TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R

Dimension: px
Commencer à balayer dès la page:

Download "TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R"

Transcription

1 TOPOLOGIE 1) DISTANCE, ESPACES MÉTRIQUES a : distances : d'après le cours de M. Nicolas Tosel professeur en MP* au Lycée du Parc, Lyon Année une distance est une application d de E dans R + telle que : d(x,y)=0 x=y d(x,z) d(x,y)+d(y,z) b : espaces métriques: un ensemble muni d'une distance est appelé espace métrique. c : boules ouvertes, boules fermées : boule ouverte de E de centre x et de rayon r : B o (x,r)={ y E \ d(x,y)<r } boule fermée : B f (x,r)={ y E \ d(x,y) r } d : parties bornées, diamètre : une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R +* \ ( x E \ X B f (x,r) ) } e : espace métrique induit: si X est une partie de E, X muni de la restriction de l'application distance de E à X est un espace métrique, dit espace métrique induit ; f : suites dans un EM, convergence : (x n ) n N E N est dite convergente ssi il existe x dans E tel que

2 d(x n,x) 0 quand n + ; g : suites extraites, valeurs d'adhérence : _si une suite converge, elle admet une unique valeur d'adhérence ; réciproque fausse ; _caractérisation des VA : { n N \ n < ε } non majoré 2) ESPACES NORMES : a : définition : un ev E est dit normé ssi il existe une application N de E dans R + telle que : N(x)=0 x=0 N( λx)= λ N(x) N(x+y) N(x)+N(y) remarque : (x,y) N(x,y) induit une distance sur E ; b : exemples : dans ( C([0,1],R), N p ) : N p (f)=( 1 0 f p ) 1/p, avec p dans R, p 1 ; norme canonique de R² : x, y x² y² c : CV dans un evn : (x n ) n N E N est dite convergente ssi il existe x dans E tel que : N(x n x) 0 quand n ; d : normes équivalentes : _existe C > 0 tel que x, N(x) N'(x) : N'est plus fine que N ; _existe C > 0 et C' >0 tel que x, C*N'(x) N(x) C'*N'(x) : N et N' sont équivalentes ; _traduction en terme de convergence : une suite convergente pour une norme est convergente pour toute norme moins fine ; d'où : les suites convergentes pour une norme N sont exactement les suites

3 convergentes pour toute norme équivalente à N ; _exemples classiques dans R p : norme n : x n = n x 1 n.. x p n théorème : si E et un evn de dimension finie, toutes les normes sur E sont équivalentes ; attention : ceci est faux en dimension infinie ; 3) TOPOLOGIE D'UN ESPACE MÉTRIQUE : ici, (E,d) sera un EM ; a : ouverts et fermés : définition : une partie X de E est dite ouverte dans E ssi : ouvert ; x E, r > 0 \ B o (x,r) X une partie X de E est dite fermée dans E ssi son complémentaire dans E est attention : si X est une partie de E et Y une partie de X, les propriétés d'ouverture et de fermeture de Y ne sont a priori pas les mêmes dans E et dans X! attention : ouvert n'est pas le contraire de fermé! E et sont à la fois ouverts et fermés dans E ; _une union quelconque d'ouverts est ouverte ; _une intersection finie d'ouverts est ouverte ; _exemple de l'ensemble de Cantor (fermé, car intersection de fermés) ; théorème : caractérisation séquentielle des fermés : une partie X de E est dite fermée dans E ssi la limite de toute suite convergente dans E de X est dans X ; b : adhérence et intérieur : définition : adhérence : on appelle adhérence de X, notée X, l'ensemble : X = X F, F fermé F

4 convergentes dans E ; X est donc le plus petit fermé contenant X ; de plus X est l'ensemble des limites des suites de X A fermé ssi A=A ; définition : l'intérieur de X, noté X est le plus grand ouvert de E contenu dans X, ou encore l'union de tous les ouverts contenus dans X ; c : rappels sur les ensembles convexes : définition : une partie C d'un ev est dite convexe ssi dès que C contient deux points, elle contient le segment qui les joints ; d : parties denses de E : une partie X de E est dite dense dans E ssi X=E ; par exemple : Q=R e : autres notions topologiques : _frontière : fr X = X X _voisinage de x : toute partie de E contenant une boule ouverte de centre x ; 4) APPLICATIONS D'UN EVN DANS UN AUTRE a : limite d'une application en un point : soit f : (E,d) (E',d') soient A une partie non vide de E, a A et b E' ; odq f tend vers b en quand x tend vers a en restant dans A ssi : > 0, > 0 \ x A, d( x, a) d' ( f( x), b) b : continuité, caractérisation séquentielle :

5 définition : une application f d'une métrique dans un autre est dite continue ssi : f(x) f(a) quand x a ; séquentiellement cela signifie : x n a f(x n ) f(a), pour toute suite x de E N ; définition : une application f est dite uniformément continue sur X ssi : >0, >0 \ (x,y) X, d(x,y) d(f(x),f(y)) c : F(E,E') : dissymétrie des rôles de E et E' : théorème : si f est continue de (E,d) dans (E',d'), l'image réciproque d'un ouvert de E' est ouverte dans E ; idem pour les fermés ; attention : on ne peut rien dire d'une image directe ; _ d : exemples matriciels : GL n K =M n K (nombre fini de racines du polynôme caractéristique : prendre M (k) = M (1/k)*Id ; pour k assez grand c'est inversible ) ; _ adhérence des matrices de rang r : matrices de rang inférieur ou égal ; intérieur : vide ; _l'ensemble des projecteurs est fermé (image réciproque de {0} par la trace ), d'intérieur vide ; e : prolongement des égalités : si deux applications continues sont identiques sur une partie dense de E, elle sont identiques sur E ; f : applications uniformément continues, applications lipschitziennes : _une fonction C lipschitzienne est uniformément continue ; _exemple important : distance à une partie : application 1 lipschitzienne ; attention, même sur un fermé, on n'est pas assuré que la distance soit atteinte;

6 g : homéomorphismes : définition : on appelle homéomorphisme une application continue d'un EM dans un autre, bijective, de réciproque continue ; 5) COMPACTS : a : définition : _un métrique E est dit compact ssi toute suite de E admet une valeur d'adhérence. _si E est compact, une suite de E converge ssi elle admet une unique VA. b : parties compactes d'un métrique : _une partie X d'un métrique est dite compacte ssi toute suite de X admet au moins une VA dans X ; _Toute partie compacte d'un espace métrique est fermée et borné. _si (E,d) est un métrique compact, les compacts de E sont exactement ses parties fermées. _ un produit de compacts est compact pour la distance produit ; c : applications continues sur un compact : théorème : si f est une application continue de (E,d) dans (E',d') et E est compact, alors f (E) est un compact de E'; exercice très important : soit (E, ) est un K evn de dimension finie : soit f : E R, continue; on suppose : quand x +, f(x) + alors f admet un minimum global sur E ; théorème de Heine : si f est continue sur un compact, elle y est uniformément continue ; 6) ESPACES NORMES DE DIMENSION FINIE a : équivalence des normes (preuve) :

7 principe : prouver que toute norme est équivalente à la norme, pour un choix arbitraire de coordonnées ; conclure par transitivité ; b : conséquences : si (E, ) est un evn de dim finie, toute suite bornée de E admet une VA ; les compacts de E sont exactement les fermés bornés ; exemples des polynômes de meilleure approximation ; la distance à un fermé est toujours atteinte ; La sphère unité est compacte (caractérisation des evn de dimension finie) ; c : application : théorème d'alembert Gauss : théorème d'alembert Gauss : tout polynôme de C[X] non constant admet au moins une racine ; 7) APPLICATIONS LINÉAIRES CONTINUES, ALGÈBRES NORMÉES a : caractérisation : théorème : si (E, ) et (E', ') sont deux K evn, et f L(E,E'), f est continue ssi f est lipschitzienne ; Remarque : c'est toujours par ce critère qu'on montre la continuité d'une application linéaire, jamais epsilonesquement ; b : norme subordonnée : f = sup x E et x =1 { f(x) ' } si E est de dimension finie le sup est atteint (c'est un max) : cela vient de la compacité de la sphère unité ; est une norme sur L C (E,E') ; cas particulier du dual topologique : L C (E,K) ;

8 théorème : si E est de dimension finie, tous les endomorphismes de E sont continus ; c : composition, algèbres normées : si u et v sont des ALC, u v u * v (A, ) est une K algèbre normée ssi A est une K algèbre, (A, ) est un evn, 1 A =1, et (x,y) A², xy x y exercice : théorème de Hahn Banach : soient (E, ) un evn réel, F un sev de E, et f F* avec f = 1 ; soient e E\F et G tels que G=F Re ; mq l'on peut prolonger f en une forme linéaire de norme 1 sur G ; (analyse synthèse) extension aux applications multilinéaires : si f est n linéaire, f est continue ssi C > 0 tq x=(x1,..,x n ), f(x) C* x i 8) ESPACES COMPLETS a : suite de Cauchy, espace complet : définition : on appelle suite de Cauchy d'un espace métrique (E,d) toute suite u de E vérifiant : > 0, N N \ m, n N, d( u m,u n ) un EM est complet ssi toute suite de Cauchy de cet espace converge ; un evn complet pour la distance associée à la norme est dit Espace de Banach ; b : exemples d'espaces complets : lemme : toute suite de Cauchy est bornée ; lemme : si une suite de Cauchy admet une VA, elle CV ; théorème : tout K evn de dim finie (K=R ou C) est un Banach ; exemple : si X est un ensemble non vide et (E, ) un Banach, ( B(X,E), ) est un

9 Banach (applications bornées) ; c : parties complètes, exemples : soient (E,d) un métrique et X une partie non vide de E : si (X,d) est complet, X est fermé dans E ; si (E,d) est complet, les parties complètes de E sont exactement les fermés ; exemple (HP) : ( C([0,1],R), ) est un Banach ; attention ( C([0,1],R), p ) n'est pas complet ; critère de Cauchy uniforme : on dit d'une suite de fonctions qu'elle vérifie le critère de Cauchy uniforme ssi cette suite est de Cauchy pour ; d : théorème du point fixe (HP) : Toute fonction contractante sur E un EM complet y admet un unique point fixe ; pour un telle fonction et (x n ) n N définie par x 0 E et n N, xn+1=f(x n ), la suite (x) CV géométriquement vers le point fixe de f dans E ; exercice : théorème du point fixe de Kakutani (version faible) : si (E, ) est un evn, K un compact convexe de E, f une application affine de E dans E telle que f(k) K, alors f a un point fixe ; e : fermés emboîtés et théorème de Baire (HP) : théorème des fermés emboîtés : théorème de Baire : soit (E,d) un EM complet soit (F n ) n N une suite de fermés non vides tels que : n N, Fn+1 F n et diam(f n ) 0 ; alors : x E tel que n N F n = {x} ; si (E,d) est un EM complet, une intersection quelconque d'ouverts denses de E est dense dans E (pas forcément ouverte) ; corollaire : une union quelconque de fermés d'intérieurs vides est d'intérieur vide (complémenter) exemple d'application : un banach n'a pas de base algébrique exactement dénombrable ;

10 (donc notamment R[X] n'est de Banach pour aucune norme ) exemple : existence de fonction de [0,1] dans R continues partout et dérivables nulle part (l'ensemble de ces fonctions est même dense) ; f : critère de Cauchy pour les applications : soient (E,d) et (E',d') deux EM, A une partie non vide de E, a A, et f de E dans E' ; odq f vérifie le critère de Cauchy en a selon A ssi : ε > 0, > 0 tq (x,y) ( A B o (a, ) )², d'( f(x),f(y) ) ε ; (1) si f converge en a selon A, f vérifie (1) ; si (E',d') est complet et f vérifie (1), f CV en a selon A ; 9) CONNEXITÉ PAR ARCS a : chemins : on appelle chemin tracé dans E un métrique une application continue de [0,1] dans E ; on considère la relation d'équivalence sur E définie par : a~b il existe un chemin tracé sur E reliant a à b les classes d'équivalence sont appelées composantes connexes par arcs de E b : exemples : partie étoilée : on appelle partie étoilée d'un evn une partie X dont un des éléments peut être relié à chaque autre par un segment ; épigraphe : l'épigraphe d'une fonction f : I R est l'ensemble : {(x,y) I R \ f( x) y } exemple important : SL n (R) est connexe par arcs ; c : image d'un CA par une application continue : L'image par une application continue d'un CA est CA ; Remarque : les CCA de R sont les intervalles donc ceci généralise le TVI ;

11 d : parties ouvertes et fermées d'un CA : théorème : si (E,d) est un EM CA, les seules parties ouvertes et fermées de E sont E et. preuve : considérer un chemin joignant un point de X ouvert et fermé et un point de E ; supposer que le chemin joignant ces deux points n'est pas contenu dans X en entier, et trouver une contradiction ; 10) COMPACITÉ (bis) a : théorème de Riesz (HP) : théorème : dans un evn de dimension infinie, la sphère unité n'est pas compacte ; lemme : soient V un evn, F un sev de V de dim finie, avec F V : x V tq x =1 et d(x,f)=1 ; b : théorème d'ascoli (HP) : théorème d'ascoli : soit (f n ) n N une suite de fonctions continues de [a,b] segment de R dans R ; on suppose les f n EC et les f n bornés ; alors il existe une extraction tq (f (n) ) CVU sur [a,b] ; lemme : procédé diagonal : pour tout k dans N, u k est une suite bornée de R ; alors il existe une extraction telle que pour tout k dans N, u k (n) converge. preuve : on construit 1 telle que u 1 1(n) converge, puis 2 telle que u 2 2 1(n) converge, etc... puis on pose : n 1.. n (n) ; convient ; lemme (des trois topologies) : pour une suite équicontinue (g n ) n 0 de fonctions de [a,b] dans R et D une partie dense de [a,b], les trois propositions suivantes sont équivalentes : _(g n ) CVU sur [a,b] ; _(g n ) CVS sur [a,b] ; _ d D, (gn(d)) CV (CVS sur D) ;

12 corollaire au théorème d'ascoli : les compacts de ( C([a,b],R), ) sont les fermés bornés, équicontinus ; c : "continuité" des racines de polynômes : lemme : soit P un polynôme unitaire de C[X] ; soit S la somme de ses coefficients non dominants ; soit z une racine de P ; alors z max(1,s) ; d : précompacité : un EM est précompact ssi il est la réunion d'un nombre fini de ses boules ; une partie d'un EM E est précompacte ssi elle incluse dans la réunion d'un nombre fini de boule ayant pour centre des éléments de E ; théorème : un EM est compact ssi il est complet et précompact ; remarque : les parties compactes d'un Banach sont les parties fermées et précompactes exercice : preuve du théorème d'ascoli par la précompacité

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

TOPOLOGIE - SÉRIE 1. := {x} := {A X x A} est un

TOPOLOGIE - SÉRIE 1. := {x} := {A X x A} est un TOPOLOGIE - SÉRIE 1 Exercice 1. Soit f : A B une application. Prouver que (a) A f 1 fa pour tout A A, avec égalité si f est injective; (b) ff 1 B B pour tout B B, avec égalité si f est surjective; Exercice

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

ANALYSE MATHEMATIQUE. Jean SCHMETS

ANALYSE MATHEMATIQUE. Jean SCHMETS UNIVERSITE DE LIEGE Faculté des Sciences Institut de Mathématique ANALYSE MATHEMATIQUE Introduction aux espaces fonctionnels Notes du cours de la seconde candidature en sciences mathématiques ou en sciences

Plus en détail

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin Enoncés : M. Quéffelec Corrections : A. Bodin Exo7 Topologie générale Exercice 1 1. Rappeler les définitions d une borne supérieure (inférieure) d un ensemble de nombres réels. Si A et B sont deux ensembles

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

B03. Ensembles, applications, relations, groupes

B03. Ensembles, applications, relations, groupes B03. Ensembles, applications, relations, groupes Bernard Le Stum Université de Rennes 1 Version du 6 janvier 2006 Table des matières 1 Calcul propositionnel 2 2 Ensembles 5 3 Relations 7 4 Fonctions, applications

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Cours de Topologie L3-math

Cours de Topologie L3-math Cours de Topologie L3-math Renaud Leplaideur Année 2014-2015 UBO 2 Table des matières 1 Rappels, préliminaires 5 1.1 Rappels sur les ensembles........................... 5 1.1.1 Formalisme ensembliste.........................

Plus en détail

Compacité faible et Axiome du Choix Séminaire ERMIT

Compacité faible et Axiome du Choix Séminaire ERMIT Compacité faible et Axiome du Choix Séminaire ERMIT Marianne Morillon 12 et 19 février 2007 Questions Etant donné un espace normé E, on note par défaut. sa norme, B E sa boule unité large: B E := {x E

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

TOPOLOGIE - SÉRIE 1. x f 1 B i f(x) B i x f 1 (B i ). f 1 ( i I B i) = i I f 1 (B i ); en effet. f 1 B i = f 1 B i et f 1 (B \ B ) = A \ f 1 B ; i I

TOPOLOGIE - SÉRIE 1. x f 1 B i f(x) B i x f 1 (B i ). f 1 ( i I B i) = i I f 1 (B i ); en effet. f 1 B i = f 1 B i et f 1 (B \ B ) = A \ f 1 B ; i I TOPOLOGIE - SÉRIE 1 Exercice 1. Soit f : A B une application. Prouver que (a) A f 1 fa pour tout A A, avec égalité si f est injective; (b) ff 1 B B pour tout B B, avec égalité si f est surjective; Preuve.

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Mathématiques pour l Informatique Relations binaires Jérôme Gensel Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers

Plus en détail

Un tout petit peu d homotopie

Un tout petit peu d homotopie Vincent Beck On note I = [ 0, 1 ]. Un tout petit peu d homotopie 0.1 Homotopie Définition 1 Applications homotopes. Soient X, Y deux espaces topologiques et f, g : X Y deux applications continues. On dit

Plus en détail

M42. Compléments d analyse (résumé).

M42. Compléments d analyse (résumé). Université d Evry-Val-d Essonne. Année 2008-09 D. Feyel M42. Compléments d analyse (résumé). Table. I. Rappels sur les suites. Limites supérieure et inférieure. II. Topologie élémentaire. III. Fonctions

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM365 Intégration 2 Année 2011 12 Théorie de la Mesure et Intégration Amaury Lambert 1 1. Responsable de l UE. Mél : amaury.lambert@upmc.fr

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Relations binaires sur un ensemble.

Relations binaires sur un ensemble. Math122 Relations binaires sur un ensemble. TABLE DES MATIÈRES Relations binaires sur un ensemble. Relations d équivalence, relation d ordre. Table des matières 0.1 Définition et exemples...................................

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

Table des matières. Applications linéaires.

Table des matières. Applications linéaires. Table des matières Introduction...2 I- s et exemples...3 1-...3 2- Exemples...4 II- Noyaux et images...5 1- Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples...5 2- Ker

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

4 Espaces topologiques vectoriels

4 Espaces topologiques vectoriels 4 Espaces topologiques vectoriels Il existe des exemples importants d espaces vectoriels pour lesquels la notion naturelle de convergence n est pas engendrée par une norme. C est le cas, par exemple, de

Plus en détail

Table des matières. 4 Espaces de Hilbert 88 4.1 Généralités... 88 4.2 Le Théorème des bases hilbertiennes... 99 4.3 Exemples...

Table des matières. 4 Espaces de Hilbert 88 4.1 Généralités... 88 4.2 Le Théorème des bases hilbertiennes... 99 4.3 Exemples... Table des matières 1 Espaces linéaires à semi norme 3 1.1 Parties remarquables d un espace linéaire.................. 3 1.2 Sémi-normes sur un espace linéaire...................... 7 1.3 Espace linéaire

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Analyse - Résumés et exercices

Analyse - Résumés et exercices Analyse - Résumés et exercices Georges Skandalis Université Paris Diderot (Paris 7) - IREM Préparation à l Agrégation Interne 6 mars 205 Table des matières Suites de nombres réels. Développement décimal

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

VIII Relations d ordre

VIII Relations d ordre VIII Relations d ordre 20 février 2015 Dans tout ce chapitre, E est un ensemble. 1. Relations binaires Définition 1.0.1. On appelle relation binaire sur E tout triplet R = (E, E, Γ) où Γ est une partie

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Exercices de mathématiques MPSI et PCSI

Exercices de mathématiques MPSI et PCSI Exercices de mathématiques MPSI et PCSI par Abdellah BECHATA www.mathematiques.ht.st Table des matières Généralités sur les fonctions 2 2 Continuité 3 3 Dérivabilité 4 4 Fonctions de classes C k 5 5 Bijections

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES I. Logique. II. Ensemble. III. Relation, fonction, application. IV. Composition, réciprocité. V. Relation d

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009 Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

THÉORIE DE LA MESURE ET INTÉGRATION

THÉORIE DE LA MESURE ET INTÉGRATION Université Pierre et Marie Curie Licence de Mathématiques Années 2004-2005-2006 LM 363 THÉORIE DE LA MESURE ET INTÉGRATION Cours de P. MAZET Edition 2004-2005-2006 Table des matières Table des matières

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Vandana BHANDARI Marc-Olivier CZARNECKI P R E P AMA TH Collection dirigée par Éric MAURETTE Sommaire Algèbre Notionsdebase... 1,2 Arithmétique...

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail