Économétrie II Ch. 1. Modèle de régression linéaire L3 Économétrie L3 MASS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Économétrie II Ch. 1. Modèle de régression linéaire L3 Économétrie L3 MASS"

Transcription

1 Économétrie II Ch. 1. Modèle de régression linéaire L3 Économétrie L3 MASS Prof. Philippe Polomé, U. Lyon 2 Année Ch. 1. Modèle de Régression Linéaire 1.1 MRL formel Y t β 0 + β 1 X 1t β k X kt + t t 1...T Y X i avec i 1...k Y t β 0 + β 1 X 1t β k X kt (sans le ) théorie (causale) Terme d erreur ou µ Notation matricielle Y Xβ + Prédiction Ŷ X ˆβ avec MCO p.e. Résidu ˆ Y Ŷ Y X ˆβ Exemple simple Intuition 1 : Droite qui passe au mieux 1

2 Y t β 1 + β 2 X t + t pour chaque t 1...T Cherche vecteur de nombres ˆβ t. q. la somme des carrés des résidus T minimale : Réponse ˆβ X X X Y :estimateurmoindres carrés Intuition 2 : Inversion de Y Xβ + Prémultiplier par X : X Y X Xβ + X t1 Y t X t ˆβ 2 est Hypothèse : n est pas corrélé à X, c est-à-dire X 0;AlorsX Y X Xβ et donc β X X X Y En général, X 0mais Si on peut supposer que X 0 lorsque la taille de l échantillon,alors ˆβ X X X Y Estimateur Méthode des Moments MM Soit A un estimateur de β, Y XA ˆ Hypothèse exogénéité E ( X) 0 E (X)0(corrélation nulle régresseurs) Stratégie MM : X (Y XA)0:AlorsA (X X) X Y ˆβ : X ˆ X Y X X X X Y 0par construction Exemple de la crème glacée Prédiction se trouve sur la droite : Ŷ X ˆβ Quantification de l influence de X sur Y : Y / X 1 β 1 coefficientdex 1 pentedela droite Données réelles. Gretl contient de nombreuses bases de données réelles, utilisées dans des textes de références (dont Verbeek et Wooldridge). Trois types de données réelles Séries temporelles (Time series chronologiques) : un agent, beaucoup de périodes (MCO peu adaptés!) : Macroéconomie dont : prix, déflateurs, emplois, population, croissance, investissement, éducation... par année, trimestre... ; Daily/Weekly stock price data (closing value of the Dow-Jones or NYSE) or exchange rates ; Consumption and rate of return on portfolios ; Monthly data on international airline passengers Coupe transversale (Cross-section) : beaucoup d agents, une période (principal objet de ce cours) : Strike duration data, in days ; Choix de plan de pension en fonction de caractéristiques socio-économiques ; Nombre de visites chez le médecin 2

3 Panel : beaucoup d agents, quelques périodes (MCO peu adaptés!) : Manufacturing companies over several years ; Employment and schooling history for a sample of men for some years Où trouver des données réelles? En France : données des grandes enquêtes publiques (consommation, logement, revenu,...) : Centre Quételet : http :// ; Plateforme de diffusion de données SHS : http :// ; INSEE : http :// Autres Causalité contre corrélation Exemple des cigognes Ex de variable spurieuse (Fisher, 1936) Copenhagen, décennie post WWII En réalité : constructions importantes et migration des campagnes Les moyennes conditionnelles / tableau croisé dynamique 1.3 Distribution d échantillonnage Simulation de Monte-Carlo : Fonction alea() / rand() :créeunevaleurtiréed unev.a.de distribution uniforme entre 0 et 1 ; sqrt(-2*ln(alea()))*sin(2*pi()*alea()) crée une valeur n (0, 1) Monte-Carlo dans Gretl Propriété désirable 1 : absence de biais : E ˆβ moyenne ˆβ lorsqu il y a beaucoup d échantillons Propriété désirable 2 : consistance / convergence : Plim ˆβ β 3

4 Propriété désirable 3 : efficience. Un estimateur ˆβ est plus efficient qu un estimateur β si var β var ˆβ est une matrice sdp Devoir #1 : Monte-Carlo Réaliser votre propre exemple de Monte Carlo dans un logiciel (tableur ou économétrique) Avec 2 régresseurs, un distribué uniformément dans [0, 1] et l autre distribué normalement n(0, 1), uneconstanteetuntermed erreurdistribuén(0, 1) Choisissez les valeurs des coefficients Tout le monde devrait avoir des chiffres différents Calculez les coefficients explicitement avec les formules X X sera 3x3 et ˆβ sera 3x1 Calculez le R 2 Répliquer l opération avec des tailles d échantillons croissantes pour monter la consistance de l estimateur Les devoirs ne sont ni notés ni corrigés, mais ils sont matières d examen Si vous avez des difficultés à les faire, on en discute en cours 1.4 MRL Classique : 7 hypothèses MRL Y Xβ + :7hypothèses 1. E ( t )0 t :leserreursontuneespérance nulle 2. var ( t )σ 2 t :lavariancedechaqueerreurestlamêmeetestréellehomoscédasticité 3. cov ( t, s )0 t s :leserreurssontindépendantesentreellespas d auto-corrélation 4. E ( t x t )0 t :iln yapasdecorrélationcontemporaine(mêmet)entrel erreuretchaque régresseur Exogénéité Figure 1 MRLY Xβ + : Illustration graphique des 4 hyp. sur l erreur Tiré de Wooldridge 4

5 5. X de plein rang 6. MRL correctement spécifié 7. Y continue Démonstration de E ˆβ β E ˆβ E X X X Y E X X X (Xβ + ) E X X X Xβ + E X, X X X parce que E (somme) somme (E) et X est une v.a. E (β)+e X E X X X X par la loi d itération des espérances (ci-dessous) E (β)+e X X X X E [ X] β si E [ X] 0 Loi d itération des espérances E [Y ]E X EY X (Y X) E [Y ] est l espérance inconditionnelle (ou marginale) de Y E X []est l espérance inconditionnelle (marginale) par rapport à X (on traite Y comme fixe) E Y X ()est l espérance conditionnelle de Y par rapport à X Y et X appartiennent au même espace de probabilités (ci-dessous) Preuve dans le cas discret E X EY X (Y X) x E Y X (Y X)Pr(X x) x y y Pr (Y y X x) Pr (X x) x y y (Pr (Y y X x)pr(x x)) x y y Pr (Y y, X x) E [Y ] Car Pr (Y y X x)pr(x x) Pr(Y y, X x) :laprobconjointe(y,x)probconditionnelle (Y X) prob marginale (X) Loi d itération des espérances : Exemple des deux dés E (Dé 1 )E Dé2 EDé1 Dé 2 (Dé 1 Dé 2 ) E (Dé 1 ) 6 Dé Pr (Dé 11 1 dé 1 ) dé 1 i 1 6 i3.5 E Dé2 EDé1 Dé 2 (Dé 1 Dé 2 ) 6 Dé E 21 Dé 1 Dé 2 [Dé 1 Dé 2 ]Pr(Dé 2 dé 2 ) 6 Dé E 21 Dé 1 Dé 2 [Dé 1 Dé 2 ] Dé 21 Dé Pr (Dé 1 Dé 2i 1 Dé 2 i) i 6 6 Dé i Espace de probabilités On considère une expérience aux résultats aléatoires, p.e. un lancer de 2 dés. L ensemble de tous les résultats élémentaires : (1,1), (1,2)...(6,6) constitue l espace d échantillonnage Ω Les évènements sont des combinaisons des résultats élémentaires, p.e. somme des 2 dés 10, au moins un des dés

6 L ensemble de ces évènements se nomme un σ algèbre et est noté F La fonction P de mesure de probabilité associe à chaque évènement une probabilité Ces trois composants (Ω, F,P) constitue l espace de probabilité 6

21 mars 2012. Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire.

21 mars 2012. Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire. de 21 mars 2012 () 21 mars 2012 1 / 6 de 1 2 3 4 5 () 21 mars 2012 2 / 6 1 de 2 3 4 5 () 21 mars 2012 3 / 6 1 2 de 3 4 5 () 21 mars 2012 4 / 6 1 2 de 3 4 de 5 () 21 mars 2012 5 / 6 de 1 2 3 4 5 () 21 mars

Plus en détail

Tests de sensibilité des projections aux hypothèses démographiques et économiques : variantes de chômage et de solde migratoire

Tests de sensibilité des projections aux hypothèses démographiques et économiques : variantes de chômage et de solde migratoire CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 16 décembre 2014 à 14 h 30 «Actualisation des projections» Document N 5 Document de travail, n engage pas le Conseil Tests de sensibilité des projections

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Plan de la séance 3 : Le risque de crédit (1) Les opérations de crédit Définition d un crédit La décision de crédit Les crédits aux petites

Plus en détail

Quantification des Risques

Quantification des Risques Quantification des Risques Comment considérer les aléas dans une projection financière? PragmaRisk met à disposition des solutions et des méthodes permettant de considérer les aléas dans vos projections

Plus en détail

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 Introduction Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 L auteur remercie Mme Sylvie Gervais, Ph.D., maître

Plus en détail

Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014

Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014 Attitude des ménages face au risque - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014 Plan du cours 1. Introduction : demande de couverture et comportements induits pa 2. Représentations

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Wealth Effect on Labor Market Transitions

Wealth Effect on Labor Market Transitions Wealth Effect on Labor Market Transitions Yann Algan EUREQua - Université de Paris I algan@univ-paris1.fr Arnaud Chéron GAINS - Université du Maine & Cepremap acheron@univ-lemans.fr Jean-Olivier Hairault

Plus en détail

L approche de régression par discontinuité. Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011

L approche de régression par discontinuité. Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011 L approche de régression par discontinuité Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011 Plan de la présentation L approche de régression par discontinuité (RD) Historique

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE.

LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE. LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE. Synthèse des travaux réalisés 1. Problématique La question D7 du plan d exécution du Programme National de Recherches

Plus en détail

overmind La solution précède le problème 2008 Overmind - All rights reserved

overmind La solution précède le problème 2008 Overmind - All rights reserved La solution précède le problème Société Overmind vous propose des solutions d optimisation, d anticipation, de pilotage global capables de prendre en compte l interdépendance des variables en terme de

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Calcul économique privé

Calcul économique privé Année 2010-2011 Alain Marciano : L analyse coût avantage Licence Sciences Economiques 3, UM1 Plan chapitre Section 1. L agrégation des effets dans le temps : l actualisation Section 2. Les critères complémentaires

Plus en détail

Les coûts de la production. Microéconomie, chapitre 7

Les coûts de la production. Microéconomie, chapitre 7 Les coûts de la production Microéconomie, chapitre 7 1 Sujets à aborder Quels coûts faut-il considérer? Coûts à court terme Coûts à long terme Courbes de coûts de court et de long terme Rendements d échelle

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales

Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales Pierre Thomas Léger IEA, HEC Montréal 2013 Table des matières 1 Introduction 2 2 Spécifications

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Données longitudinales et modèles de survie

Données longitudinales et modèles de survie ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

PROJET DE GESTION PORTEFEUILLE. Evaluation d une Stratégie de Trading

PROJET DE GESTION PORTEFEUILLE. Evaluation d une Stratégie de Trading PROJET DE GESTION PORTEFEUILLE Evaluation d une Stratégie de Trading Encadré par M. Philippe Bernard Master 1 Economie Appliquée-Ingénierie Economique et Financière Taylan Kunal 2011-2012 Sommaire 1) Introduction

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Gestion obligataire passive

Gestion obligataire passive Finance 1 Université d Evry Séance 7 Gestion obligataire passive Philippe Priaulet L efficience des marchés Stratégies passives Qu est-ce qu un bon benchmark? Réplication simple Réplication par échantillonnage

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE

Plus en détail

Méthodologie du calcul de la VaR de marché : revue de l approche basée sur des simulations historiques

Méthodologie du calcul de la VaR de marché : revue de l approche basée sur des simulations historiques Méthodologie du calcul de la VaR de marché : revue de l approche basée sur des simulations historiques Asshvin Gajadharsingh Mesure et analyse quantitative du risque Caisse de dépôt et placement du Québec

Plus en détail

Les exploitations de grandes cultures face à la variabilité de leurs revenus : quels outils de gestion des risques pour pérenniser les structures?

Les exploitations de grandes cultures face à la variabilité de leurs revenus : quels outils de gestion des risques pour pérenniser les structures? Les exploitations de grandes cultures face à la variabilité de leurs revenus : quels outils de gestion des risques pour pérenniser les structures? Benoît Pagès 1, Valérie Leveau 1 1 ARVALIS Institut du

Plus en détail

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce

Plus en détail

La méthode de régression par discontinuité et l évaluation des politiques de l emploi

La méthode de régression par discontinuité et l évaluation des politiques de l emploi La méthode de régression par discontinuité et l évaluation des politiques de l emploi Thomas Lemieux University of British Columbia Le 24 novembre 2009 Plan de la présentation La méthode de régression

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP

Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP Christophe Joubert Séminaire VASY 2002 30 Octobre 2002 Aix les Bains Contexte du projet

Plus en détail

Note de présentation générale. Secrétariat général du Conseil d orientation des retraites

Note de présentation générale. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 25 novembre 2009 à 9 h 30 «Préparation du rapport de janvier 2010 : Simulations de régimes en points et en comptes notionnels» Document N 1 Document

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Théorie Financière 2. Valeur actuelle Evaluation d obligations

Théorie Financière 2. Valeur actuelle Evaluation d obligations Théorie Financière 2. Valeur actuelle Evaluation d obligations Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount

Plus en détail

Débouchés professionnels

Débouchés professionnels Master Domaine Droit, Economie, Gestion Mention : Monnaie, Banque, Finance, Assurance Spécialité : Risque, Assurance, Décision Année universitaire 2014/2015 DIRECTEUR de la spécialité : Monsieur Kouroche

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Le WACC est-il le coût du capital?

Le WACC est-il le coût du capital? Echanges d'expériences Comptabilité et communication financière Dans une évaluation fondée sur la méthode DCF, l objectif premier du WACC est d intégrer l impact positif de la dette sur la valeur des actifs.

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Modèles pour données répétées

Modèles pour données répétées Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque

Plus en détail

Modélisation des carrières salariales. dans Destinie

Modélisation des carrières salariales. dans Destinie INSTITUT NATIONAL DE LA STATISTIQUE ET DES ÉTUDES ÉCONOMIQUES Série des documents de travail de la Direction des Etudes et Synthèses Économiques G 990 Modélisation des carrières salariales dans Destinie

Plus en détail

Le théorème des deux fonds et la gestion indicielle

Le théorème des deux fonds et la gestion indicielle Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Comment évaluer une banque?

Comment évaluer une banque? Comment évaluer une banque? L évaluation d une banque est basée sur les mêmes principes généraux que n importe quelle autre entreprise : une banque vaut les flux qu elle est susceptible de rapporter dans

Plus en détail

Simulation d application des règles CNAV AGIRC ARRCO sur des carrières type de fonctionnaires d Etat

Simulation d application des règles CNAV AGIRC ARRCO sur des carrières type de fonctionnaires d Etat CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 10 avril 2014 à 9 h 30 «Carrières salariales et retraites dans les secteurs et public» Document N 9 Document de travail, n engage pas le Conseil Simulation

Plus en détail

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015 Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Capital économique en assurance vie : utilisation des «replicating portfolios»

Capital économique en assurance vie : utilisation des «replicating portfolios» Capital économique en assurance vie : utilisation des «replicating portfolios» Anne LARPIN, CFO SL France Stéphane CAMON, CRO SL France 1 Executive summary Le bouleversement de la réglementation financière

Plus en détail

D Expert en Finance et Investissements

D Expert en Finance et Investissements MODULES FINAL D Expert en Finance et Investissements Copyright 2014, AZEK AZEK, Feldstrasse 80, 8180 Bülach, T +41 44 872 35 35, F +41 44 872 35 32, info@azek.ch, www.azek.ch Table des matières 1. Modules

Plus en détail

Renewable Energy For a Better World. Transforming Haïti s energy challenges into wealth and job creating opportunities ENERSA

Renewable Energy For a Better World. Transforming Haïti s energy challenges into wealth and job creating opportunities ENERSA Renewable Energy For a Better World Transforming Haïti s energy challenges into wealth and job creating opportunities COMPANY PROFILE Haiti's only designer and MANUFACTURER of solar panels and solar appliances

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Théorie Financière 2014-2015

Théorie Financière 2014-2015 Théorie Financière 2014-2015 1. Introduction Professeur Kim Oosterlinck E-mail: koosterl@ulb.ac.be Organisation du cours (1/4) Cours = Théorie (24h) + TPs (12h) + ouvrages de référence Cours en français

Plus en détail

Does it pay to improve Corporate Governance? An empirical analysis of European Equities

Does it pay to improve Corporate Governance? An empirical analysis of European Equities Does it pay to improve Corporate Governance? An empirical analysis of European Equities Joseph GAWER NATIXIS Asset Management Université Paris Dauphine joseph.gawer@am.natixis.com Association Française

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

PROJET - POUR DISCUSSIONS SEULEMENT AUCUNES RECOMMENDATIONS À CE STADE-CI. Université de Moncton

PROJET - POUR DISCUSSIONS SEULEMENT AUCUNES RECOMMENDATIONS À CE STADE-CI. Université de Moncton PROJET - POUR DISCUSSIONS SEULEMENT Université de Moncton Régime de pension des professeurs, professeures et bibliothécaires Actualisation du régime Étape 3 Évaluation des coûts Préparé par Conrad Ferguson

Plus en détail

MODELE A CORRECTION D ERREUR ET APPLICATIONS

MODELE A CORRECTION D ERREUR ET APPLICATIONS MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques

Plus en détail

Modifications dans l état des fonds propres pour les risques de marché : informations techniques préalables

Modifications dans l état des fonds propres pour les risques de marché : informations techniques préalables CH-3003 Berne À - Toutes les banques et tous les négociants en valeurs mobilières - Toutes les sociétés d audit bancaires et boursières Référence: 00089/1041081 Contact: Graf Barbara Téléphone direct:

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Les débats sur l évolution des

Les débats sur l évolution des D o c u m e n t d e t r a v a i l d e l a B r a n c h e R e t r a i t e s d e l a C a i s s e d e s d é p ô t s e t c o n s i g n a t i o n s n 9 8-0 7 C o n t a c t : La u re nt V e r n i è r e 0 1 4

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

L Entreprise, première valeur de notre gestion

L Entreprise, première valeur de notre gestion L Entreprise, première valeur de notre gestion M.U.S.T. une discipline de gestion Actions européennes reconnue ***** Style Rating : EUROPERFORMANCE - EDHEC au 13/01/2012 2 M.U.S.T. une gestion transparente

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

RAPPORT FINAL DE LA RECHERCHE :

RAPPORT FINAL DE LA RECHERCHE : RAPPORT FINAL DE LA RECHERCHE : Analyse des substitutions entre différentes formes d énergies dans l industrie INSTITUT D ECONOMIE INDUSTRIELLE Université de Toulouse 1 Sciences Sociales Manufacture des

Plus en détail

Improving the breakdown of the Central Credit Register data by category of enterprises

Improving the breakdown of the Central Credit Register data by category of enterprises Improving the breakdown of the Central Credit Register data by category of enterprises Workshop on Integrated management of micro-databases Deepening business intelligence within central banks statistical

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Analyse de la relation entre primes de terme et prime de change dans un cadre d équilibre international

Analyse de la relation entre primes de terme et prime de change dans un cadre d équilibre international ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 46 1997 Analyse de la relation entre primes de terme et prime de change dans un cadre d équilibre international Hubert de LA BRUSLERIE, Jean MATHIS * RÉSUMÉ. Cet

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail