquoi elle est correcte ou inexacte. a. 2

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION JUIN 2008 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE Durée de l épreuve: 2h00 Métropole - La Réunion- Mayotte L emploi des calculatrices est autorisé Barème: - Activités

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014. Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE. Durée de l'épreuve : 2 heures Coefficient : 3

COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014. Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE. Durée de l'épreuve : 2 heures Coefficient : 3 COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l'épreuve : 2 heures Coefficient : 3 Le candidat répond sur une copie apportée par ses soins. Ce sujet

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures

BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures Numéro d'anonymat :. BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures L utilisation des calculatrices est autorisée. Le sujet est constitué de trois parties indépendantes: Activité

Plus en détail

2 nde CORRIGE : DEVOIR COMMUN DE

2 nde CORRIGE : DEVOIR COMMUN DE 2 nde CORRIGE : DEVOIR COMMUN DE MATHEMATIQUES Exercice 1 : (4 points) 1. Compléter le tableau à double entrée ci-dessous. Elèves vaccinés Elèves non vaccinés Total Elèves ayant eu la grippe 14 133 147

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Collège Blanche de Castille

Collège Blanche de Castille ème A - B - C Brevet blanc 2 de MATHÉMATIQUES Date : 15/04/2014 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 40 Présentation : /4 Consignes : La présentation, l orthographe et la rédaction

Plus en détail

DNB, Métropole, correction, mathématiques

DNB, Métropole, correction, mathématiques DNB, Métropole, correction, mathématiques jeudi 28 juin 2012 Activités numériques, 12 points Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Exercice n o 1 1.

Plus en détail

Pondichéry Avril 2010 Brevet Page 1 sur 8

Pondichéry Avril 2010 Brevet Page 1 sur 8 Pondichéry Avril 2010 Brevet Page 1 sur 8 Exercice 1 : Activité numérique : 12 points 1. Garçon Fille Total Externe 11 9 = 2 3 2 + 3 = 5 Demi-pensionnaire 9 11 11 + 9 = 20 Total 25 14 = 11 14 25 2. On

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Sujet n 1. Sujet n 2

Sujet n 1. Sujet n 2 Exercices d oraux Consignes : L oral comporte deux questions dont une de spécialité pour le candidats concernés. L épreuve est constituée d une préparation d une vingtaine de minutes suivie d un entretien

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Juin 2014 Durée : 2h00 Calculatrice autorisée Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque

Plus en détail

Brevet des collèges d avril 2004 à mars 2005

Brevet des collèges d avril 2004 à mars 2005 Brevet des collèges d avril 2004 à mars 2005 Pour un accès direct cliquez sur les liens bleus. Pondichéry avril 2004.................................... 3 Amérique du Nord juin 2004.............................8

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013 BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est

Plus en détail

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1 Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent pour 4 points dans l appréciation des copies. Exercice n 1 : Partie numérique

Plus en détail

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES L usage de la calculatrice est autorisé. Durée : 2 heures. Le barème tient compte de la qualité de la rédaction et de la présentation

Plus en détail

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures Mathématiques Contrôle commun de Seconde Mardi 01 mars 011 Durée de l épreuve : heures L usage de la calculatrice est autorisé. Aucun prêt de matériel n est toléré. La qualité de la rédaction et le soin

Plus en détail

Secondes Devoir commun de mathématiques n 1

Secondes Devoir commun de mathématiques n 1 Classe : Secondes Devoir commun de mathématiques n 1 Janvier 2014 Sujet : A Durée : 2 heures -Calculatrice autorisée Nom : Prénom : Note : Eercice 1 (sur 9 points) y 4 3 2 On donne la représentation graphique

Plus en détail

Fiche d'exercices Mathématiques Troisième ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ) ( )

Fiche d'exercices Mathématiques Troisième ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ) ( ) Fiche d'exercices Mathématiques Troisième Chapitre 0: Révisions de quatrième Révisions et préparation à l'évaluation diagnostique 1. Les nombres relatifs. Exercice 1. ( Exercice 2 : Calculer Exercice 3

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

Correction du brevet des collèges Polynésie septembre 2009

Correction du brevet des collèges Polynésie septembre 2009 Correction du brevet des collèges Polynésie septembre 2009 Durée : 2 heures ACTIVITÉS NUMÉRIQUES Exercice 1 : QCM Une seule des trois réponses proposées est correcte. Entourez-la. Aucune justification

Plus en détail

MathADoc Diplôme National du Brevet : Groupe Nord 2003

MathADoc Diplôme National du Brevet : Groupe Nord 2003 MathADoc Diplôme National du Brevet : Groupe Nord 2003 Activités numériques : 12 points (Amiens, Lille, Paris, Créteil, Versailles, Rouen) 1. Soit A = 8 3 5 3 20 21 Calculer A en détaillant les étapes

Plus en détail

Corrigé : Notions de fonctions et Théorèmes classiques

Corrigé : Notions de fonctions et Théorèmes classiques Corrigé : Notions de fonctions et Théorèmes classiques Exercice 1 On considère la fonction f définie par : f (x) = 5x + 1. 1. Calculer l'image de 3 par f. L'image de 3 par f est donnée par f ( 3). Comme

Plus en détail

Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques

Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques À compter de la session 2014, les épreuves du concours sont modifiées. L arrêté du 19 avril 2013, publié

Plus en détail

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)²

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)² ème Fiches Révisions revet lanc 1/8 Puissances, Fractions : Effectuer les calculs suivants (donner l écriture scientifique de et écrire sous forme d un entier ou d une fraction). 1 = 15 x 10- x (10 ) 4

Plus en détail

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE Durée de l épreuve : 2 h 00 Ce sujet comporte 5 pages numérotées de 1/5 à 5/5. Dès que ce sujet vous est remis, assurez-vous qu il est complet.

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Brevet Blanc de Mathématiques n 1

Brevet Blanc de Mathématiques n 1 Collège français Sadi Carnot Diego Suarez 21/11/2015 Brevet Blanc de Mathématiques n 1 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4

Plus en détail

Baccalauréat ST2S Métropole 17 juin 2014 Correction

Baccalauréat ST2S Métropole 17 juin 2014 Correction Baccalauréat ST2S Métropole 17 juin 2014 Correction EXERCICE 1 6 points On mesure la fréquence cardiaque d un athlète courant sur un tapis roulant dont la vitesse peut être modifiée. Les résultats sont

Plus en détail

1 Extrait du DNB Juin 2014 3ème

1 Extrait du DNB Juin 2014 3ème Exemples d activités et extraits d évaluations Pour chacune des évaluations et activités suivantes, 1 résoudre le problème et anticiper les différentes démarches que les élèves pourraient envisager 2 déterminer,

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques février 20 L'usage de la calculatrice est autorisé. I Activités numériques 2 points II Activités géométriques 2 points III Problème Qualité de rédaction et présentation 2

Plus en détail

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES SYNTHESE ( THEME 9 ) FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES A - FONCTION AFFINE A : DEFINITION ET NOTATION a et b étant deux nombres fixés, on appelle fonction affine tout processus

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Révisions Mathématiques CAP-BEP

Révisions Mathématiques CAP-BEP Révisions Mathématiques CAP-BEP Exercice 1 : On considère le triangle ABC rectangle en A. C 1 / Si AB = 12 et AC = 5, calculer BC....... 2 / Si AB = 7 et BC = 9,22, calculer AC. Exercice 2 : Dans un CFA,

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015 MATHEMATIQUES BREVET BLANC Vendredi 3 Avril 2015 Exercice 1 : ( 2,5 points) Un sac contient 5 boules noires numérotées de 1 à 5 et 3 boules blanches numérotées de 1 à 3. Chacune de ces boules a la même

Plus en détail

Bac ES La Réunion juin 2009

Bac ES La Réunion juin 2009 Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

ACTIVITES NUMERIQUES 12 points

ACTIVITES NUMERIQUES 12 points BREVET BLANC Mai 2012 Mathématiques Le corrigé La rédaction et la présentation sont prises en compte pour 4 points. Les calculatrices sont autorisées. Durée de l'épreuve : 2 heures. EXERCICE 1 On donne

Plus en détail

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6 BACCALAURÉAT BLANC 21 février 2013 MATHÉMATIQUES Série : STG DURÉE DE L ÉPREUVE : 3 heures Ce sujet comporte 6 pages, numérotées de 1 à 6 L utilisation d une calculatrice est autorisée, mais aucun prêt

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Lycée Michel MONTAIGNE Année scolaire 2013/2014 BP. 13 431 LBV ; Tél : 01 44 11 17 DEPARTEMENT DE MATHEMATIQUES 3 ème TRIMESTRE Noms :, Prénoms :, Classe : Date : avril 2014 DIPLOME NATIONAL DE BREVET

Plus en détail

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19 MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Mme Cochez-ARU2 Page 19 ATTENTION Pour cette première partie : la calculatrice est interdite tu auras besoin

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2011 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie au surveillant à la fin de l épreuve Nature de

Plus en détail

Cosinus d un angle aigu

Cosinus d un angle aigu Cosinus d un angle aigu A) Définition. Définition : Dans un triangle rectangle, le cosinus de l un des angles aigus est le rapport : longueur du côté adjacent à l' angle aigu. longueur de l' hypoténuse

Plus en détail

brevet blanc janvier 2014 - corrigé

brevet blanc janvier 2014 - corrigé brevet blanc janvier 014 - corrigé Exercice 1 Jean-Michel est propriétaire d un champ, représenté par le triangle ABC ci-dessous. Il achète à son voisin le champ adjacent, représenté par le triangle ADC.

Plus en détail

CORRECTION DU SUJET DE MATHÉMATIQUES

CORRECTION DU SUJET DE MATHÉMATIQUES (AVRIL 014) Collège François Mitterrand Créon CORRECTION DU SUJET DE MATHÉMATIQUES EXERCICE 1 ( POINTS) SOIN, PRÉSENTATION ET QUALITÉ DE LA RÉDACTION : 4 POINTS 1. Donner l'écriture décimale du nombre.

Plus en détail

Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul :

Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul : Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul : Sous-thèmes Compétences de calcul travaillées Notion de Fonctions : Introduction du vocabulaire

Plus en détail

Baccalauréat ES Antilles Guyane juin 2009

Baccalauréat ES Antilles Guyane juin 2009 Baccalauréat ES Antilles uyane juin 2009 EXERCICE PARTIE A : aucune justification n est demandée 4 points Cette partie est un questionnaire à choix multiples. Pour chacune des questions, trois réponses

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Corrigé DNB blanc février 2016

Corrigé DNB blanc février 2016 Corrigé DNB blanc février 2016 Exercice 1 Réponse A Réponse B Réponse C 1 2 3 L écriture en notation scientifique du nombre 587 000 000 est : Si on développe et réduit l expression (x + 2)(3x 1) on obtient

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

LFI DURAS HO CHI MINH VILLE. BREVET BLANC n 2 06/05/2013

LFI DURAS HO CHI MINH VILLE. BREVET BLANC n 2 06/05/2013 LFI DURAS HO CHI MINH VILLE BREVET BLANC n 2 06/05/2013 MATHEMATIQUES SERIE COLLEGE DUREE DE L EPREUVE : 2h00 Ce sujet comporte 5 pages numérotés de 1 à 5. Dès que ce sujet vous remis, assurez-vous qu

Plus en détail

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72 3 ème DNB 001 NICE PARTIE NUMERIQUE CORRIGE Exercice 1 1. Donner l'égalité traduisant la division euclidienne de 1 51 par 1 1 51 = 1 7. Rendre irréductible la fraction 70 1 51 70 1 51 = 7 10 7 1 donc 70

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

BLANC. L épreuve comporte huit exercices obligatoires, indépendants, notés sur

BLANC. L épreuve comporte huit exercices obligatoires, indépendants, notés sur BREVET BLANC EPREUVE DE MATHEMATIQUES L épreuve comporte huit exercices obligatoires, indépendants, notés sur 3 points, 4 points, 5 points ou 9 points (le barème figure à titre indicatif ) Il sera tenu

Plus en détail