Documents de Physique-Chimie M. MORIN

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Documents de Physique-Chimie M. MORIN"

Transcription

1 1 Thème : Lois et modèles Partie : Energie, matière et environnement. Cours 31 : Transferts quantiques d énergie. I. Quantification des niveaux d énergie de la matière. 1. Modèle corpusculaire de la lumière : le photon. Nous avons vu en classe de 2 nde que la lumière peut être décrite comme une onde électromagnétique. C'est-àdire qu elle peut se propager sans milieu matériel Einstein introduit la notion de photon. Les photons sont des «paquets» d'énergie élémentaires appelés "quanta". 2. Energie du photon. Chaque photon transporte une énergie E = h E s exprime en Joule est la fréquence (Hz) h est une constante universelle appelée constante de Planck. h = 6, J.s Autre expression de l énergie transportée par un photon : La fréquence est l inverse de la période T or T = λ donc = c C λ s'exprime en mètre (m). e alors E= hc λ c est la célérité de la lumière dans le vide. c = 3,0 x 10 8 m.s -1 Exemple de calcul d énergie transportée par un photon : Un photon «rouge» a une longueur d onde = 700 nm. Il se déplace à la vitesse de la lumière c = 3,0 x 10 8 m.s -1 Son énergie est égale à E = On constate que la valeur est très petite. Les physiciens utilisent une autre unité pour les énergies transportées par des particules : l électron-volt (ev). Un électron-volt est l énergie d un électron soumis à une tension de 1,0 V. 1 ev = 1, J Alors l énergie (en ev) transportée par le photon rouge est égale à E =.

2 2 3. Echange d énergie avec un photon. Niels Bohr en 1913 émis les hypothèses suivantes : L'énergie de l'électron est fixée et ne prend que des valeurs précises (on dit qu elle est quantifiée). Les radiations ne sont émises ou absorbées que si un électron passe d'une orbite à l'autre. (transition électronique). Par convention, les énergies des électrons sur les différentes orbites sont négatives. Par convention, L énergie de l électron situé sur la plus basse orbite a la valeur la plus négative. On appelle cet état, l état fondamental E0. Dans cet état, l électron est particulièrement stable car très lié au noyau. Quand les électrons sont sur des orbites plus éloignées du noyau, ils sont dans des états excités. Leurs niveaux énergies ont des valeurs comprises entre E0 et 0. Ces niveaux d énergie sont quantifiés, c'est-à-dire qu ils ont des valeurs discrètes (discontinues). Un électron qui n est plus rattaché au noyau a une énergie égale à 0. Exemple de schémas représentant les niveaux énergies des électrons sur les différentes orbites de l atome de mercure. Problème : Un électron d un atome de mercure passe d'un niveau énergétique E1 = -4,99 ev à un niveau E = -10,44 ev. a- L'atome perd-il ou gagne t-il de l'énergie?. b- Cette transition énergétique s'accompagnera-t-elle d'une émission ou d'une absorption d'une radiation lumineuse? c- Quelle est la valeur de la différence d énergie E entre ces deux niveaux d énergies? Attention au signe!... d- Quelle est la valeur de la longueur d'onde de cette radiation lumineuse? 1 ev = 1, J e- Est-elle visible?

3 3 II. Dualité onde-corpuscule. 1. Photon et onde lumineuse. Insuffisance du modèle ondulatoire. Au début du 20 ème siècle, la nature ondulatoire de la lumière est presque unanimement admise. Il est clair qu il s agit d une onde électromagnétique. Toutefois les résultats de nouvelles expériences viennent bouleverser ces certitudes. Activité documentaire. Source Académie d Orléans. Interaction Lumière Matière : émission, absorption De façon générale, les atomes ont tendance à s associer pour former des molécules stables par mise en commun d électrons. Lorsque la lumière arrive sur la matière, ces atomes et molécules peuvent réagir de diverses manières : absorption, fluorescence, transmission, réfraction, réflexion, diffusion. Nous allons nous intéresser à deux de ces phénomènes : tout d abord l absorption par la matière de photons et d électrons et ensuite la fluorescence L effet photoélectrique. Expérience de Hertz (1887). En 1886, Heinrich Hertz réalise l expérience intitulée «effet photoélectrique» : une plaque de zinc, décapée, montée sur un électroscope est chargée, puis éclairée par la lumière émise par une lampe à vapeur de mercure (émettant un rayonnement riche en UV, visible et IR) ou par une lampe à UV. Voir l animation : %20EXPERIENCES%20%20DE%20%20HERTZ.htm L expérience comporte trois étapes : 1 ère étape : Initialement la plaque de zinc et l'électroscope sont chargés négativement : l aiguille de l électroscope dévie. Puis la plaque de zinc est éclairée. L aguille revient dans sa position initiale. Interpréter : 2 ème étape : La plaque de zinc est rechargée négativement et une plaque de verre est interposée entre la lampe et le zinc. L aiguille n est pas déviée. Interpréter : 3 ème étape : La plaque de zinc est chargée positivement, puis éclairée. Que va-t-il se passer?

4 Conclusion de l expérience de Hertz. Heinrich Hertz a alors découvert que la lumière ultraviolette provoque l émission d électrons à partir d une surface métallique comme le zinc. On peut alors se demander comment on peut extraire un électron d un métal : Un métal est constitué par un réseau cristallin d'ions positifs entre lesquels circulent des électrons liés au réseau, mais libres de se déplacer à l'intérieur de ce réseau. - A l aide du diagramme énergétique d un électron, proposer une explication à l effet photoélectrique. - Quelle énergie minimale doit recevoir un électron pour être libéré? Le diagramme énergétique illustre que : - C'est à l intérieur du métal que l électron a le moins d'énergie, car il est lié au réseau ; - Lorsque l électron a capté l énergie E = Ws, il est sorti du métal, mais il est au repos (Ec = 0) ; - Lorsque l'électron a capté une énergie E > Ws, il est sorti du métal et a une énergie cinétique Ec = E Ws. Energie minimale que doit recevoir un électron pour être libéré. On pourrait s'attendre à ce qu'un faisceau de forte puissance apporte l'énergie suffisante pour extraire des électrons. Mais l expérience monte qu il existe une valeur minimale d énergie caractéristique de la surface métallique, en dessous de laquelle aucun électron n est éjecté. L énergie cinétique de l électron libéré dépend-elle de l intensité de la lumière ou l énergie du photon (c est-à-dire de sa fréquence)?

5 5 2. Modèle corpusculaire. Pour expliquer l'effet photoélectrique, il faut renoncer au modèle ondulatoire de la Physique Classique et recourir au modèle corpusculaire de la lumière (hypothèse d'einstein, 1905) Modèle corpusculaire de la lumière (hypothèse d'einstein) : Un rayonnement électromagnétique de fréquence ν peut être considéré comme un faisceau de particules : les photons. Il postule l existence de quanta d énergie. Chaque photon transporte l'énergie E = h où h représente la constante de Planck. Albert EINSTEIN (1879/1955), physicien allemand, reçoit en 1921 le prix Nobel de physique pour son apport à la physique théorique et particulièrement son explication de l effet photoélectrique Interprétation de l'effet photoélectrique à l'aide du modèle corpusculaire. - Comment un électron peut-il acquérir de l énergie pour devenir libre? - Que se passera-t-il si l énergie fournie à l électron par le photon est inférieur à son travail de sortie? égal à son travail de sortie, supérieure à son travail de sortie? Réponses Il existe donc un seuil pour l effet photoélectrique. 3. La fluorescence et la phosphorescence. On ne confondra pas la fluorescence avec la phosphorescence. Quelle est la différence entre fluorescence et phosphorescence? Interpréter le schéma ci-dessous. Donner des exemples dans la vie courante A VOIR /

6 6 III. Particule matérielle et onde de matière ; Relation de Broglie. En 1923, alors que les scientifiques ont prouvé que la lumière peut se comporter comme une onde ou comme des particules. Louis de Broglie émet l hypothèse que l on peut associer une onde à des particules matérielles comme les électrons. 1. Relation de Louis de Broglie. La relation de Louis de Broglie associe une onde de longueur d onde à une particule matérielle de quantité de mouvement p telle que : = h p constante de Planck h = 6, J.s : longueur d onde de la particule (m) P : quantité de mouvement (kg.m.s -1 ) Effectuer une analyse dimensionnelle afin de montrer l homogénéité de cette relation. Non seulement la lumière peut être décrite sous la forme d une particule (le photon) transportant une énergie E = h, mais une particule peut être également décrite comme une onde de longueur d onde. 2. Longueur d onde d un électron en mouvement dont l énergie cinétique est EK = 54 ev. Dans un premier temps, on détermine l expression de la quantité de mouvement de l électron en fonction de l énergie cinétique. On a p = mv et EK = 1 2 mv2 Soit p =.. En appliquant la relation de Louis de Broglie, on a = h p = =.. h 2mE K 3. Une application en recherche : le microscope électronique. Source : Les microscopes optiques sont limités dans leur résolution R car elle dépend entre autre de la longueur d'onde selon la relation suivante : R = 0,61λ. La résolution évalue la capacité à séparer des détails très n.sinu voisins. n : indice du milieu et u : angle du faisceau d'électrons (demi grand angle au sommet) 0,61 : coefficient lié à la diffraction. est la longueur d'onde du rayonnement = h p pour un rayonnement de particule de masse m et de vitesse v.h : constante de Planck

7 7 On notera la résolution obtenue avec un faisceau d électrons R1 et celle obtenue avec un faisceau lumineux R2. Après avoir calculé le rapport des résolutions R 2 R 1, expliquer pourquoi, il est intéressant d utiliser un faisceau d électrons de longueur d onde 1 = 0,17 nm plutôt qu un rayonnement visible de longueur d onde égale à 2 = 600 nm par exemple pour l observation au microscope. On considérera que les conditions expérimentales sont identiques, c est-à-dire que que n.sinu est constant pour les deux faisceaux. 4. Mise en évidence de l aspect quantique des phénomènes quantiques. Expérience d interférences photon par photon, particules de matière par particule de matière. Source : Nathan TS Les deux aspects corpusculaires et ondulatoires sont-ils compatibles? L expérience consiste à envoyé des photons un par un sur deux fentes parallèles. Remarque : il n est pas possible de savoir par quelle fente un photon va passer. Qu observez-vous? En quoi les figures d interférences obtenues montrent le caractère probabiliste du phénomène? En quoi ces résultats montrent le comportement ondulatoire et particulaire du photon? Réponses :

Transferts quantiques d énergie et dualité onde-particule

Transferts quantiques d énergie et dualité onde-particule 1. Onde électromagnétique et photon Au début du XXème siècle, la nature ondulatoire de la lumière est presque unanimement admise. 1.1. Insuffisance du modèle ondulatoire Expérience de Hertz (physicien

Plus en détail

Chapitre 5. Dualité onde-corpuscule. 5.1 Aspect corpusculaire de la lumière Expérience de Hertz (1887)

Chapitre 5. Dualité onde-corpuscule. 5.1 Aspect corpusculaire de la lumière Expérience de Hertz (1887) Chapitre 5 Dualité onde-corpuscule 5.1 Aspect corpusculaire de la lumière 5.1.1 Expérience de Hertz (1887) Une plaque de zinc montée sur un électroscope est chargée, puis éclairée par la lumière émise

Plus en détail

Thème : Lois et modèles Partie : Energie, matière et environnement. Cours 31 : Transferts quantiques d énergie.

Thème : Lois et modèles Partie : Energie, matière et environnement. Cours 31 : Transferts quantiques d énergie. 1 Thème : Lois et modèles Partie : Energie, matière et environnement. Cours 31 : Transferts quantiques d énergie. I. Quantification des niveaux d énergie de la matière. 1. Modèle corpusculaire de la lumière

Plus en détail

Fiche professeur. Interaction lumière matière : émission, absorption

Fiche professeur. Interaction lumière matière : émission, absorption Fiche professeur THEME du programme : Observer Sous-thème : Sources de lumière colorée Interaction lumière matière : émission, absorption Type d activité : Activité documentaire avec débats-bilan, exercices.

Plus en détail

Spectre atomique. Gaz à faible pression

Spectre atomique. Gaz à faible pression I- La quantification de l énergie 1/ Expérience de Franck et Hertz Spectre atomique a- Schéma simplifié du dispositif expérimental Cette expérience consiste à bombarder de la vapeur de mercure sous faible

Plus en détail

Chapitre 9 : Dualité onde-particule

Chapitre 9 : Dualité onde-particule Chapitre 9 : Dualité onde-particule 1. Ondes ou particules? 1.1. Aspect ondulatoire de la lumière Dans son «Traité de la lumière», Christian Huygens interprète la lumière comme la propagation d une onde.

Plus en détail

Chap. II : Les spectres atomiques Qui dit spectre dit rayonnement! II.1. Le rayonnement (la lumière) La lumière c est une onde ou une particule???

Chap. II : Les spectres atomiques Qui dit spectre dit rayonnement! II.1. Le rayonnement (la lumière) La lumière c est une onde ou une particule??? Qui dit spectre dit rayonnement! II.1. Le rayonnement (la lumière) La lumière c est une onde ou une particule??? II.1.a. Nature ondulatoire (onde) Les ondes lumineuses sont des ondes électromagnétiques

Plus en détail

Transferts quantiques d'énergie et dualité onde-particule

Transferts quantiques d'énergie et dualité onde-particule Transferts quantiques d'énergie et dualité onde-particule Comment la matière se comporte-t-elle à l'échelle microscopique? 1) Ondes ou particules? 1) La lumière Les phénomène de diffraction et interférences

Plus en détail

Chapitre 3 : Les sources de lumières colorées (p. 45)

Chapitre 3 : Les sources de lumières colorées (p. 45) PARTIE 1 - OBSERVER : COULEURS ET IMAGES Chapitre 3 : Les sources de lumières colorées (p. 45) Compétences attendues : Distinguer une source polychromatique d une source monochromatique caractérisée par

Plus en détail

COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13)

COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13) COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13) 1 COURS DE STRUCTURE DE LA MATIÈRE (Module Ph 13) SDM VOLUME HORAIRE : 24 heures Séances Cours : 12 heures 6 Travaux dirigés : 12 heures 6 Contrôles : 1

Plus en détail

CHAPITRE IV : RAYONNEMENTS

CHAPITRE IV : RAYONNEMENTS CHAPITRE IV : RAYONNEMENTS IV. PHYSIQUE GENERALE DES RADIATIONS : On entend par rayonnement, la propagation d énergie à travers l espace. IV.. Classification des rayonnements: Les rayonnements sont classés

Plus en détail

Introduction au monde quantique.

Introduction au monde quantique. Introduction au monde quantique. Introduction : l état de la physique à la fin du XIX e siècle. A la fin du XIX e siècle, la physique classique était basée sur deux grandes théories : la mécanique Newtonienne

Plus en détail

N e : nombre constant d électrons émis par le canon par unité de temps. E C (ev)

N e : nombre constant d électrons émis par le canon par unité de temps. E C (ev) I- la quantification du transfert d énergie entre un atome et le milieu extérieur. 1 / Expérience de Frank et Hertz : a- Dispositif expérimental Canon à électrons : Permettant d'obtenir des électrons de

Plus en détail

I. Dualité onde/photon : une onde lumineuse.

I. Dualité onde/photon : une onde lumineuse. Terminale S Partie B : Comprendre : lois et modèles Chapitre 15 : Un peu de physique quantique. I. Dualité onde/photon : une onde lumineuse. Savoir que la lumière présente des aspects ondulatoire et particulaire.

Plus en détail

Physique quantique. , d étant la distance entre les deux masses. , d étant la distance entre les deux masses.

Physique quantique. , d étant la distance entre les deux masses. , d étant la distance entre les deux masses. Physique quantique 15 CHAPITRE Jusqu'au début du XX ème siècle, la physique s'est développée dans le cadre de la mécanique créée par Newton. Connaître, à un instant donné, la position du corps et toutes

Plus en détail

Données : constante de Planck : h=6, J.s ; 1eV correspond à 1, J ; c=3, m.s -1 ; Loi de Wien : avec en C et max en nm.

Données : constante de Planck : h=6, J.s ; 1eV correspond à 1, J ; c=3, m.s -1 ; Loi de Wien : avec en C et max en nm. Données : constante de Planck : h=6,63.0-34 J.s ; ev correspond à,60.0-9 J ; c=3,00.0 8 m.s - ; Loi de Wien : avec en C et max en nm. Exercice (6 points) Rayonnements UV et IR. Les ondes lumineuses visibles

Plus en détail

1S 5 INTERACTION LUMIERE- MATIERE. Notions et contenus. Interaction lumière-matière : émission et absorption.

1S 5 INTERACTION LUMIERE- MATIERE. Notions et contenus. Interaction lumière-matière : émission et absorption. FICHE 1 Fiche à destination des enseignants 1S 5 INTERACTION LUMIERE- MATIERE Type d'activité Activité-cours. Notions et contenus Interaction lumière-matière : émission et absorption. Quantification des

Plus en détail

İNTRODUCTİON A LA PHYSİQUE QUANTİQUE

İNTRODUCTİON A LA PHYSİQUE QUANTİQUE TaleS / P15 İNTRODUCTİON A LA PHYSİQUE QUANTİQUE 1/ LA DUALİTÉ ONDE-PARTİCULE : Activité 15.1 a Dualité onde-particule de la lumière : Les phénomènes de diffraction et d interférences s expliquent par

Plus en détail

Physique Sources de lumières colorées et photon Chap.4-5

Physique Sources de lumières colorées et photon Chap.4-5 1 ère S Thème : Couleurs et images Activités Physique Sources de lumières colorées et photon Chap.4-5 I. La lumière 1. Les ondes électromagnétiques - Voir Document 1 Connaissances exigibles : Distinguer

Plus en détail

RAYONNEMENTS III. RAYONNEMENT ELECTROMAGNETIQUE. 1) Aspect ondulatoire: I. INTRODUCTION

RAYONNEMENTS III. RAYONNEMENT ELECTROMAGNETIQUE. 1) Aspect ondulatoire: I. INTRODUCTION RAYONNEMENTS III. RAYONNEMENT ELECTROMAGNETIQUE 1) Aspect ondulatoire: I. INTRODUCTION Les rayonnements électromagnétiques englobent un ensemble de rayonnements de nature physique identique, mais très

Plus en détail

Physique-Chimie Première partie Images et couleurs chapitre 4 Interaction lumière-matière Séance 1. 1 Tester ses prérequis

Physique-Chimie Première partie Images et couleurs chapitre 4 Interaction lumière-matière Séance 1. 1 Tester ses prérequis Compétences exigibles Physique-Chimie Première partie Images et couleurs chapitre 4 Interaction lumière-matière Séance 1 Interpréter les échanges d énergie entre lumière et matière à l aide du modèle corpusculaire

Plus en détail

Chapitre 1: Lumière et spectroscopie

Chapitre 1: Lumière et spectroscopie Chapitre 1: Lumière et spectroscopie Une science qui utilise la lumière pour analyser les propriétés des atomes, molécules et matériaux Elle utilise les fréquences (COULEURS, ENERGIES) de la lumière émise

Plus en détail

1ere S Chapitre 4 : Les sources de lumières colorées 1/5

1ere S Chapitre 4 : Les sources de lumières colorées 1/5 1 ere S Chapitre 4 : Les émissions de lumières colorées Thème Observer BO Notions et contenus Sources de lumière colorée Différentes sources de lumière : étoiles, lampes variées, laser, DEL, etc. Domaines

Plus en détail

Cours et activités : La dualité onde corpuscule

Cours et activités : La dualité onde corpuscule Cours et activités : La dualité onde corpuscule 1/ Ondes électromagnétiques et photon. Au début du XXe siècle, la nature ondulatoire de la lumière visible est presque unanimement admise. Il est solidement

Plus en détail

Thème 6 : l'énergie Chap 4 Mécanique quantique I Ondes ou particules? I.1 La lumière L'énergie de la lumière est transportée par des photons qui

Thème 6 : l'énergie Chap 4 Mécanique quantique I Ondes ou particules? I.1 La lumière L'énergie de la lumière est transportée par des photons qui Thème 6 : l'énergie Chap 4 Mécanique quantique I Ondes ou particules? I.1 La lumière L'énergie de la lumière est transportée par des photons qui présentent un aspect particulaire (les photons) et ondulatoire

Plus en détail

Activité 1 : Les tubes fluorescents.

Activité 1 : Les tubes fluorescents. Chapitre 3: Quels principes expliquent l émission d une lumière colorée? I. Sources de lumières colorées. Distinguer une source polychromatique d une source monochromatique caractérisée par une longueur

Plus en détail

Partie Comprendre : Lois et modèles CHAP 15-POLY Transferts quantique d énergie et dualité onde-particule

Partie Comprendre : Lois et modèles CHAP 15-POLY Transferts quantique d énergie et dualité onde-particule Partie Comprendre : Lois et modèles CHAP 15-POLY Transferts quantique d énergie et dualité onde-particule 1/5 Objectifs : Comment la matière se comporte-t-elle à l échelle microscopique? Notions et contenus

Plus en détail

Cours n 16 : Physique quantique

Cours n 16 : Physique quantique Cours n 16 : Physique quantique 1) Nature corpusculaire de la lumière La lumière peut être vue sous deux aspects : ondulatoire et corpusculaire. Dans ce chapitre nous allons étudier l aspect corpusculaire.

Plus en détail

CH3 UNE ORIGINE AU CŒUR DE LA MATIERE

CH3 UNE ORIGINE AU CŒUR DE LA MATIERE CH3 UNE ORIGINE AU CŒUR DE LA MATIERE «La lumière donne la couleur et l éclat à toutes les productions de la nature et de l art ; elle multiplie l Univers en le peignant dans les yeux de tout ce qui respire.»

Plus en détail

Partie Comprendre : Lois et modèles CHAP 15-EXOS Transferts quantique d énergie et dualité onde-particule

Partie Comprendre : Lois et modèles CHAP 15-EXOS Transferts quantique d énergie et dualité onde-particule Partie Comprendre : Lois et modèles CHAP 15-EXOS Transferts quantique d énergie et dualité onde-particule Exercices résolus p 387 à 389 N 1 à 5 Exercices p 390 à 398 N 11-15-18-27-28-29 + page 402-403

Plus en détail

La Mécanique Quantique. La physique du monde submicroscopique

La Mécanique Quantique. La physique du monde submicroscopique La Mécanique Quantique La physique du monde submicroscopique Sept. 2014 Les origines de la théorie quantique Les 3 phénomènes inexpliqués par la physique «classique», au début du 20è siècle: - le rayonnement

Plus en détail

Les échecs de la physique classique

Les échecs de la physique classique Les échecs de la physique classique La mécanique quantique : pourquoi est-elle nécessaire? Au début du XXième siècle, de plus en plus d expériences n étaient pas en accord avec la physique qui était établie

Plus en détail

Chapitre 5 : L électron et interactions L effet photoélectrique

Chapitre 5 : L électron et interactions L effet photoélectrique Chapitre 5 : L électron et interactions L effet photoélectrique Plan 1. Introduction 2. Interaction lumière / métal 3. Effet photoélectrique 4. Conclusion 1 Importance des électrons Constituant de la matière,

Plus en détail

L ATOME ET LA MÉCANIQUE DE NEWTON OUVERTURE SUR LE MONDE QUANTIQUE

L ATOME ET LA MÉCANIQUE DE NEWTON OUVERTURE SUR LE MONDE QUANTIQUE CHAPITRE P15 L ATOME ET LA MÉCANIQUE DE NEWTON OUVERTURE SUR LE MONDE QUANTIQUE Introduction I) DES LIMITES DE LA MÉCANIQUE CLASSIQUE À LA MÉCANIQUE QUANTIQUE I.1. Comparaison entre la force gravitationnelle

Plus en détail

: SPECTRE D ABSORPTION ET D EMISSION D UN ATOME

: SPECTRE D ABSORPTION ET D EMISSION D UN ATOME TP 5 : SPECTRE D ABSORPTION ET D EMISSION D UN ATOME Pourquoi le spectre d'émission d'une lampe à vapeur de mercure présente-t-il des raies? Le modèle proposé par le physicien Niels Bohr permet de le comprendre.

Plus en détail

PARTIE II : COMPRENDRE. Chapitre 15 Transferts quantiques d énergie et dualité onde-particule

PARTIE II : COMPRENDRE. Chapitre 15 Transferts quantiques d énergie et dualité onde-particule PARTIE II : COMPRENDRE Connaître le principe de l émission stimulée et les principales propriétés du laser (directivité, monochromaticité, concentration spatiale et temporelle de l énergie). Mettre en

Plus en détail

Sources de lumière colorée

Sources de lumière colorée Sources de lumière colorée " Que la lumière soif Et la lumière but. " André Beucler, poète, romancier et scénariste français du XX e siècle Prérequis : Le Soleil, les étoiles et les lampes sont des sources

Plus en détail

Chapitre III : Atome d hydrogène et ions hydrogénoïdes Description des atomes par la mécanique quantique Atomistique

Chapitre III : Atome d hydrogène et ions hydrogénoïdes Description des atomes par la mécanique quantique Atomistique Chapitre III : Atome d hydrogène et ions hydrogénoïdes Description des atomes par la mécanique quantique I-ASPECTS DE LA MECANIQUE QUANTIQUE :... 4 - Dualité onde-corpuscules... 4 a- Dispositif expérimental...

Plus en détail

Nature de la lumie re

Nature de la lumie re Sciences Physiques Unité : Optique Chapitre: Chapitre 3 Lumière et Matière Fiche de Cours S. Zayyani Nature de la lumie re On vient de voir, dans le chapitre précédent, qu une couleur peut être spectrale.

Plus en détail

Spectre d émission et spectre d absorption de quelques éléments chimiques

Spectre d émission et spectre d absorption de quelques éléments chimiques AS: 009/010 PROF : Mr BECHA Adel ( prof principal) 4 eme Sciences exp, maths et technique Matière : Sciences physiques www.physique.ht.cx SERIE D EXERCICES Objet : : Les spectres atomiques ---------------------------------------------------------------------------------------------------------------------------------

Plus en détail

CHAPITRE 1 : ENERGIE SOLAIRE ET HABITAT

CHAPITRE 1 : ENERGIE SOLAIRE ET HABITAT CHAPITRE 1 : ENERGIE SOLAIRE ET HABITAT 1 Conversion thermique de l'énergie solaire L'énergie solaire reçue par rayonnement peut être convertie en énergie thermique. Cette conversion est mise en uvre,

Plus en détail

Chapitre I : Atome d hydrogène et Notion de mécanique quantique

Chapitre I : Atome d hydrogène et Notion de mécanique quantique Chapitre I : Atome d hydrogène et Notion de mécanique quantique Plan : ********************** I- NECESSITE D UNE NOUVELLE MECANIQUE : LA MECANIQUE QUANTIQUE... 3 1- Dualité onde-corpuscules... 3 a- Effet

Plus en détail

Chapitre 14 : Dualité onde corpuscule

Chapitre 14 : Dualité onde corpuscule Chapitre 14 : Dualité onde corpuscule Dualité onde-particule Photon et onde lumineuse. Particule matérielle et onde de matière ; relation de de Broglie. Interférences photon par photon, particule de matière

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BAC STAV ACTIVITÉS 1 LE SPECTRE ÉLECTROMAGNÉTIQUE 2 ASPECT ONDULATOIRE DE LA LUMIÈRE 3 ASPECT CORPUSCULAIRE DE LA LUMIÈRE 1 Activité 1 OBJECTIF

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO

COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BAC TECHNO ① LA LUMIÈRE SOLAIRE ② ASPECT ONDULATOIRE DE LA LUMIÈRE ③ ASPECT CORPUSCULAIRE DE LA LUMIÈRE OBJECTIFS DES ACTIVITÉS Connaître

Plus en détail

Chapitre 18. allal Mahdade. 2 mai 2017

Chapitre 18. allal Mahdade. 2 mai 2017 Chapitre 18 Groupe scolaire La Sagesse Lycée qualifiante 2 mai 2017 1 (2016-2017) 2ème Bac SM Sommaire 1 2 3 4 5 2 (2016-2017) 2ème Bac SM Sommaire 1 2 3 4 5 2 (2016-2017) 2ème Bac SM Sommaire 1 2 3 4

Plus en détail

Points essentiels. Découverte accidentelle. Introduction. Observations de Lenard. L étude de Lenard 8/10/10

Points essentiels. Découverte accidentelle. Introduction. Observations de Lenard. L étude de Lenard 8/10/10 Points essentiels Observations expérimentales Échec de la théorie ondulatoire Explication quantique Expérience de Millikan La dualité onde-corpuscule 1 Découverte accidentelle Introduction L effet photoélectrique

Plus en détail

Sources de lumière colorée

Sources de lumière colorée 2 novembre 2012 Sources de lumière colorée Table des matières 1 Différentes sources de lumière 2 2 Sources monochromatiques ou polychromatiques 4 3 Lumière et ondes électromagnétiques 5 4 Couleur des corps

Plus en détail

Une lumière monochromatique est constituée d une seule couleur. La lumière blanche est dite polychromatique.

Une lumière monochromatique est constituée d une seule couleur. La lumière blanche est dite polychromatique. ① OBJECTIF Connaître le spectre de la lumière solaire et le spectre électromagnétique. 1- Décomposition du rayonnement visible solaire On obtient une plage multicolore s étalant du rouge au violet en passant

Plus en détail

II- La lumière émise par une source chaude dépend-elle de sa température?

II- La lumière émise par une source chaude dépend-elle de sa température? Chapitre II : Sources de lumières colorées Et la lumière fut! Outre le Soleil qui éclaire notre planète, il existe une grande diversité de sources lumineuses, des ampoules classiques aux DEL en passant

Plus en détail

FSAB 1203 : PHYSIQUE QUANTIQUE APE 10 : ILLUSTRATION EXPÉRIMENTALE DE LA DUALITÉ

FSAB 1203 : PHYSIQUE QUANTIQUE APE 10 : ILLUSTRATION EXPÉRIMENTALE DE LA DUALITÉ Physique Quantique FSAB 1203 APE 10 - Enoncé Auteur(s) : BN, JPR FSAB 1203 : PHYSIQUE QUANTIQUE APE 10 : ILLUSTRATION EXPÉRIMENTALE DE LA DUALITÉ ONDE-PARTICULE I. OBJECTIFS Mise en évidence de comportements

Plus en détail

Thème 2 : Lumière et matière colorée / CHAP3

Thème 2 : Lumière et matière colorée / CHAP3 Thème 2 : Lumière et matière colorée / CHAP3 DOC1 : Quelques données numériques Couleur violet bleu vert jaune orange rouge λ (nm) 400-435 435-500 500-570 570-600 600-625 625-700 1 ev = 1,6.10-19 J c =

Plus en détail

Essayons de comprendre pourquoi on obtient un spectre de raies

Essayons de comprendre pourquoi on obtient un spectre de raies Première S Chap. n 3 TP n 5 - Comment expliquer que le spectre de la lumière émise par certaines lampes soit un spectre de raies et non un spectre continu? Dans l activité n 1, nous avons vu que l émission

Plus en détail

BIOPHYSIQUE RADIATIONS ELECTRO-MAGNETIQUES Connaissances essentielles du cours

BIOPHYSIQUE RADIATIONS ELECTRO-MAGNETIQUES Connaissances essentielles du cours BIOPHYSIQUE ADIATIONS ELECTO-MAGNETIQUES Connaissances essentielles du cours I. INTODUCTION A. Nature ondulatoire (Young, Fresnel) - Mis en évidence par les expériences de diffraction et d interférences

Plus en détail

TRANSFERT QUANTIQUE D ENERGIE

TRANSFERT QUANTIQUE D ENERGIE , Chapitre 11 TRANSFERT QUANTIQUE D ENERGIE Terminale S I - TRANSFERT QUANTIQUE D'ENERGIE 1) Quantification de l'énergie d'un atome (rappels de PS) Les niveaux d énergie d un atome ne peuvent prendre que

Plus en détail

TP4: La lumière... onde ou particules?

TP4: La lumière... onde ou particules? TP4: La lumière... onde ou particules? 1. Les sources de lumière: Les lampes à incandescence sont constituées par un filament métallique porté à haute température par le passage d un courant électrique.

Plus en détail

Matière microscopique : une description quantique est nécessaire

Matière microscopique : une description quantique est nécessaire Chapitre 3 Matière microscopique : une description quantique est nécessaire I Spectres d absorption et d émission (observation de la lumière émise ou absorbée par une espèce chimique donnée) 1) xpériences,

Plus en détail

CHAPITRE 19 : TRANSFERTS QUANTIQUES D ÉNERGIE ET DUALITÉ ONDE-CORPUSCULE

CHAPITRE 19 : TRANSFERTS QUANTIQUES D ÉNERGIE ET DUALITÉ ONDE-CORPUSCULE CHAPITRE 19 : TRANSFERTS QUANTIQUES D ÉNERGIE ET DUALITÉ ONDE-CORPUSCULE Lycée International des Pontonniers Avril 2018 I. Transferts quantiques d énergie 1. Rappels de 1 re S Contrairement à ce que prévoit

Plus en détail

b. ondulatoire ; corpusculaire c.! = h$ d. niveaux ; quantifiées e. photon f. continu ; raies ; absorption

b. ondulatoire ; corpusculaire c.! = h$ d. niveaux ; quantifiées e. photon f. continu ; raies ; absorption Exercices Exercices d application 5 minutes chrono! 1. Mots manquants 2. QCM a.!= c " b. ondulatoire ; corpusculaire c.! = h$ d. niveaux ; quantifiées e. photon f. continu ; raies ; absorption a. 5,45

Plus en détail

2.2. Étude du spectre du mercure. Le diagramme ci-dessous représente quelques niveaux d'énergie de l'atome de mercure.

2.2. Étude du spectre du mercure. Le diagramme ci-dessous représente quelques niveaux d'énergie de l'atome de mercure. Exercice n 1 : extrait du sujet de bac juin 2004 Principe de fonctionnement d'un tube fluorescent. Le tube fluorescent étudié est constitué d'un cylindre de verre qui contient un gaz à basse pression.

Plus en détail

I. Absorption et émission quantique

I. Absorption et émission quantique CHAPITRE N 2 PARTIE D TRANSFERT QUANTIQUE D ENERGIE TS I. Absorption et émission quantique 1. Quantification des niveaux d énergie Les niveaux d énergie d un atome sont quantifiés, ils ne peuvent pendre

Plus en détail

Exercices d introduction à la physique quantique

Exercices d introduction à la physique quantique Constante de Planck : h = 6,626.10 34 J.s. Charge élecrique élémentaire : e = 1,602.10 19 C. Célérité de la lumière dans le vide : c = 3,00.10 8 m s 1. 1 Vrai ou faux 1. La force d interaction électrique

Plus en détail

PROGRAMME DE COLLES DE PHYSIQUE Semaine 6 du 5 au 9 Novembre 2018

PROGRAMME DE COLLES DE PHYSIQUE Semaine 6 du 5 au 9 Novembre 2018 PROGRAMME DE COLLES DE PHYSIQUE Semaine 6 du 5 au 9 Novembre 2018 Cours S5 : Formation des images en optique géométrique INSTRUMENTS D'OPTIQUE EN EXERCICES : lunettes astronomiques/galilée, microscope,

Plus en détail

lumière polychromatique : plusieurs radiations ; exemple : mercure

lumière polychromatique : plusieurs radiations ; exemple : mercure Chapitre 3 : Sources de lumières colorées I. Différentes sortes de sources sources chaudes : étoile, lampe à filament, feu sources froides : laser, lampe à économie d'énergie, tube fluorescent rappel :

Plus en détail

Physique Terminale S Thierry CHAUVET

Physique Terminale S Thierry CHAUVET Transfert quantique d énergie Dualité onde particule Physique Terminale S Thierry CHAUVET «Je crois pouvoir dire, sans risque de me tromper, que personne ne comprend la mécanique quantique» Richard Feynman

Plus en détail

La structure atomique. Chimie 11

La structure atomique. Chimie 11 La structure atomique Chimie 11 L'atome Un atome est constitué d'électrons qui gravitent autour d'un noyau. Le noyau est composé de protons et de neutrons (nucléons). Stabilité : nombre de protons = nombre

Plus en détail

CHAPITRE 1 LE DOMAINE DE L OPTIQUE

CHAPITRE 1 LE DOMAINE DE L OPTIQUE CHAPITRE 1 LE DOMAINE DE L OPTIQUE Nature et propriétés de la lumière dualité onde-particule L optique étudie les propriétés de la lumière et ses interactions avec la matière. La lumière est une onde électromagnétique

Plus en détail

t en em gn a Modèle de Bohr TS p m cco A

t en em gn a Modèle de Bohr TS p m cco A Accompagnement Modèle de Bohr TS Table des matières 3 4 Objectifs Savoir que l'énergie de l'atome est quantifiée Connaître et exploiter la relation entre énergie et fréquence, connaître la signification

Plus en détail

Chapitre 14 : Dualité onde particule

Chapitre 14 : Dualité onde particule Exercice 1 : Absorption ou émission On a représenté trois transitions électroniques : Niveau 1 1 / Quel(s) schéma(s) représente(nt) : Une absorption? Une émission stimulée? Une émission spontanée? 2 /

Plus en détail

Chapitre III : structure des atomes: classification

Chapitre III : structure des atomes: classification . Historique. Structure de l atome: - particules élémentaires -spectres atomiques - aspect ondulatoire 3. orbitales atomiques et configuration électronique 4. Classification périodique 5. Stabilité électronique

Plus en détail

On considère une lentille convergente de distance focale f =5,00 cm. Son centre optique est noté O.

On considère une lentille convergente de distance focale f =5,00 cm. Son centre optique est noté O. DEVOIR SURVEILLE N 2 PHYSIQUE-CHIMIE Première Scientifique DURÉE DE L ÉPREUVE : 2h00 L usage d'une calculatrice EST autorisé CH01 vision et image CH03 sources de lumière colorée CH04 interaction lumière-matière

Plus en détail

PROGRESSION DEPUIS LE DEBUT DE L ANNEE SCOLAIRE

PROGRESSION DEPUIS LE DEBUT DE L ANNEE SCOLAIRE PROGRESSION DEPUIS LE DEBUT DE L ANNEE SCOLAIRE ONDES 1. Ondes et particules 2. Caractéristiques des ondes 3. Propriétés des ondes ANALYSE CHIMIQUE 4. Analyse spectrale 5. Réaction chimique par échange

Plus en détail

λ = hc Exercice 19 p 417 L énergie du photon est liée à la fréquence de la radiation associée par la relation E = hν. Par ailleur ν= c/λ

λ = hc Exercice 19 p 417 L énergie du photon est liée à la fréquence de la radiation associée par la relation E = hν. Par ailleur ν= c/λ T6 énergie ch4 Mécanique quantique Exercice 15 p 417 a. Le schéma du bas représente une absorption (l atome est initialement dans l état fondamental) et le schéma du haut 1 une émission (atome initialement

Plus en détail

Physique quantique. Chapitre 17

Physique quantique. Chapitre 17 Chapitre 17 Physique quantique RÉVISION ET RÉSUMÉ Interaction gravitationnelle La force d interaction gravitationnelle entre deux corps de masses m A et m B s écrit : F G =G m Am B r oùg=6, 67 10 11 N.m.kg

Plus en détail

possèdent une masse m propre, une position x propre et une quantité de mouvement mesurable telle que p = mv.

possèdent une masse m propre, une position x propre et une quantité de mouvement mesurable telle que p = mv. Dualité onde/particule I_ Premières constatations A. Premières théories La dualité onde/corpuscule est née de deux théories anciennes : Isaac Newton ( 1704 ) pense que la lumière est un flux de particules

Plus en détail

Chapitre 1 Ondes électromagnétiques Spectres, communication et énergie

Chapitre 1 Ondes électromagnétiques Spectres, communication et énergie TSTI2D 1 Ondes électromagnétiques Spectres, communication et énergie 1. Ondes électromagnétiques Définitions 1-1 Structure d une onde électromagnétique Une onde électromagnétique est un signal périodique

Plus en détail

Cours et activités : La mécanique quantique

Cours et activités : La mécanique quantique Cours et activités : La mécanique quantique Par analogie avec le mouvement des planètes, Ernest Rutherford propose en 1911 son modèle planétaire pour l atome. Les électrons (alias planètes) tourneraient

Plus en détail

LES RAYONNEMENTS ÉLECTROMAGNÉTIQUES & PARTICULAIRES. Dr CHAKOURI M.

LES RAYONNEMENTS ÉLECTROMAGNÉTIQUES & PARTICULAIRES. Dr CHAKOURI M. 1 LES RAYONNEMENTS ÉLECTROMAGNÉTIQUES & PARTICULAIRES Dr CHAKOURI M. 2 PLAN INTRODUCTION DESCRIPTION DU REM CONSTITUTION DU REM CLASSIFICATION DES REM RAYONNEMENT PARTICULAIRE UTILISATION DES RAYONNEMENTS

Plus en détail

LA NATURE DE LA LUMIÈRE

LA NATURE DE LA LUMIÈRE LA NATURE DE LA LUMIÈRE Physique Secondaire Regroupement ANNEXE : Tableau de comparaison (Réponses possibles) Les propriétés des vagues d'eau et les propriétés de la lumière Propriété Vagues d eau Lumière

Plus en détail

TP B14 : Constante de Planck

TP B14 : Constante de Planck T6S 2012 Thème B : Comprendre TP B14 : Constante de Planck Savoir que la lumière présente des aspects ondulatoire et particulaire. 1. Quantification de l énergie : L effet photoélectrique 1.1. Expérience

Plus en détail

SDM Module Ph13 Marie Girardot IPSA 2012/13

SDM Module Ph13 Marie Girardot IPSA 2012/13 SDM Module Ph13 Marie Girardot IPSA 2012/13 Plan du cours Cours 1 : La lumière, onde ou corpuscule? Cours 2 : Les limites de la mécanique classique Cours 3 : Les bases de la mécanique quantique Cours 4

Plus en détail

PROPRIÉTÉS OPTIQUES DES SOLUTIONS

PROPRIÉTÉS OPTIQUES DES SOLUTIONS PROPRIÉTÉS OPTIQUES DES SOLUTIONS M me Allouache. H LA NATURE D UN RAYONNEMENT ÉLECTROMAGNÉTIQUE L étude des rayonnement électromagnétique utilise deux modèle complémentaire qui permettent de les décrire

Plus en détail

1 La constante de Planck

1 La constante de Planck La constante de Planck 1 1 La constante de Planck 1.1 Méthode de détermination Mesure de la tension seuil d une cellule photoélectrique pour plusieurs longueurs d onde du spectre visible. 1.2 Matériel

Plus en détail

Thème : HABITAT Sous-thème : Gestion de l énergie dans l habitat Chapitre H1 : Exploitation de l énergie solaire dans l habitat

Thème : HABITAT Sous-thème : Gestion de l énergie dans l habitat Chapitre H1 : Exploitation de l énergie solaire dans l habitat Thème : HABITAT Sous-thème : Gestion de l énergie dans l habitat Chapitre H1 : Exploitation de l énergie solaire dans l habitat Thème 1 : HABITAT. Sous-thème : GESTION DE L'ENERGIE DANS L'HABITAT Notions

Plus en détail

«Personne ne comprend réellement la mécanique quantique.» Richard Feynman, 1967

«Personne ne comprend réellement la mécanique quantique.» Richard Feynman, 1967 La Mécanique Quantique La Mécanique Quantique «Personne ne comprend réellement la mécanique quantique.» Richard Feynman, 1967 La mécanique quantique est mathématiquement très complexe. Cependant, on peut

Plus en détail

L'IMAGERIE MÉDICALE LES SCIENCES PHYSIQUES AU SERVICE DE LA SANTÉ ET DE L'ENVIRONNEMENT. Partie 5. Chapitre 2

L'IMAGERIE MÉDICALE LES SCIENCES PHYSIQUES AU SERVICE DE LA SANTÉ ET DE L'ENVIRONNEMENT. Partie 5. Chapitre 2 Partie 5 LES SCIENCES PHYSIQUES AU SERVICE DE LA SANTÉ ET DE L'ENVIRONNEMENT Chapitre 2 L'IMAGERIE MÉDICALE sciences physiques et chimiques - Terminale S http://cedric.despax.free.fr/physique.chimie/ SOMMAIRE

Plus en détail

CHAPITRE 1 Interactions rayonnement / matière Structure de l atome

CHAPITRE 1 Interactions rayonnement / matière Structure de l atome CHAPITRE 1 Interactions rayonnement / matière Structure de l atome La chimie décrit la façon dont la matière se transforme, à la fois par le biais d approches macroscopiques, mais aussi à travers une description

Plus en détail

Stage de Pré Rentrée Rayonnement et Matière

Stage de Pré Rentrée Rayonnement et Matière Stage de Pré Rentrée 2010 Rayonnement et Matière Sommaire I. Généralités sur les ondes II. Le modèle ondulatoire de la lumière III. Ouverture au monde quantique IV. Décroissance radioactive V. Noyau, Masse

Plus en détail

B - LES SPECTRES ATOMIQUES

B - LES SPECTRES ATOMIQUES B - LES SPECTRES ATOMIQUES A l'échelle macroscopique, les énergies (l'énergie cinétique d'un solide, l'énergie électrique dissipée par effet Joule, etc...) varient de façon continue. A l'échelle microscopique,

Plus en détail

Organisation des appareils et des systèmes: Le domaine de l optique

Organisation des appareils et des systèmes: Le domaine de l optique Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique Dr JC DELAUNAY PACES- année 2015/2016 LUMIERE ONDE - CORPUSCULE OPTIQUE GEOMETRIQUE

Plus en détail

LES RAYONNEMENTS ÉLECTROMAGNÉTIQUES & PARTICULAIRES

LES RAYONNEMENTS ÉLECTROMAGNÉTIQUES & PARTICULAIRES 1 LES RAYONNEMENTS ÉLECTROMAGNÉTIQUES & PARTICULAIRES Dr CHAKOURI M. 2018/2019 2 PLAN INTRODUCTION DESCRIPTION DU REM CONSTITUTION DU REM CLASSIFICATION DES REM RAYONNEMENT PARTICULAIRE UTILISATION DES

Plus en détail

Journée d accueil «ondes lumineuses et ondes de matière» au Laboratoire Collisions Agrégats Réactivité (Toulouse)

Journée d accueil «ondes lumineuses et ondes de matière» au Laboratoire Collisions Agrégats Réactivité (Toulouse) Journée d accueil «ondes lumineuses et ondes de matière» au Laboratoire Collisions Agrégats Réactivité (Toulouse) Crédit: Patrick Dumas Organisation: Juliette Billy Programme 1. Introduction aux ondes

Plus en détail

Rappels d optique. Le spectre des ondes électromagnétiques couvrent une gamme de fréquence très étendue : infrarouge. ultraviolet.

Rappels d optique. Le spectre des ondes électromagnétiques couvrent une gamme de fréquence très étendue : infrarouge. ultraviolet. ptique Chapitre 1 Rappels d optique Sommaire I. ptique géométrique........................................ 1 I.1. Lumière et sources lumineuses................................... 1 I.2. Indice optique............................................

Plus en détail

Notice Mallette Effet Photoélectrique

Notice Mallette Effet Photoélectrique Notice Mallette Effet Photoélectrique Réf. 00574 Présentation 1. Introduction Cette mallette vous permettra de mettre en évidence les champs de forces électrostatiques et l effet photoélectrique. Le pendule

Plus en détail

Chapitre II : MODELES DE L ATOME. STRUCTURE ELECTRONIQUE DES ATOMES ORBITALES ATOMIQUES

Chapitre II : MODELES DE L ATOME. STRUCTURE ELECTRONIQUE DES ATOMES ORBITALES ATOMIQUES Chapitre II : MODELES DE L ATOME. STRUCTURE ELECTRONIQUE DES ATOMES ORBITALES ATOMIQUES MODELES DE L ATOME. Modèle de Rutherford (1911) Modèle de Bohr 1913 (cas de l'atome d'hydrogène) Modèle de De Broglie

Plus en détail