Formes bilinéaires, produits scalaires Pour s entraîner...

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Formes bilinéaires, produits scalaires Pour s entraîner..."

Transcription

1 Formes bilinéaires, produits scalaires Pour s entraîner... I Savoir reconnaître un produit scalaire Les applications ci-dessous sont-elles des formes bilinéaires? Si oui sont-elles symétriques? Définies? Positives? 1- Cas où est définie sur R² X R² : ( = 4 x x xy + x y + yy ( on pourra remarquer que (x,y) = ) ( = 4 x² + xx + yy y² ( = 4xx xy x y + yy 2- Cas où est définie sur R 3 X R 3 : ( ) = xx + yy 2xy + zz ( ) = 4xx + 3yy 2 xy 2 x y + zz 3- Cas où est définie sur M n (R) X M n (R) A est une matrice donnée de M n,1 (R) : ( M, N ) = t A t M N A 4- Cas où est définie sur C², C étant considéré comme un R-ev ( expliquer ce que cela signifie ). ( z, z ) = Re ( ) 5- Cas où est définie sur R R X R R : (f,g) = f [ g(0) ] 6- Cas où est définie sur E² où E est l espace des séries ( à coefficients réels ) convergentes : ( ) = ( ). ( ) II Savoir reconnaître des normes euclidiennes Indiquer si les applications N ci-dessous sont des normes euclidiennes? 1- Cas où N est définie sur R n avec X = N( X ) = avec n 2 2- Cas où N est définie sur R n [X] N(P) = N(P) = où a est un réel donné.

2 3- Cas où N est définie sur l ensemble C 0 (R) des fonctions de R dans R continues sur R : III Savoir utiliser les produits scalaires pour montrer des inégalités : Montrer les inégalités suivantes avec n IN* : 1- n² 2- Pour toute matrice M M n (R), M = ( m i,j ) 1 i, j n : Tr(M) Etudier les cas d égalité (on pourra penser au produit scalaire sur M n (R) : < A, B > = Tr( t A B ) ) 3- Pour toute fonction f continue et strictement positive sur ( 0, 1 ] : Etudier les cas d égalité 4- Pour toute fonction continue sur [ 0, 1 ] : Etudier les cas d égalité Eléments de correction des exercices précédents I Savoir reconnaître un produit scalaire 1- Cas où est définie sur R² X R² : on notera X =, X = ( = 4 x x xy + x y + yy ( on pourra remarquer que (x,y) = ) est bilinéaire ( propriété du produit matriciel et linéarité de la transposition ) n est pas symétrique car - xy + x y n est pas toujours égal à x y + xy (X,X) = 4x²+y² donc est définie positive. ( = 4 x² + xx + yy y² n est pas bilinéaire à cause de x² et de y², ainsi par exemple, pour X = et X = (X,X ) = 4 0 ( = 4xx xy x y + yy est bilinéaire car (X,X ) = t X X (propriété du produit matriciel et linéarité de la transposition ) est symétrique car (X,X ) = (X,X) (X,X) = 4x² - 2xy + y² = 3x² + (x-y)² : est donc définie positive est un produit scalaire sur R²

3 2- Cas où est définie sur R 3 X R 3 : on notera X = ; X = ( ) = xx + yy 2xy + zz est bilinéaire car (X,X ) = t X X ( propriété du calcul matriciel et linéarité de la transposition ) n est pas symétrique car (X,X ) contient -2xy mais 0 x y (X,X) = x²+y²-2xy+z² = (x-y)² + z² donc est positive mais non définie car (X,X) = 0 pour X = ( ) = 4xx + 3yy 2 xy 2 x y + zz est bilinéaire car (X,X ) = t X X ( propriété du calcul matriciel et linéarité de la transposition ) est symétrique (X,X) = 4x²+3y²-4xy+z² = (2x-y)² + 2y² + z² donc est définie positive. est bien un produit scalaire 3- Cas où est définie sur M n (R) X M n (R) A est une matrice donnée de M n,1 (R) : ( M, N ) = t A t M N A (M,N) est le produit de t A de taille (1,n) par t M de taille (n,n), puis par N de taille (n,n) et enfin par A de taille (n,1) donc (M,N) R et est une forme bilinéaire ( propriété du produit matriciel et linéarité de la transposition ) (M,N) = t (M,N) ( car (M,N) R ) donc M,N) = t A t N M A = (N,M) : est symétrique (M,M) = t A t M M A = t (MA) (MA) donc est positive ( en notant MA =, t (MA) (MA) = a 1 ² a n ² 0 ) n est pas définie car il existe des matrice M non nulles telles que MA = O n,1 canoniquement associé à M et admettant le vecteur A dans son noyau ). ( il suffit de choisir un endomorphisme de R n 4- Cas où est définie sur C², C étant considéré comme un R-ev ( expliquer ce que cela signifie ). ( z, z ) = Re ( ) R-ev signifie que les complexes, en tant que vecteurs, sont multipliés par des scalaires réels. On sait que :, R, Re( z + z ) = Re(z) + Re(z ) et Donc est bilinéaire La partie réelle d un complexe est égale à la partie réelle de son conjugué donc est symétrique Re(z ) = z ² donc est définie positive. 5- Cas où est définie sur R R X R R : (f,g) = f [ g(0) ] n est pas bilinéaire car f n est pas forcément linéaire, ainsi par exemple, pour f(x) = x²+1 et g(x) = 0 (f,g) = Cas où est définie sur E² où E est l espace des séries ( à coefficients réels ) convergentes : ( ) = ( ). ( ) est bilinéaire et symétrique ( propriété des séries convergentes et de leurs sommes ) ( ) = ( )² donc est positive mais n est pas définie car pour a 0 =1, a 1 = -1 et a n = 0 pour n 2, ) = ( )² = 0 mais le terme général a n n est pas nul pour n 1.

4 II Savoir reconnaître des normes euclidiennes Indiquer si les applications N ci-dessous sont des normes euclidiennes? 1- Cas où N est définie sur R n avec X = et Y = N( X ) = avec n 2 N n est pas une norme euclidienne car en posant (X,Y) = En effet, (X,Y) =, n est pas bilinéaire. pour X= Y = = Z, 2 (X,Y) = 2 (X,Z) = N(X+Y)² - N(X)² - N(Y)² = = -4 et 2 (Y,Z) = 2 2 (X+Y,Z) = N(X+Y+Z)² - N(X+Y)² - N(Z)² = 4-1-1=2 donc (X+Y,Z) (X,Z) + (Y,Z) (X,Y) = x 1 y 1 + x 1 y 2 + x 2 y x 2 y 2 + x 3 y 3 = t X Y : vérifie N(X) ² = (X,X) et est bilinéaire ( propriété du produit matriciel et linéarité de la transposition ), symétrique (X,X) = x 1 ² + 2 x 1 x 2 + 3x 2 ² + x 3 ² = (x 1 + x 2 )² + 2x 2 ² + x 3 ² donc est définie positive est un produit scalaire donc N est une norme euclidienne (X,Y) = x 1 y 1 + x 2 y x 3 y 3 x 1 y 2 x 2 y 1 + x 1 y 3 + x 3 y 1 + x 2 y 3 + x 3 y 2 = t X Y : vérifie N(X) ² = (X,X) et est bilinéaire ( propriété du produit matriciel et linéarité de la transposition ), symétrique (X,X) = = (x 1 - x 2 + x 3 )² + (2 x 2 + x 3 )² + 2 x 3 ² donc est définie positive est un produit scalaire donc N est une norme euclidienne 2- Cas où N est définie sur R n [X] N(P) = On pose P, Q R n [X], (P,Q) = On remarque que N(P) = est symétrique ( par commutativité de la multiplication dans R ) est bilinéaire ( par distributivité de la multiplication par rapport à l addition dans R ) (P,P) 0 ( car un carré de réel est positif et toute somme de réels positifs est positive ) Si (P,P) = 0 alors k 0, n, P(k) = 0 donc P = O R[X] car P a plus de racines que son degré (deg P n ) est un produit scalaire donc N est une norme euclidienne. N(P) = où a est un réel donné. On pose P, Q R n [X], (P,Q) = On remarque que N(P) = est symétrique ( par commutativité de la multiplication dans R ) est bilinéaire ( par distributivité de la multiplication par rapport à l addition dans R et linéarité de la dérivation ) (P,P) 0 ( car un carré de réel est positif et toute somme de réels positifs est positive ) Si (P,P) = 0 alors k 0, n, P (k) (a) = 0 donc P = O R[X] d après la formule de Taylor dans R n [X] : P(X) = est un produit scalaire donc N est une norme euclidienne.

5 3- Cas où N est définie sur l ensemble C 0 (R) des fonctions de R dans R continues sur R : On pose : f,g C 0 (R), (f,g) = On remarque que est symétrique car fg = gf est bilinéaire par linéarité de l intégration (f,f) 0 car : t [ 0, ] f²(t) sin(t) 0 et positivité de l intégrale Si (f,f) = 0, alors puisque t f²(t) sin(t) est continue et positive sur [ 0, ] : t [ 0, ], f²(t) sin(t) = 0 donc t ] 0, [, f(t) = 0 et f étant continue sur ( 0, ], f(0) = = 0 et f( ) = = 0 donc f est la fonction nulle sur [ 0, ] est un produit scalaire donc N est une norme euclidienne. N n est pas une norme euclidienne : On pose (f,g) = n est manifestement pas bilinéaire à cause des racines carrées, et de la puissance 4. Mais il vaut mieux le prouver avec un contre-exemple Pour f(t) = g(t) = h(t) = 1 (f,h) = (g,h) = 14 alors que (f+g,h) = 64 f,h) + (g,h) III Savoir utiliser les produits scalaires pour montrer des inégalités : Méthode à connaître : 1) trouver un produit scalaire adapté ( dans R n, sauf indication contraire, il s agira du produit scalaire canonique ) 2) trouver les bons vecteurs pour appliquer l inégalité de Cauchy-Schwarz Montrer les inégalités suivantes avec n IN* : 1- n² Produit scalaire canonique sur R n u=, v =, w =, z = < u, w > ² = n² u ² w ² = < v, z >² v ² z ² n 2- Pour toute matrice M M n (R), M = ( m i,j ) 1 i, j n : Tr(M) Cas d égalité? (on pourra penser au produit scalaire sur M n (R) : < A, B > = Tr( t A B ) ) Tr(M) = Tr( t I n M = < I n, M > avec égalité ssi M est proportionnelle à I n autrement dit M diagonale avec des termes diagonaux égaux.

6 3- Pour toute fonction f continue et strictement positive sur ( 0, 1 ] : Produit scalaire adapté : < f, g > = ( vérifier que c est bien un produit scalaire, cf exemple du cours ) On applique l inégalité de Cauchy-Schwarz aux fonctions et <, > = = 1 puis en élevant au carré : 1 Avec égalité ssi il existe R tel que = autrement dit ssi f est constante. 4- Pour toute fonction continue sur [ 0, 1 ] : Produit scalaire adapté le même que précédemment ) : < f, g > = On applique l inégalité de Cauchy-Schwarz aux fonctions t et t Avec égalité ssi f est constante. On peut aussi prendre d autres produits scalaires ( par exemple < f, g > = <f,1> en appliquant Cauchy-Schwarz à

ALGÈBRE BILINÉAIRE 1

ALGÈBRE BILINÉAIRE 1 3-8- 213 J.F.C. Eve p. 1 ALGÈBRE BILINÉAIRE 1 P mentionne des résultats particulièrement utiles et souvent oubliés dans la pratique de l algèbre bilinéaire... mentionne des erreurs à ne pas faire où des

Plus en détail

Devoir maison n 5. MP Lycée Clemenceau. A rendre le 7 janvier 2014. Centrale

Devoir maison n 5. MP Lycée Clemenceau. A rendre le 7 janvier 2014. Centrale Devoir maison n 5 MP Lycée Clemenceau A rendre le 7 janvier 214 Centrale - Dans le problème, λ désigne toujours une application continue de IR + dans IR +, croissante et non majorée. - Dans le problème,

Plus en détail

EXERCICES MPSI A9 ESPACES EUCLIDIENS R. FERRÉOL 13/14

EXERCICES MPSI A9 ESPACES EUCLIDIENS R. FERRÉOL 13/14 EXERCICES MPSI A9 ESPACES EUCLIDIENS R. FERRÉOL 3/4 PRODUIT SCALAIRE. : Dire si chacune des applications suivantes est un produit scalaire surr : x x x x y y = symétrique? bilinéaire? = positif? défini?

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2 Espaces euclidiens Table des matières 1 Définitions et exemples 1 Orthogonalité, norme euclidienne 3 Espaces euclidiens, bases orthonormées 4 Orthogonalisation de Schmidt 3 5 Sous-espaces orthogonaux 3

Plus en détail

PC* Espaces préhilbertiens réels

PC* Espaces préhilbertiens réels I. Espace préhilbertien réel................................... 3 I.1 Produit scalaire dans un espace vectoriel réel................... 3 I.2 Inégalités de Cauchy-Schwarz et de Minkowski..................

Plus en détail

Agrégation de Mathématiques Exercices d algèbre linéaire

Agrégation de Mathématiques Exercices d algèbre linéaire Agrégation de Mathématiques Exercices d algèbre linéaire P. HUBERT La plupart des exercices ci-dessous se trouvent dans les livres suivants : - E. Leichtnam, X. Schaeur, Exercices corrigés de mathématiques

Plus en détail

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières.

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières. Analyse fonctionnelle A. Leclaire ENS Cachan M Hadamard 25-26 TD7 Exercice Sous-espaces fermés de C ([,] formé de fonctions régulières. Soit F un sous-espace vectoriel fermé de C ([,] muni de la convergence

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Correction. Mathématique Élémentaire. Test n 2 (26 septembre 2011) Question 1. Calculez. (a) (1 + i)(3 i) = 1 3 i 2 + 3i i = 4 + 2i.

Correction. Mathématique Élémentaire. Test n 2 (26 septembre 2011) Question 1. Calculez. (a) (1 + i)(3 i) = 1 3 i 2 + 3i i = 4 + 2i. Question 1. Calculez (a) (1 + i)(3 i) = 1 3 i + 3i i = 4 + i. (b) l inverse dans C de i : i 1 = i car ( i) i = i = 1. (c) l inverse dans C de ( i) : par une formule du cours, ( i) 1 = (d) 1 + 7i = 1 +

Plus en détail

EMLyon 2011 - Corrigé

EMLyon 2011 - Corrigé EMLyon - Corrigé Partie I. Soit X une variable aléatoire suivant la loi E() ; une densité de X est : f(x) = { si x < e x si x et E(X) = et V (X) =.. (a) Soit n N ; n E(S n ) = E(X k ) = n par linéarité

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R TOPOLOGIE 1) DISTANCE, ESPACES MÉTRIQUES a : distances : d'après le cours de M. Nicolas Tosel professeur en MP* au Lycée du Parc, Lyon Année 2004 2005 une distance est une application d de E dans R + telle

Plus en détail

Préparation à l agrégation interne de mathématiques - Année 2014-2015 Préparation à l écrit - Samedi 13 décembre 2014

Préparation à l agrégation interne de mathématiques - Année 2014-2015 Préparation à l écrit - Samedi 13 décembre 2014 Préparation à l agrégation interne de mathématiques - Année 04-05 Préparation à l écrit - Samedi 3 décembre 04 Durée : 4 à 6 heures - Le sujet comporte 6 pages. Dans ce problème, on se propose de prouver

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Chapitre 7. Les fonctions de références

Chapitre 7. Les fonctions de références Chapitre 7 Les fonctions de références I Rappels sur les fonctions I1 Domaine de définition I2 Les variations I3 Parité II Les fonctions de référence II1 Fonctions affines II2 Fonction carré II3 Fonction

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Séance 2: Modèle Euclidien

Séance 2: Modèle Euclidien Généralités Métrique sur les INDIVIDUS Métrique sur les VARIABLES Inertie Analyse des individus Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Généralités Métrique

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

Définition d une norme

Définition d une norme Définition d une norme Définition E est un K-ev. L application N : E R + est une norme sur E ssi 1. x E, N(x) = 0 x = 0. 2. k K, x E, N(k.x) = k N(x). 3. x, y E, N(x + y) N(x) + N(y) Notation N,. Propriété

Plus en détail

Les espaces vectoriels Partie 1

Les espaces vectoriels Partie 1 Les espaces vectoriels Partie 1 MPSI Prytanée National Militaire Pascal Delahaye 1 er février 2016 1 Définition d un Espace Vectoriel Soit ( K,+, ) un corps commutatif (le programme impose K = R ou C).

Plus en détail

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin.

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin. Exo7 Espaces vectoriels Fiche amendée par David Chataur et Arnaud Bodin. Définition, sous-espaces Exercice Montrer que les ensembles ci-dessous sont des espaces vectoriels (sur R) : E = { f : [,] R } :

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

EXERCICE 1. Corrigé ECRICOME Eco 2012 par Pierre Veuillez

EXERCICE 1. Corrigé ECRICOME Eco 2012 par Pierre Veuillez Corrigé ECRICOME Eco par Pierre Veuillez EXERCICE (M 3 (R), +,.) désigne l espace vectoriel des matrices carrées d ordre 3 à coeffi cients réels. Deux matrices A et B de M 3 (R) étant données, on suppose

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < +

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < + Chapitre 6 Les espaces L p 6.1 Définitions et premières propriétés 6.1.1 Les espaces L p, avec 1 p < + Soient (E, T,m) un espace mesuré, 1 p < + et f M = M(E, T) (c est-à-dire f : E R, mesurable). On remarque

Plus en détail

Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé

Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé n o 1 *I : 1 Soit P E. Si on pose P = + a k X k, il existe n N tel que k > n, a k =. Donc P = { k= P k } Sup k!, k N = Max{

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Exo7. Devoir à la maison et sujet de partiel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud. Exercice 1 Soit d non rationel.

Exo7. Devoir à la maison et sujet de partiel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud. Exercice 1 Soit d non rationel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud Exo7 Devoir à la maison et sujet de partiel Exercice 1 Soit d non rationel. Dans l anneau on definit la conjugaison" z : Z[ d] = {n + m d n,m Z} si z

Plus en détail

a+b=c+d = b+d = a+d = b+c a+b+c=d+e+f = g+h+i d e f M

a+b=c+d = b+d = a+d = b+c a+b+c=d+e+f = g+h+i d e f M EXERCICES MPSI A6. ESPACES VECTORIELS R. FERREOL /4 Dans tous ces exercices,kest égal àrouc.. : Dire dans quelk espace vectoriel sont inclus les ensembles suivants (il faut préciserkdans certains cas).

Plus en détail

Cours de Mathématiques II Chapitre 1. Algèbre linéaire

Cours de Mathématiques II Chapitre 1. Algèbre linéaire Université de Paris X Nanterre UFR Segmi Année 7-8 Licence Economie-Gestion première année Cours de Mathématiques II Chapitre Algèbre linéaire Table des matières Espaces vectoriels Espaces et sous-espaces

Plus en détail

Résumé de Math Sup et compléments : algèbre linéaire

Résumé de Math Sup et compléments : algèbre linéaire Résumé de Ma Sup et compléments : algèbre linéaire I - Espaces vectoriels - Sous espaces vectoriels 1) Structure de K-espace vectoriel Soient K un sous-corps de C et E un ensemble non vide muni d une l.d.c.i.

Plus en détail

Résumé du Cours de Modèles de Régression. Yves Tillé

Résumé du Cours de Modèles de Régression. Yves Tillé Résumé du Cours de Modèles de Régression Yves Tillé 0 janvier 20 Chapitre Régression bivariée Série statistique bivariée On s intéresse à deux variables x et y Ces deux variables sont mesurées sur les

Plus en détail

EMLYON 2015 S. Éléments de correction

EMLYON 2015 S. Éléments de correction EMLYON 15 S Éléments de correction ECS Lycée La ruyère, Versailles Année 1/15 Premier problème Première partie 1. On peut vérifier le critère de sous-espace vectoriel E et, pour P 1, P E et λ R, λp 1 +

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail

Espaces euclidiens. 1 Produit scalaire 2 1.1 Définition... 2 1.2 Exemples fondamentaux... 2 1.3 Cauchy-Schwarz... 3 1.4 Norme associée...

Espaces euclidiens. 1 Produit scalaire 2 1.1 Définition... 2 1.2 Exemples fondamentaux... 2 1.3 Cauchy-Schwarz... 3 1.4 Norme associée... Maths PCSI Cours Table des matières Espaces euclidiens 1 Produit scalaire 2 1.1 Définition...................................... 2 1.2 Exemples fondamentaux.............................. 2 1.3 Cauchy-Schwarz..................................

Plus en détail

COURS ET EXERCICES DE MATHEMATIQUES PARTIE 2 1998-2011

COURS ET EXERCICES DE MATHEMATIQUES PARTIE 2 1998-2011 COURS ET EXERCICES DE MATHEMATIQUES PARTIE 2 1998-2011 2 PC Deuxième semestre Version 2011 Cours Exercice Auteur de la Ressource Pédagogique PICQ Martine MATHEMATIQUES Cours et exercices de Mathématiques

Plus en détail

2010/2011. Espaces vectoriels

2010/2011. Espaces vectoriels Université Paris-Est Marne-la-Vallée 010/011 M1 enseignement CD/Préparation au CAPES Espaces vectoriels Dans toute la suite on considèrera des espaces vectoriels sur un corps commutatif K de caractéristique

Plus en détail

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET MATHEMATIQUES 3 PRISE DE NOTE PAR : PLASMAN SYLVAIN SERIE 7 ANNEE 2010-2011 1 Sommaire et accès aux chapitres/sous-chapitres Cliquez sur le

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Matrices. 3 Théorie du rang 11 3.1 Opérations élémentaires... 11 3.2 Rang d une matrice, pivot de Gauss... 11 3.3 Inversion des matrices...

Matrices. 3 Théorie du rang 11 3.1 Opérations élémentaires... 11 3.2 Rang d une matrice, pivot de Gauss... 11 3.3 Inversion des matrices... Maths PCSI Cours Matrices Table des matières Présentation de M n,p (K) 2 Espace des matrices (n, p) 2 2 Lien avec les applications linéaires 3 3 L algèbre M n (K) 5 4 Transposition 6 2 Représentation des

Plus en détail

Autour de Perron, Frobenius et Markov

Autour de Perron, Frobenius et Markov Université Claude Bernard Lyon 1-2007/2008 Préparation Capes - Algèbre et Géométrie - Devoir à rendre le 12 février 2008 - Autour de Perron Frobenius et Markov Rappels et notations On note M mn (K) le

Plus en détail

ESPACES PRÉHILBER TIENS RÉELS

ESPACES PRÉHILBER TIENS RÉELS ESPACES PRÉHILBER TIENS RÉELS 1 Produit scalaire et norme 1.1 Produit scalaire Définition 1.1 Soit E un R-espace vectoriel. On appelle produit scalaire sur E toute forme bilinéaire symétrique définie positive

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction S Cours Les fonctions affines Par cœur : définition d une fonction affine Soit a et b deux réels. Une fonction définie sur R par : f(x) = ax + b est appelée fonction affine. De plus, a = Variation des

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

Algèbre linéaire avancée I Jeudi 8 Octobre 2015 Prof. A. Abdulle J =

Algèbre linéaire avancée I Jeudi 8 Octobre 2015 Prof. A. Abdulle J = Algèbre linéaire avancée I Jeudi 8 Octobre 205 Prof. A. Abdulle EPFL Série 4 (Corrigé) Exercice Soit J M 2n 2n (R) la matrice définie par J 0 In, I n 0 où I n est la matrice identité de M n n (R) et 0

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition

Plus en détail

Réduction. Sous-espaces stables. [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1

Réduction. Sous-espaces stables. [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1 Réduction Sous-espaces stables Exercice 1 [ 00755 ] [Correction] Soient u et v deux endomorphismes d un K-espace vectoriel E. On suppose

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Corrigé - Méthodes Numériques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Corrigé - Méthodes Numériques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016 M1 Économie Appliquée Cours de B. Desgraupes Corrigé - Méthodes Numériques Séance 03: Bases du calcul numérique Corrigé

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Soit f un endomorphisme de E, commutant avec tous les endomorphismes de E. Montrer que f est de la forme λid, avec λ IK. Exercice

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MIPI - S2. Cours de Mathématiques : Polynômes et Suites

Université de Cergy-Pontoise Département de Mathématiques L1 MIPI - S2. Cours de Mathématiques : Polynômes et Suites Université de Cergy-Pontoise Département de Mathématiques L MIPI - S Cours de Mathématiques : Polynômes et Suites Table des matières Nombres complexes 5. Le corps C des nombres complexes.................................

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Le second degré. Déterminer et utiliser la forme la plus adéquate d une fonction polynôme de degré deux en vue de la résolution d un problème :

Le second degré. Déterminer et utiliser la forme la plus adéquate d une fonction polynôme de degré deux en vue de la résolution d un problème : Chapitre 1 Ce que dit le programme Le second degré CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Second degré Forme canonique d une fonction polynôme de degré deux. Équation du second degré, discriminant.

Plus en détail

PROBLÈME : Endomorphismes semi-linéaires et valeurs co-propres. Partie I

PROBLÈME : Endomorphismes semi-linéaires et valeurs co-propres. Partie I PROBLÈME : Endomorphismes semi-linéaires et valeurs co-propres Sujet complet Mines Pont 2001 - PSI Partie I 1. Premières propriétés Remarquons d abord que la définition de la semi-linéarité de u est équivalente

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

208 - Espaces vectoriels normés, applications linéaires continues. Exemples

208 - Espaces vectoriels normés, applications linéaires continues. Exemples 208 - Espaces vectoriels normés, applications linéaires continues. Exemples On se xe un corps K = R ou C. Tous les espaces vectoriels considérés auront K comme corps de base. 1 Généralités Remarque. Tout

Plus en détail

Chapitre 3. Espaces vectoriels

Chapitre 3. Espaces vectoriels Département de mathématiques et informatique L1S1, module A ou B Chapitre 3 Espaces vectoriels Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières MATHÉMATIQUES - SPÉCIALITÉ F.HUMBERT Table des matières Chapitre A - Congruences 2 Chapitre B - PGCD 5 Chapitre C - Nombres premiers 11 Chapitre D - Matrices et évolution de processus 14 Chapitre E - Matrices

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

LES ROTATIONS DE R 3 : VERSION MATRICIELLE

LES ROTATIONS DE R 3 : VERSION MATRICIELLE LES ROTATIONS DE R : VERSION MATRICIELLE. L espace R n Les structures dont R n est muni appartiennent à quatre niveaux : Structure vectorielle: Vecteur. Combinaison linéaire. Familles libres et liées.

Plus en détail

1 Espaces vectoriels normés

1 Espaces vectoriels normés Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS MI4 1 Espaces vectoriels normés 1.1 Définitions Soit E un espace vectoriel sur R. Topologie des espaces vectoriels de dimension finie Définition

Plus en détail

A. 1. Définitions 96/154. Cas particuliers

A. 1. Définitions 96/154. Cas particuliers I II III IV V VI VII VIII Cours de Mathématiques IUT Orsay DUT INFORMATIQUE A - Semestre 0-0 Introduction Wims Calcul ensembliste Relations binaires, applications Logique Raisonnements par récurrence,

Plus en détail

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition.

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition. Algèbre linéaire. Jean-Paul Davalan 2001 1 Espaces vectoriels R n. 1.1 Les ensembles R n. Définition 1.1 R 2 est l ensemble des couples (x, y) de deux nombres réels x et y. D une manière générale, un entier

Plus en détail

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé Intégration et probabilités NS Paris, 23-24 TD 5 Théorèmes de Fubini, calculs Corrigé xercices à préparer du TD 4 xercice. (Partiel 27 Soit (,,µ un espace mesuré et f : + une fonction mesurable.. On suppose

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

e3a Mathématiques B PC 2008 Exercice 1

e3a Mathématiques B PC 2008 Exercice 1 .a) Soit (x; y) R e3a Mathématiques B PC 8 Exercice On a xy 6 (x + y ) () x + y xy > ce qui est vrai car x + y xy = (x y), De même (x + y ) 6 xy () 6 x + y + xy or x + y + xy = (x + y). Cas d égalité :

Plus en détail

Algèbre linéaire 3 : produits scalaires, espaces euclidiens, formes quadratiques.

Algèbre linéaire 3 : produits scalaires, espaces euclidiens, formes quadratiques. Université Paris-Dauphine DU MI2E, 2ème année Algèbre linéaire 3 : produits scalaires, espaces euclidiens, formes quadratiques. Cours 2010/2011 Olivier Glass Le polycopié qui suit peut avoir des différences

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

Espaces vectoriel normés

Espaces vectoriel normés Espaces vectoriel normés 1) Normes a) Dé nition : K R ou C. Une norme sur un K-ev E est une application E! R x 7! kxk véri ant : i) 8 x 2 E; kxk 0 et kxk 0, x 0 (vecteur nul). ii) 8 x 2 E; 8 2 K kxk jj

Plus en détail

Applications linéaires

Applications linéaires [http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1 Applications linéaires Etude de linéarité a) Montrer que ϕ et ψ sont des endomorphismes de E. b) Exprimer ϕ ψ et ψ ϕ. c) Déterminer images et

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

202 - Exemples de parties denses et applications

202 - Exemples de parties denses et applications 202 - Exemples de parties denses et applications 1 Généralités et premiers exemples 1.1 Parties denses On xe un espace métrique (X, d). Dénition 1. Soit D X. On dit que D est dense dans X si D = X. Exemple.

Plus en détail

Calcul matriciel, corrections des exercices

Calcul matriciel, corrections des exercices Calcul matriciel, corrections des exercices Systèmes linéaires Correction de l exercice. (Système linéaire paramétrique { { x + 2y x + 2y 2x + my (4 my Ce système n admet de solution que si m 4. Dans ce

Plus en détail

Licence M.A.S.S. Feuilles de TD du cours d Algèbre S4

Licence M.A.S.S. Feuilles de TD du cours d Algèbre S4 Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. Feuilles de TD du cours d Algèbre S4 Jean-Marc Bardet (Université Paris, SAMOS) U.F.R. 7 et SAMOS (Centre d Economie de la Sorbonne, équipe MATISSE)

Plus en détail

FILIERE HUMANITES GENERALES. Préparation au test d admission de Mathématiques

FILIERE HUMANITES GENERALES. Préparation au test d admission de Mathématiques FILIERE HUMANITES GENERALES Préparation au test d admission de Mathématiques Algèbre Géométrie HG - HG 2 - HG 3 ALGÈBRE Les nombres... 4 Ensembles de nombres HG HG2 HG3... 4 Relation d ordre HG HG2 HG3...

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

Cours. 1 ) Fonction affine Déf. Fonctions affines, polynômes. I FONCTIONS AFFINES Fonctions affines par morceaux. x x

Cours. 1 ) Fonction affine Déf. Fonctions affines, polynômes. I FONCTIONS AFFINES Fonctions affines par morceaux. x x Cours FONCTIONS USUELLES Fonctions affines, polynômes F1 I FONCTIONS AFFINES Fonctions affines par morceaux 1 ) Fonction affine a et b sont deux réels donnés. La fonction f définie sur R par f (x) = ax

Plus en détail

Correction du devoir maison n o 7 PARTIE I

Correction du devoir maison n o 7 PARTIE I Lycée Kléber Pour le 5 décembre 2014 PSI* 2014-2015 Correction du devoir maison n o 7 (Mines I PSI 2001) MATHEMATIQUES PARTIE I Remarquons d abord que la définition de la semi-linéarité de u est équivalente

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES1 Le 11/03/003 MATHEMATIQUES Devoir N 6 Calculatrice et ormulaire autorisés Durée : 3h Exercice 1 : (5 points) (correction) Un magasin de distribution vend deux types de téléphones portables

Plus en détail

Feuilles de TD du cours d Algèbre S4

Feuilles de TD du cours d Algèbre S4 Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. 203-204 Feuilles de TD du cours d Algèbre S4 Jean-Marc Bardet (Université Paris, SAMM) Email: bardet@univ-paris.fr Page oueb: http://samm.univ-paris.fr/-jean-marc-bardet-

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

Variations des fonctions

Variations des fonctions CH2-1er S Variations des fonctions Rédacteur : Yann BANC Le mot du prof : Ce chapitre vous permet de revoir les fonctions usuelles et de découvrir de nouvelles fonctions usuelles : valeur absolue et racine

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail