Pompe à chaleur. à la source chaude. Comme = W 18. On a un gain d un facteur 18. Même si la machine n est pas parfaite, le gain reste appréciable.

Dimension: px
Commencer à balayer dès la page:

Download "Pompe à chaleur. à la source chaude. Comme = W 18. On a un gain d un facteur 18. Même si la machine n est pas parfaite, le gain reste appréciable."

Transcription

1 Pompe à chaleur Si on inverse le climatiseur, pour refroidir l extérieur, quelle que soit sa température, et rejeter la chaleur dans la pièce on a un système de chauffage : un tel dispositif réversible est appellé pompe à chaleur. En prenant comme source froide une rivière ou un lac T = 277 K et comme source chaude un bâtiment que l on veut chauffer à 293 K, il faut fournir un travail W pour pomper de la chaleur à la source froide et en restituer à la source chaude. Supposons que l on dispose de W Joules sous forme électrique. On pourrait les convertir directement en chaleur dans un radiateur électrique (rendement 100%) W Joules en chaleur. Mais la pompe thermique permet d obtenit plus : en effet elle permet de restituer Q H Q H = W r et r = T H T L = 0, 055, d où Q T H = W H 0,055 à la source chaude. Comme = W 18. On a un gain d un facteur 18. Même si la machine n est pas parfaite, le gain reste appréciable. Université de Genève C. Leluc

2 Pompe thermique : machine de Stirling On a 2 cylindres et 2 pistons, le cylindre de gauche est en contact avec une source chaude, celui de droite avec une source froide. Les 2 cylindres sont séparés par un régénérateur, substance très poreuse et à haute capacité calorifique, qui joue le rôle de réservoir de chaleur auxiliaire. Les 2 pistons sont connectés par systéme mécanique complexe. Ils sont aussi connectés par un vilebrequin. Université de Genève C. Leluc

3 Pompe thermique : machine de Stirling Le gaz suit un cycle défini par le diagramme P V : a b : détente isothermique à T H. Pour rester chaud pendant la détente, le gaz prélève de la chaleur Q H à la source chaude b c : les 2 pistons se déplacent anti parrallèlement. Le gaz traverse à volume constant le régénérateur froid : il se refroidit, sa pression baisse. Le régénérateur se réchauffe. c d : le gaz est comprimé à température constante, T L jusqu à son volume initial, ce qui est produit par le mouvement du piston de droite. Q L est alors transféré aux parois du cylindre de droite qui est maintenu à température T L par un réservoir à basse température. d a : les pistons se déplacent en sens opposé, le gaz traverse à volume constant le régénérateur préalablement chauffé, il se réchauffe, sa pression monte, et le régénérateur se refroidit. Université de Genève C. Leluc

4 Exemple : Moteur de Stirling Un moteur de Stirling utilise n = 8, moles de gaz (idéal). Il travaille entre les températures suivantes : T H = 95 C et T L = 24 C ; le volume de gaz double durant l expansion et il tourne à 0,70 cycle par seconde. Supposant que le moteur est idéal, trouver (a) le travail fait par le moteur pendant un cycle, (b) la puissance du moteur, (c) La quantité de chaleur transférée de la source à haute température vers le gaz et (d) le rendement thermique du moteur? SOLUTION : (a) En suivant le cycle P V de la page précédente, le travail fait par le gaz sur ab, durant une expansion isotherme entre les volumes V a et V b vaut : W ab = nrt H ln V b V a De même pendant cd, on a W cd = nrt L ln V a. Le travail sur bc et da est nul V b (volume constant). Soit au total, on trouve : W = W ab + W bc + W cd + W da = nr T H ln V b V a + T L ln V a V b Université de Genève C. Leluc

5 Exemple : Moteur de Stirling (suite) Ce qui donne en regroupant : Comme V b /V a = 2, on obtient : W = nr(t H T L ) ln V b V a W = (8, mol)(8, 31J/mol.K)(95 C 24 C)(ln 2) = 3, 31J (b) La durée d un cycle est 1/0, 70 = 1, 43s. La puissance vaut donc P = W t = 3, 31J 1, 43s 2, 3W (c) La chaleur transférée à un gaz idéal pendant une expansion isothermique à température T H = ( )K (processus ab) vaut : Q H = nrt H ln V b V a = (8, mol)(8, 31J/mol.K)(368K)(ln 2) = 17, 2J (d) r = 1 T L T H = 1 (24+273)K (95+273)K = 0, % Université de Genève C. Leluc

6 Deuxième loi de la thermodynamique Admettre l impossibilité de construire un moteur parfait (fonctionnant de façon cyclique et sans interruption) a amené à l énoncé de Kelvin-Planck : Il n existe aucun processus cyclique ayant pour seul résultat de transformer entièrement en travail, une quantité de chaleur Q, provenant d une source à température unique (de telle manière que W = Q). Il est impossible de concevoir une machine cyclique qui produise un travail en extrayant de la chaleur à un réservoir sans en rejeter une partie à une source de basse température. C est la négation du mouvement perpétuel de 2eme espèce. On n a pas trouvé non plus le moyen de fabriquer un réfrigérateur parfait. Ce qui a donné la formulation de Clausius : Il ne peut y avoir de processus cyclique dont le résultat consiste à libérer la chaleur produite par un système à une température donnée pour en transmettre une quantité égale à un second système de température plus élevée. Ceci est l énoncé d après lequel la chaleur ne se propage pas naturellement d un objet froid à un objet chaud. Pour produire du travail, une machine thermique doit recevoir de la chaleur d une source chaude et en céder à une source froide. On peut montrer que ces 2 énoncés, qui traitent des cas spécifiques, sont équivalents. Université de Genève C. Leluc

7 Nécessité d une nouvelle loi en Thermodynamique Mais en fait un grand nombre de processus ne se produisent pas naturellement même s ils ne vont pas à l encontre du 1er principe de la Thermodynamique. Considérons quelques processus thermiques naturels : Pourquoi la chaleur diffuse-t-elle toujours de la température la plus élevée vers la plus basse? Si un bloc de métal tombe du plafond, après le choc au sol, sa température augmente. Pourquoi, si on le chauffe sur une plaque électrique, ne saute-t-il pas au plafond? En fait tous les processus thermiques naturels sont irréversibles correspondant à des transformations spontanées d un système ; il n est pas possible d effectuer la transformation en sens inverse. Ils sont constitués d une suite d états hors équilibres sauf l état final qui est plus désordonné que l état initial. C est pour tenir compte de cela qu il fallait un énoncé plus général de la deuxième loi de la thermodynamique permettant de trouver le sens d évolution d un processus irréversible. Université de Genève C. Leluc

8 Nécessité d une nouvelle loi en Thermodynamique Supposons qu un gaz parfait occupe une enceinte et qu on le libère en ouvrant une valve vers un autre récipient initialement vide. Le système étant totalement isolé, le gaz se détend spontanément, remplissant le récipient sans aucune variation d énergie interne ( U = 0), parce qu aucun travail ou échange de chaleur n ont été faits avec l extérieur. Si on veut faire revenir le gaz dans l enceinte initiale, on doit effectuer un travail. Ainsi en subissant une détente spontanée, le gaz perd de son aptitude à effectuer un travail, bien que son énergie interne n ait pas changé. Ce dont nous avons besoin est une nouvelle grandeur du systéme, qui reflète cette différence et qui nous permette de savoir si un changement spontané aura lieu entre un état et un autre. Cette grandeur gouverne le sens de l évolution naturelle de tous les systèmes. Université de Genève C. Leluc

9 Entropie En 1865, Clausius introduisit un nouveau concept, l entropie, S, dans le but justement de distinguer conservation et réversibilité. L entropie donne la direction dans laquelle évolue un système. Dans un processus irréversible pour un système fermé, l entropie du système augmente toujours : elle ne décroit jamais. L entropie n obéit pas à une loi de conservation comme l énergie le fait. L entropie augmente toujours pour un processus irréversible. A cause de cette propriété, la variation d entropie est parfois appellé la flèche du temps. Il y a 2 façons équivalentes de définir le changement d entropie d un système : 1) soit en fonction de la température et de l énergie qu il perd ou gagne sous forme de chaleur, 2) soit en comptant le nombre de façons différentes dont les atomes ou les molécules qui constituent le système peuvent être arrangés. Université de Genève C. Leluc

10 Entropie (suite) Considérons le cycle de Carnot où nous avons trouvé (page 14-31) que : Q H T H = Q L T L Reprenons la convention que nous avons adoptée précédemment pour la chaleur : Q positive lorsque la chaleur est reçue et négative quand elle s échappe. Ainsi Q L < 0 et Q H > 0. Ce qui donne : Q H T H + Q L T L = 0. Nous interprétons cette équation comme l absence de variation de l entropie d une machine de Carnot subissant une transformation représentée par un cycle fermé et réversible. Cela a conduit Clausius à définir la variation de l entropie ( S) subie par un système lors d une transformation réversible et isotherme comme : S = S 2 S 1 = Q T Université de Genève C. Leluc

11 Entropie (suite) Quand un sytème reçoit de la chaleur, son entropie augmente et quand il perd de la chaleur, son entropie diminue et elle reste inchangée par un travail effectué en absence de frottement. Dans ce contexte le travail est un changement mécanique ordonné de l énergie et, comme tel, il ne modifie pas le désordre d un système. Par contre, tout mécanisme (tel que le frottement) qui disperse de l énergie sous forme d agitation, augmente l entropie. La variation d entropie est nulle pour un cycle complet réversible. Si une partie du cycle n est pas réversible, l entropie à la fin du cycle ne peut pas reprendre sa valeur primitive. Bien sûr, l entropie augmente dans les transformations irréversibles, bien que nous n ayons pas de formule qui nous précise comment. Nous pouvons contourner cette difficulté et utiliser l équation précédente ( S = Q/T ) pour calculer la variation d entropie lors d une transformation réversible hypothétique entre le même état initial et le même état final. Comme la variation d entropie dépend seulement de ces 2 états, S pour la transformation réversible est la même que pour la transformation irréversible. Université de Genève C. Leluc

12 Ordre et désordre Chaque transformation augmente l entropie de l Univers ou, au mieux idéalement, la laisse inchangée. Vers 1878, Boltzmann reformula la notion d entropie. Il détermina que l entropie était une mesure du désordre de l Univers à l échelle atomique. Si on allume un morceau de bois, l agencement bien ordonné des molécules de bois se transforme spontanément en un désordre de gaz, de fumée et de flamme. Le désordre de l Univers augmente ; l entropie augmente. L énergie, qui était concentrée, s est dispersée un peu partout, ce qui est l essence même du désordre thermodynamique. Le désordre maximum correspond à une agitation aléatoire et à une homogénéité presque parfaite. Nous ne mesurons jamais l entropie, mais seulement sa variation, S, dans les processus physiques. Un système varie de lui-même (c est-à-dire que l énergie se transfère spontanément), de façon que l entropie universelle augmente ( S 0). La quantité S mesure le degré de désordre associé à tout changement ( E) d un système. Un système isolé dans une configuration d entropie maximum ne peut pas changer macroscopiquement de lui-même : il est donc en équilibre. Université de Genève C. Leluc

13 Entropie et probabilité Il est possible de clarifier les concepts d entropie et de désordre grâce à l analyse statistique ou probabiliste de l état moléculaire des systèmes. Prenons un exemple simple : après avoir secoué 4 pièces de monnaie, on les jette sur la table. Le nombre de côtés pile et de côtés face constitue une description de l état macroscopique du système. En précisant de quel côté se présente chaque pièce, on définit un état microscopique de ce système. Ainsi il y a 16 états microscopiques possibles. La probabilité d obtenir 4 face est 1/16. La probabilité d obtenir 2 piles et 2 faces vaut 6/16. Université de Genève C. Leluc

14 Entropie et probabilité (suite) Si on augmente le nombre de piéces à 100, la probabliblité d obtenir 100 piles se réduit, car il existe au total états microscopiques possibles. On voit donc que plus le nombre de pièces augmente, la probabilité d avoir une combinaison ordonnée (uniquement piles ou faces) devient très faible. Par contre, la probabilité la moins ordonnée (moitié pile, moitié face) devient alors la plus probable (10%). Si on applique ce raisonnement à un système de molécules, on voit que l état le plus probable est celui qui présente le plus grand désordre, ou l entropie maximum. Boltzmann a prouvé que l entropie d un système peut s exprimer par S = k B ln w où k B est la constante de Boltzmann et w le nombre d états microscopiques correspondant à un état macroscopique donné. w porte le nom de probabilité thermodynamique. Université de Genève C. Leluc

15 Exemple : changement d entropie Considérons la fusion d un bloc de glace de 1 kg dans une grande cuve d eau suivant une transformation très lente T eau T glace : processus réversible La glace reçoit la chaleur Q = m L f S glace = Q T > 0 1 kg 333, 6 kj/kg S glace = = 1, 22 kj/k 273K La cuve fournit intégralement la chaleur absorbée par la glace S cuve = Q T = 1, 22 kj/k La variation totale d entropie vaut S glace + S cuve = Q T Q T = 0. Dans un processus réversible, la variation d entropie est nulle. Université de Genève C. Leluc

16 Exemple : entropie Un inventeur prétend avoir construit une machine ayant une efficacité de 75% quand elle opère entre 100 C et 0 C. (a) Evaluer la crédibilité de cette déclaration. (b) Supposons que cet engin est presque un engin idéal. Déterminer la variation d entropie S pour le système isolé constitué par le moteur et ses réservoirs pendant un cycle. SOLUTION : D après les températures mentionnées, on peut calculer l efficacité maximum d un moteur idéal, soit : η = 1 T L ( )K = 1 = 0, % T H ( )K Un moteur réel doit avoir une efficacité moindre. Donc ne pas croire tout ce qu on dit. (b) Comme le gaz utilisé retourne dans les mêmes conditions qu au début du cycle, S ws = 0. Le réservoir à haute température perd Q H et celui à basse température gagne Q L. Le changement d entropie vaut : S H = Q H et S L = + Q L T H T L Université de Genève C. Leluc

17 Exemple : entropie (suite) Le changement total d entropie vaut : S = S H + S L + S ws = Q H T H + Q L T C + 0 On peut faire la substitution : Q L = Q H (1 η), ce qui donne : S = Q H 1 η T L 1 T H == Q H 1 0, K 1 = 0, 0018 Q H 373K Si cet inventeur avait raison, l entropie du système diminuerait à chaque cycle. Ceci est impossible. Si chaque processus etait réversible, on aurait S = 0. Si quelques uns sont irréversibles, S serait positif. Université de Genève C. Leluc

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Chapitre 4 Le deuxième principe de la thermodynamique

Chapitre 4 Le deuxième principe de la thermodynamique Chapitre 4 Le deuxième principe de la thermodynamique 43 4.1. Evolutions réversibles et irréversibles 4.1.1. Exemples 4.1.1.1. Exemple 1 Reprenons l exemple 1 du chapitre précédent. Une masse est placée

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

1 Thermodynamique: première loi

1 Thermodynamique: première loi 1 hermodynamique: première loi 1.1 Énoncé L énergie d un système isolé est constante, L énergie de l univers est constante, de univers = de syst + de env. = 0 1 L énergie d un système est une fonction

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

L ÉNERGIE C EST QUOI?

L ÉNERGIE C EST QUOI? L ÉNERGIE C EST QUOI? L énergie c est la vie! Pourquoi à chaque fois qu on fait quelque chose on dit qu on a besoin d énergie? Parce que l énergie est à l origine de tout! Rien ne peut se faire sans elle.

Plus en détail

COURS DE THERMODYNAMIQUE

COURS DE THERMODYNAMIQUE I.U.T. de Saint-Omer Dunkerque Département Génie Thermique et énergie COURS DE THERMODYNAMIQUE eme Semestre Olivier PERROT 010-011 1 Avertissement : Ce cours de thermodynamique présente quelques applications

Plus en détail

Chapitre 5. Le ressort. F ext. F ressort

Chapitre 5. Le ressort. F ext. F ressort Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

L énergie sous toutes ses formes : définitions

L énergie sous toutes ses formes : définitions L énergie sous toutes ses formes : définitions primaire, énergie secondaire, utile ou finale. Quelles sont les formes et les déclinaisons de l énergie? D après le dictionnaire de l Académie française,

Plus en détail

Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES

Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES Entropie de mélange. - Evolution adiabatique. - Autres évolutions réversibles et irréversibles. L ensemble de ce chapitre

Plus en détail

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2 Sommaire La pression des gaz Séance 1 Comprimer de l air Séance 2 Mesurer la pression d un gaz Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2 24 Cned, Physique - Chimie

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Rappels sur les couples oxydantsréducteurs

Rappels sur les couples oxydantsréducteurs CHAPITRE 1 TRANSFORMATIONS LENTES ET RAPIDES 1 Rappels sur les couples oxydantsréducteurs 1. Oxydants et réducteurs Un réducteur est une espèce chimique capable de céder au moins un électron Demi-équation

Plus en détail

Physique : Thermodynamique

Physique : Thermodynamique Correction du Devoir urveillé n o 8 Physique : hermodynamique I Cycle moteur [Véto 200] Cf Cours : C P m C V m R relation de Mayer, pour un GP. C P m γr γ 29, 0 J.K.mol et C V m R γ 20, 78 J.K.mol. 2 Une

Plus en détail

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère LE CHAUFFE-EAU THERMODYNAMIQUE L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère LES PERFORMANCES DE TANÉO C EST L ASSURANCE : > DE 75 % D ÉNERGIE GRATUITE > D UN FONCTIONNEMENT

Plus en détail

Différents types de matériaux magnétiques

Différents types de matériaux magnétiques Différents types de matériaux magnétiques Lien entre propriétés microscopiques et macroscopiques Dans un matériau magnétique, chaque atome porte un moment magnétique µ (équivalent microscopique de l aiguille

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

Transformations nucléaires

Transformations nucléaires Transformations nucléaires Stabilité et instabilité des noyaux : Le noyau d un atome associé à un élément est représenté par le symbole A : nombre de masse = nombre de nucléons (protons + neutrons) Z :

Plus en détail

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES Collège Voltaire, 2014-2015 AIDE-MÉMOIRE LA THERMOCHIMIE http://dcpe.net/poii/sites/default/files/cours%20et%20ex/cours-ch2-thermo.pdf TABLE DES MATIERES 3.A. Introduction...2 3.B. Chaleur...3 3.C. Variation

Plus en détail

Annexe 3 Captation d énergie

Annexe 3 Captation d énergie 1. DISPOSITIONS GENERALES 1.a. Captation d'énergie. Annexe 3 Captation Dans tous les cas, si l exploitation de la ressource naturelle est soumise à l octroi d un permis d urbanisme et/ou d environnement,

Plus en détail

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE ÉVAPORATION SOUS VIDE 1 I SOMMAIRE I Sommaire... 2 II Évaporation sous vide... 3 III Description de l installation... 5 IV Travail pratique... 6 But du travail... 6 Principe... 6 Matériel... 6 Méthodes...

Plus en détail

Thermodynamique (Échange thermique)

Thermodynamique (Échange thermique) Thermodynamique (Échange thermique) Introduction : Cette activité est mise en ligne sur le site du CNRMAO avec l autorisation de la société ERM Automatismes Industriels, détentrice des droits de publication

Plus en détail

de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur

de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur Eau chaude et confort à votre portée! La meilleure façon de

Plus en détail

ALFÉA HYBRID DUO FIOUL BAS NOX

ALFÉA HYBRID DUO FIOUL BAS NOX ALFÉA HYBRID BAS NOX POMPE À CHALEUR HYBRIDE AVEC APPOINT FIOUL INTÉGRÉ HAUTE TEMPÉRATURE 80 C DÉPART D EAU JUSQU À 60 C EN THERMODYNAMIQUE SOLUTION RÉNOVATION EN REMPLACEMENT DE CHAUDIÈRE FAITES CONNAISSANCE

Plus en détail

Variantes du cycle à compression de vapeur

Variantes du cycle à compression de vapeur Variantes du cycle à compression de vapeur Froid indirect : circuit à frigoporteur Cycle mono étagé et alimentation par regorgement Cycle bi-étagé en cascade Froid direct et froid indirect Froid direct

Plus en détail

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES Session 200 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE E-3 SCIENCES PHYSIQUES U-3 CHIMIE-PHYSIQUE INDUSTRIELLES Durée : 2 heures Coefficient : 2,5 Durée conseillée Chimie

Plus en détail

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire Énergie Table des A. Énergie 1. 2. 3. La centrale Énergie Table des Pour ce chapitre du cours il vous faut à peu près 90 minutes. A la fin de ce chapitre, vous pouvez : -distinguer entre fission et fusion.

Plus en détail

Le moteur de Stirling : Conception et Performances

Le moteur de Stirling : Conception et Performances BOULANT Anthony VIVET Nicolas Licence Physique 2003 Université du Maine (le Mans) Le moteur de Stirling : Conception et Performances VIVET Nicolas et BOULANT Anthony, mis à jour le 12_01_2009 Table des

Plus en détail

Eau chaude Eau glacée

Eau chaude Eau glacée Chauffage de Grands Volumes Aérothermes Eau chaude Eau glacée AZN AZN-X Carrosserie Inox AZN Aérotherme EAU CHAUDE AZN AZN-X inox Avantages Caractéristiques Carrosserie laquée ou inox Installation en hauteur

Plus en détail

PHYSIQUE Discipline fondamentale

PHYSIQUE Discipline fondamentale Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Coupe de France Promosport 2013. Conseils pour une utilisation optimale de vos pneumatiques DUNLOP en compétition

Coupe de France Promosport 2013. Conseils pour une utilisation optimale de vos pneumatiques DUNLOP en compétition Coupe de France Promosport 2013 Conseils pour une utilisation optimale de vos pneumatiques DUNLOP en compétition Le pneumatique est le lien entre la moto et la piste Il est important de vérifier : avant

Plus en détail

CONCEPT H 2 ZERO ENERGY ZERO EMISSION

CONCEPT H 2 ZERO ENERGY ZERO EMISSION CONCEPT H 2 ZERO ENERGY ZERO EMISSION Concept H 2 : L idée est de produire, de stocker et d assurer 100% des besoins énergétiques d un immeuble résidentiel sans aucun rejet de CO 2 et sans frais énergétiques.

Plus en détail

Physique 1 TEMPÉRATURE, CHALEUR

Physique 1 TEMPÉRATURE, CHALEUR hysique EMÉRAURE, CHALEUR rof. André errenoud Edition mai 8 Andre.errenoud (at) heig-vd.ch HEIG-D / AD A B L E D E S M A I E R E S AGE. INRODUCION.... NOIONS DE EMÉRAURE E DE CHALEUR.... LES ÉCHANGES

Plus en détail

GLOSSAIRE A L USAGE DU FORMATEUR DE CONDUITE TOUT-TERRAIN

GLOSSAIRE A L USAGE DU FORMATEUR DE CONDUITE TOUT-TERRAIN GLOSSAIRE A L USAGE DU FORMATEUR DE CONDUITE TOUT-TERRAIN Auteurs Comité pédagogique «COD 3» de l ECASC Glossaire «Formateur de conduite tout terrain» A Angle d attaque : Angle formé par le sol, le point

Plus en détail

Suivi d une réaction lente par chromatographie

Suivi d une réaction lente par chromatographie TS Activité Chapitre 8 Cinétique chimique Suivi d une réaction lente par chromatographie Objectifs : Analyser un protocole expérimental de synthèse chimique Analyser un chromatogramme pour mettre en évidence

Plus en détail

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document présenté à la Conférence sur la sécurité et la fiabilité

Plus en détail

LE CETIME votre partenaire pour le progrès et l innovation:

LE CETIME votre partenaire pour le progrès et l innovation: 1 www.cetime.ind.tn LE CETIME votre partenaire pour le progrès et l innovation: met à votre disposition des compétences et des moyens techniques pour vous assister dans vos démarches d innovation et d

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

Chapitre 11: Réactions nucléaires, radioactivité et fission

Chapitre 11: Réactions nucléaires, radioactivité et fission 1re B et C 11 Réactions nucléaires, radioactivité et fission 129 Chapitre 11: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les

Plus en détail

T.I.P.E. Optimisation d un. moteur

T.I.P.E. Optimisation d un. moteur LEPLOMB Romain Année universitaire 2004-2005 LE ROI Gautier VERNIER Marine Groupe Sup B, C, D Professeur accompagnateur : M. Guerrier T.I.P.E Optimisation d un moteur 1 1. Présentation du fonctionnement

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -

Plus en détail

Questions avant intervention pour dépannage Enomatic

Questions avant intervention pour dépannage Enomatic Questions avant intervention pour dépannage Enomatic 1 La machine de fonctionne pas - absence de voyant lumineux? Contrôler que la fiche de la machine soit en place dans une prise 220V Fusible de la prise

Plus en détail

FONCTION DE DEMANDE : REVENU ET PRIX

FONCTION DE DEMANDE : REVENU ET PRIX FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie

Plus en détail

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4

Plus en détail

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien. LE CHAUFFAGE 1. LE CHAUFFAGE ELECTRIQUE Le chauffage électrique direct ne devrait être utilisé que dans les locaux dont l isolation thermique est particulièrement efficace. En effet il faut savoir que

Plus en détail

1,2,3 SOLEIL EN AVANT PREMIERE

1,2,3 SOLEIL EN AVANT PREMIERE CONFERENCE DERBI 1,2,3 SOLEIL EN AVANT PREMIERE 1er SYSTEME SOLAIRE COMBINE La climatisation Le chauffage L eau chaude sanitaire HISTORIQUE Fin 2003 : Lancement du projet Début 2005 : 1er prototype opérationnel

Plus en détail

Système d énergie solaire et de gain énergétique

Système d énergie solaire et de gain énergétique Système d énergie solaire et de gain énergétique Pour satisfaire vos besoins en eau chaude sanitaire, chauffage et chauffage de piscine, Enerfrance vous présente Néo[E]nergy : un système utilisant une

Plus en détail

L'énergie solaire photovoltaïque. Pour la petite histoire...

L'énergie solaire photovoltaïque. Pour la petite histoire... L'énergie solaire photovoltaïque. Pour la petite histoire... Le temps a passé. Beaucoup de temps depuis le branchement de ma première cellule photovoltaïque. On était encore bien loin de la maison basse

Plus en détail

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

ÉJECTEURS. CanmetÉNERGIE Juillet 2009 ÉJECTEURS CanmetÉNERGIE Juillet 2009 ÉJECTEURS 1 ÉJECTEURS INTRODUCTION Les éjecteurs sont activés par la chaleur perdue ou la chaleur provenant de sources renouvelables. Ils sont actionnés directement

Plus en détail

Etudier le diagramme température-pression, en particulier le point triple de l azote.

Etudier le diagramme température-pression, en particulier le point triple de l azote. K4. Point triple de l azote I. BUT DE LA MANIPULATION Etudier le diagramme température-pression, en particulier le point triple de l azote. II. BASES THEORIQUES Etats de la matière La matière est constituée

Plus en détail

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Kokouvi Edem N TSOUKPOE 1, Nolwenn LE PIERRÈS 1*, Lingai LUO 1 1 LOCIE, CNRS FRE3220-Université

Plus en détail

4.14 Influence de la température sur les résistances

4.14 Influence de la température sur les résistances nfluence de la température sur la résistance 4.14 nfluence de la température sur les résistances ne résistance R, parcourue par un courant pendant un certain temps t, dissipe une énergie calorifique (W

Plus en détail

Le but de la radioprotection est d empêcher ou de réduire les LES PRINCIPES DE LA RADIOPROTECTION

Le but de la radioprotection est d empêcher ou de réduire les LES PRINCIPES DE LA RADIOPROTECTION LES PRINCIPES DE LA RADIOPROTECTION TOUT PUBLIC 1. Source de rayonnements ionisants 2. Les différents rayonnements ionisants et leur capacité à traverser le corps humain 3. Ecran de protection absorbant

Plus en détail

Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon

Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon Cours de Physique Statistique Éric Brunet, Jérôme Beugnon 7 octobre 2014 On sait en quoi consiste ce mouvement brownien. Quand on observe au microscope une particule inanimée quelconque au sein d un fluide

Plus en détail

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE?

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE? QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE? > Le chauffe-eau thermodynamique est un appareil de production d eau chaude sanitaire. Il se compose d une pompe à chaleur et d une cuve disposant d une isolation

Plus en détail

5. Les conducteurs électriques

5. Les conducteurs électriques 5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,

Plus en détail

Accumuler la chaleur avec des ballons système individuels.

Accumuler la chaleur avec des ballons système individuels. ÉNERGIES RENOUVELABLES Ballons système Accumuler la chaleur avec des ballons système individuels. BALLON TAMPON BALLON D EAU CHAUDE / CHAUFFE-EAU BALLON COMBINÉ / À PRÉPARATION D EAU CHAUDE INSTANTANÉE

Plus en détail

MOTEURS A DEUX TEMPS Comment fonctionnent-ils?

MOTEURS A DEUX TEMPS Comment fonctionnent-ils? MOTEURS A DEUX TEMPS Comment fonctionnent-ils? Ce n est pas un hasard si, en modélisme, les moteurs à deux temps sont utilisés dans 95% des cas. Le deux temps est un moteur très simple quant à sa composition;

Plus en détail

FUSION PAR CONFINEMENT MAGNÉTIQUE

FUSION PAR CONFINEMENT MAGNÉTIQUE FUSION PAR CONFINEMENT MAGNÉTIQUE Séminaire de Xavier GARBET pour le FIP 06/01/2009 Anthony Perret Michel Woné «La production d'énergie par fusion thermonucléaire contrôlée est un des grands défis scientifiques

Plus en détail

Pompe à chaleur Air-Eau. Confort et économies

Pompe à chaleur Air-Eau. Confort et économies Pompe à chaleur Air-Eau Confort et économies Le système de chauffage réversible de l avenir! Un pas en avant pour réduire les émissions de CO₂. L augmentation des émissions de CO₂ et autres gaz à effet

Plus en détail

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE 4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail

Le Casino de Montréal & les installations à multiples compresseurs

Le Casino de Montréal & les installations à multiples compresseurs 2014-12-02 Le Casino de Montréal & les installations à multiples compresseurs Luc Simard, ing. M.Sc Directeur de département, Réfrigération-Plomberie-Chauffage Refroidissement WSP Canada 2 Contenu de la

Plus en détail

Chapitre 5 : Noyaux, masse et énergie

Chapitre 5 : Noyaux, masse et énergie Chapitre 5 : Noyaux, masse et énergie Connaissances et savoir-faire exigibles : () () (3) () (5) (6) (7) (8) Définir et calculer un défaut de masse et une énergie de liaison. Définir et calculer l énergie

Plus en détail

Le turbo met les gaz. Les turbines en équation

Le turbo met les gaz. Les turbines en équation Le turbo met les gaz Les turbines en équation KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER La mécanique des fluides numérique CFD (Computational Fluid Dynamics) est aujourd hui un outil abouti de conception

Plus en détail

A) Les réactions de fusion nucléaire dans les étoiles comme le Soleil.

A) Les réactions de fusion nucléaire dans les étoiles comme le Soleil. INTRODUCTION : Un enfant qui naît aujourd hui verra s éteindre une part importante de nos ressources énergétiques naturelles. Aujourd hui 87% de notre énergie provient de ressources non renouvelables (Charbon,

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Atelier : L énergie nucléaire en Astrophysique

Atelier : L énergie nucléaire en Astrophysique Atelier : L énergie nucléaire en Astrophysique Elisabeth Vangioni Institut d Astrophysique de Paris Fleurance, 8 Août 2005 Une calculatrice, une règle et du papier quadrillé sont nécessaires au bon fonctionnement

Plus en détail

Le calcul du barème d impôt à Genève

Le calcul du barème d impôt à Genève Le calcul du barème d impôt à Genève Plan : 1. Historique Passage d un système en escalier à une formule mathématique 2. Principe de l imposition Progressivité, impôt marginal / moyen ; barème couple/marié

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ THERMODYNAMIQUE: LIQUEFACTION D UN GAZ B. AMANA et J.-L. LEMAIRE 2 LIQUEFACTION D'UN GAZ Cette expérience permet d'étudier la compressibilité et la liquéfaction d'un fluide en fonction des variables P,

Plus en détail

Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 90659200 Fax 90659180 Web www.electron.it, e-mail electron@electron.it

Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 90659200 Fax 90659180 Web www.electron.it, e-mail electron@electron.it Electron S.R.L. Design Production & Trading of Educational Equipment B3510--II APPLIICATIIONS DE TRANSDUCTEURS A ULTRASONS MANUEL D IINSTRUCTIIONS POUR L ETUDIIANT Electron S.R.L. - MERLINO - MILAN ITALIE

Plus en détail

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS I:PRINCIPE DE BASE. 1-1:Situation problème. Lorsque nous voulons déplacer un véhicule manuellement, il est plus facile de le déplacer en créant une force sur

Plus en détail

CIRCUITS DE PUISSANCE PNEUMATIQUES

CIRCUITS DE PUISSANCE PNEUMATIQUES V ACTIONNEURS PNEUMATIQUES : 51 Généralités : Ils peuvent soulever, pousser, tirer, serrer, tourner, bloquer, percuter, abloquer, etc. Leur classification tient compte de la nature du fluide (pneumatique

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

La relève de chaudière, une solution intermédiaire économique et fiable.

La relève de chaudière, une solution intermédiaire économique et fiable. 111 39 240 1812 906 La relève de chaudière, une solution intermédiaire économique et fiable. La relève de chaudière, qu est ce que c est? On parle de relève de chaudière lorsqu on installe une pompe à

Plus en détail

consommations d énergie

consommations d énergie Comprendre ses consommations d énergie pour mieux les gérer Boulangers Pâtissiers Consommations maîtrisées dans l Artisanat L épuisement des énergies fossiles entraine une augmentation des coûts de l énergie

Plus en détail

Pompes à huile et à eau Pierburg. Maintenant également disponibles sur le marché de la rechange

Pompes à huile et à eau Pierburg. Maintenant également disponibles sur le marché de la rechange Page 1/6 Pompes à huile et à eau Pierburg Maintenant également disponibles sur le marché de la rechange NEW Motor Service élargit la gamme de pompes à huile et de pompes à eau de la marque KOLBENSCHMIDT

Plus en détail

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) 1. A la découverte de la radioactivité. Un noyau père radioactif est un noyau INSTABLE. Il se transforme en un noyau fils STABLE

Plus en détail

Optimisation des systèmes énergétiques Master 1 : GSI Génie Energétique et Thermique

Optimisation des systèmes énergétiques Master 1 : GSI Génie Energétique et Thermique Optimisation des systèmes énergétiques Master 1 : GSI Génie Energétique et Thermique Année 2009-2010 2008-09 Stéphane LE PERSON Maître de Conférences Université Joseph Fourier Jean-Paul THIBAULT LEGI UMR

Plus en détail

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Production d eau chaude sanitaire thermodynamique, que dois-je savoir? COURS-RESSOURCES Production d eau chaude sanitaire thermodynamique, que Objectifs : / 1 A. Les besoins en eau chaude sanitaire La production d'eau chaude est consommatrice en énergie. Dans les pays occidentaux,

Plus en détail

Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Edition janvier 2009

Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Edition janvier 2009 Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Contenu et but Cette aide à l application traite des exigences à respecter concernant la part maximale

Plus en détail

Centre de Développement des Energies Renouvelables Caractéristiques techniques des Chauffe-eau eau solaires M. Mohamed El Haouari Directeur du Développement et de la Planification Rappels de thermique

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique : http://

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique : http:// 2.0. Ballon de stockage : Capacité : L Lien vers la documentation technique : http:// Retrouver les caractéristiques techniques complètes (performances énergétiques et niveau d isolation, recommandation

Plus en détail

8 Ensemble grand-canonique

8 Ensemble grand-canonique Physique Statistique I, 007-008 8 Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique,

Plus en détail

Principes généraux de la modélisation de la dispersion atmosphérique

Principes généraux de la modélisation de la dispersion atmosphérique Principes généraux de la modélisation de la dispersion atmosphérique Rémy BOUET- DRA/PHDS/EDIS remy.bouet@ineris.fr //--12-05-2009 1 La modélisation : Les principes Modélisation en trois étapes : Caractériser

Plus en détail

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

Économie d énergie dans les centrales frigorifiques : La haute pression flottante Économie d énergie dans les centrales frigorifiques : La haute pression flottante Juillet 2011/White paper par Christophe Borlein membre de l AFF et de l IIF-IIR Make the most of your energy Sommaire Avant-propos

Plus en détail

Principe de fonctionnement de la façade active Lucido. K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.

Principe de fonctionnement de la façade active Lucido. K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido. Principe de fonctionnement de la façade active Lucido K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.doc 0. Préambule Le présent document est élaboré dans le but

Plus en détail

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE 36% DE CRÉDIT D'IMPÔTS Loi de finance 2011 T.Flow Un système révolutionnaire 2 en 1 Seul

Plus en détail

Athénée royal Jules Delot, Ciney Energie Thermique

Athénée royal Jules Delot, Ciney Energie Thermique 6G3 - Energie thermique page 1 Athénée royal Jules Delot, Ciney Energie Thermique Physique 6ème Générale 3h/semaine Ir Jacques COLLOT 1 6G3 - Energie thermique page Energie Thermique 1. Calorimétrie 1.1

Plus en détail

Daikin. DAIKIN ALTHERMA BI-BLOC, Solution pour le tertiaire et le résidentiel collectif. Pompes à chaleur Air / Eau. Inverter. » Economies d énergie

Daikin. DAIKIN ALTHERMA BI-BLOC, Solution pour le tertiaire et le résidentiel collectif. Pompes à chaleur Air / Eau. Inverter. » Economies d énergie Pompes à chaleur Air / Eau DAIKIN ALTHERMA BI-BLOC, Solution pour le tertiaire et le résidentiel collectif Inverter 1 ère MONDIALE Daikin» Economies d énergie» Faibles émissions de CO2» Flexible» Technologie

Plus en détail