1ère partie Nadine Cullot. Bases de données déductives. Bases de données déductives Introduction et Motivation

Dimension: px
Commencer à balayer dès la page:

Download "1ère partie Nadine Cullot. Bases de données déductives. Bases de données déductives Introduction et Motivation"

Transcription

1 Master STIC «Image Informatique et Ingénierie» Module Informatique Modèles de représentation - 10h CM Nadine Cullot Kokou Yétongnon 1ère partie Nadine Cullot Modèles logiques: Modèles déductifs à base de règles de type Datalog Modèles logiques orientés objets Frame Logique Modèles basés sur les logiques de description OWL 1 2 Introduction et motivation des concepts de BD déductives Les concepts de bases : Datalog Syntaxe et sémantique d une programme Datalog Méthodes d évaluation d un programme Datalog Apparues dans les années 1970, Les BD déductives sont encore un domaine de recherche reconnu et actif dans la communauté des Bases de Données. Au sens large, le terme déductif peut être attribué lorsqu une partie des données de la base est représentée par des règles (règles de déductions). 3 4 Description des données de façon intentionnelle : par les règles données dérivées Moteur d inférence mécanisme qui permet l activation de ces règles méthodes d évaluation règle : "tête" "corps" Domaine concernés par les BD déductives BASES DE DONNEES vues requêtes contraintes d'intégrité... INTELLIGENGE ARTIFICIELLE représentation des connaissances démonstration automatique systèmes experts... PROGRAMMATION LOGIQUE langage de programmation règles

2 Les BDD ne sont pas une nouvelle technologie de Gestion de Bases de Données, mais doivent être vues comme des fonctionnalités supplémentaires pour des SGBD qui permettent de définir et gérer des données dérivées (ou déduites) : non décrites explicitement. Les BD déductives : pour quoi faire? L utilisation de règles permet d améliorer la modélisation des connaissances définir des règles récursives (cartes, graphes, hiérarchies) introduire des niveaux de hiérarchie dans les données, accroître ou restructurer une BD sans modification physique des données, ajouter (de définir) des termes sans redondance, ni modification. 7 8 Les règles permettent aussi de proposer une alternative au concept de vue pour décrire des données en évitant des duplications redondantes proposer différents niveaux d autorisation d accès, représenter le «sens» des données stockées dans la base, définir des contraintes d intégrité, définir des règles de mise à jour de la base. Peut-on parler de domaine spécifique pour les BD déductives? La réponse peut être non, mais les BD déductives peuvent s appliquer dans tout type de contexte : grâce au niveau d abstraction qu elles permettent de définir grâce à la possibilité d introduire des nouveaux termes sans modification des données existantes 9 10 Certaines applications, typiquement de type recherche dans des graphes dont la complexité est très grande sont à l origine du développement des BDD: recherche de techniques efficaces issues de l IA mais les apports des BDD ne se limitent pas à ce type d applications Les différents types de couplage Couplage faible consiste à prendre un SGBD (relationnel) un langage de programmation logique et à bâtir une interface d appel du SGBD depuis le langage Langage Logique + Prédicats du SGBD Requêtes Système déductif SGBD

3 Les différents types de couplage Couplage fort consiste à modifier l interpréteur du langage logique de manière à rendre transparent les appels au SGBD (pas de visibilité externe du SGBD par l utilisateur, mais visibilité des connaissances comme des prédicats du langage Langage Logique Système déductif SGBD Les différents types de couplage Intégration complète des mécanismes de déduction au SGBD nécessité de retoucher au code d un SGBD (relationnel) ajout d un évaluateur de règles, d opérateurs spécialisés, etc... meilleures performances langage d interrogation du système peut être une extension d un langage de requêtes Langage de règles Déduction SGBD Datalog notion de règle Une règle de déduction peut s'exprimer sous différentes formes : en utilisant un formalisme de langage déclaratif de requêtes de BD, ou tout autre modèle de données Datalog ( = prolog "pur") subordonné(x,y) <= travaille_pour(x,z) & chef(y,z) Datalog notion de règle Calcul relationnel subordonné = { X1,Y1 X appartient à "travaille_pour", & Y appartient à "chef & X2 = Y2 } SQL Create view "subordonné" as select "travaille_pour".1, "chef".1 from "travaille_pour", "chef" where "travaille_pour".2 = "chef".2 Algèbre relationnelle subordonné <- 1,3 [σ 2=4 (travaille_pour x chef)] Datalog motivation et cadre Datalog est accepté comme un "quasi standard" dans le domaine des BDDs. notation syntaxique des règles de déduction proche des notations prolog (clauses de Horn) C'est un langage de règles et de requêtes pour le modèle de données relationnel des extensions proposées pour les modèles objets (pas de standard) 17 Datalog motivation et cadre Une Base de Données relationnelle vérifie les principes suivants : les relations ne contiennent pas d'instances dupliquées, l'ordre des tuples n'a pas d'importance l'ordre des attributs de la relation est fixe Il y a un ensemble fini de relations. Les tuples ne contiennent ni variables, ni termes fonctionnels, ni structures. Ces différents points se retrouvent au niveau de Datalog "pur" ( non étendu). 18 3

4 Datalog syntaxe Les littéraux positifs (les faits) Les tuples d'une relation sont représentés par des littéraux positifs instanciés. description par table : forme datalog p : 1 a 13 p(1,a,13) 3 b 3 p(3,b,3) 6 a 5 p(6,a,5) conventions : constantes lettres minuscules ou chiffres variables : lettres majuscules des littéraux qui contiennent des variables peuvent être vus comme des requêtes (simples) p(x,a,y) --> donne les deux réponses (par unification) X = 1 et Y = 13 X=6 et Y=5 Datalog syntaxe Les conjonctions de littéraux possibilité d'exprimer des liens par l'occurrence multiple d'une variable dans ces littéraux p(x,y) & q(y,z) p :1 a q : a 4 2 a b 5 3 b c 6 recherche des unifications possibles X Y Z 1 a 4 2 a 4 3 b Datalog syntaxe Les règles :forme générale L0 <- L1 &... & Ln n 1, Li littéraux positifs L0 tête et Li corps de la règle Intuitivement, chaque unification possible de la tête est un tuple de la relation dérivée qui est composée de l'ensemble des tuples. p(x,z) <- q(x,y) & r(y,z) p:1 a q : 1 b r: b a 1 c b c c a Datalog syntaxe Récursivité La définition d'une relation peut être faite à l'aide de règles récursives. fermeture transitive d'une relation supérieur(x,y) <- chef(x,y) supérieur(x,y) <- chef(x,z) & supérieur(z,y) Datalog sémantique On appelle notation logique d'un programme Datalog, l'ensemble des formules de la logique du 1er ordre qui lui est associé. La sémantique d'un programme Datalog est liée à la sémantique de sa notation logique. en Datalog pas de termes fonctionnels ==> le domaine de Herbrand est fini (constantes du programme) règles exprimées par des clauses de Horn définies (exactement 1 littéral positif par clause) existence d'un modèle minimal unique associé au programme On appelle modèle canonique (Mp), le modèle minimal de la notation logique de p. 23 Datalog sémantique On considère les trois énoncés suivants : /* 1 er énoncé */ chemin(x,y) <- arc(x,y) chemin(x,y) <- arc(x,z) & chemin(z,y) /* 2 ème énoncé */ chemin(x,y) <- arc(x,y) chemin(x,y) <- chemin(x,z) & arc(z,y) /* 3 ème énoncé */ chemin(x,y) <- arc(x,y) chemin(x,y) <- chemin(x,z) & chemin(z,y) D'un point de vue sémantique, ces trois énoncés sont équivalents ==> même modèle canonique aspect déclaratif important en Datalog, on souhaite conserver cette équivalence d'un point de vue opérationnel. 24 4

5 Datalog sémantique L implication en datalog Correspondance entre l'implication d'un fait positif par un programme datalog et le programme logique associé : un fait positif (A) est impliqué par un programme datalog ssi c'est une conséquence logique du programme associé un fait négatif (~A) est impliqué par un programme Datalog ssi sa négation (i.e. A) n'est pas impliqué par le programme logique ( le programme logique impliqe ~A) en terme de modèle, Datalog applique l Hypothèse du Monde Clos Datalog sémantique Sémantique de Datalog par point fixe L'approche par point fixe est une approche plus constructive: il s'agit de construire le plus petit point fixe associé à un programme datalog définissant sa sémantique. intuitivement : Le "plus petit point fixe" est une partie de la base de Herbrand ( ==> va correspondre au modèle minimal) La construction de cet ensemble suppose l'existence d'un opérateur de "conséquence immédiate" pour produire ces faits L'opérateur de conséquence immédiate calcule tous les faits déductibles en une "étape" à partir d'un ensemble de faits (I) le "pppf" est construit par applications successives de cet opérateur Datalog sémantique Datalog méthodes d évaluation Soit le graphe suivant : et les définitions classiques de arc et chemin chemin(x,y) <- arc(x,y) chemin(x,y) <- arc(x,z) & chemin(z,y) I0 = T(p) (vide) = { faits } = { arc(a,b), arc(b,c), arc(b,d) } I1 = T(p) (I0) = I0 {chemin(a,b), chemin(b,c), chemin(b,d) } I2 = T(p) (I1) = I1 {chemin(a,c), chemin(a,d) } I3 = T(p) (I2) = I2, pas de nouveaux ajouts I2 = Plus Petit Point Fixe du programme a d b c La description de la sémantique d'un programme suggère des méthodes d'évaluation de ce programme Approche constructive du point fixe implémentation correcte de l'opérateur de conséquence immédiate méthode d'évaluation Approche modèle minimal et correspondance avec l'implication logique sur les faits positifs implémentation correcte de la résolution linéaire méthode d'évaluation Datalog méthodes d évaluation Deux classes de méthodes d'évaluation issues de ces deux approches sont considérées : Les méthodes dites en chaînage avant inspirées du plus petit point fixe méthode naïve (calculs inutiles, redondants) méthode semi-naïve (incrémentale) Les méthodes dites en chaînage arrière inspirées par l'approche modèle minimal et les techniques de résolution SLD résolution Datalog méthodes d évaluation méthodes mixtes (chaînage avant et arrière) SLD-AL résolution requêtes-sous-requêtes (QSQ) (implémentation algébrique interprétée de la SLD_AL résolution) les ensembles magiques (implémentation compilée de la SLD_AL résolution)

6 Idée intuitive : Implémentation de l'opérateur de conséquence immédiate et itération de celui-ci à l'aide des opérations sur les algèbres (projection (Π), sélection (σ) et produit cartésien (x)) Technique : on associe à chaque règle du programme p(x1,..., Xn) <- Q1(t1.1,...,t1.l) &... & Qp(tp.1,...,tp.m) un expression algébrique qui consiste à : Faire le produit cartésien sur les prédicats du corps (Qi), Faire une sélection tenant compte des occurrences des constantes dans le Qi des occurrences multiples de variables dans les Qi Faire une projection sur les attributs du prédicat "tête" de règle Exemple : R1 : s(x,y) <- p(x,z) & s(z,w) & t(w,y) Expr(s) (R1) = Π 1,6 [σ 2=3, 4=5 (p x s x t)] Le produit cartésien de p,s et t produit des 6 - uplets sur lesquels on impose que les attributs 2 et 3, 4 et 5 soient égaux et on projette sur les attributs 1 et 6. L'expression algébrique associée à un prédicat intensionnel est l'union des expressions algébriques pour chaque règle qui définit le prédicat. R2 : s(x,y) <- p(x,y) Expr (s) (R2) = p ( ou bien Π 1,2 p) La traduction algébrique d'une règle peut être faite ssi : Le prédicat tête de règle ne contient ni constante, ni occurrence multiple de variables sinon transformation préalable de la règle Expr (s) = { p Π1,6 [σ 2=3, 4=5 (p x s x t)]} Cas de l'occurrence d'une constante dans la tête de règle: p(x,a,y) <-... On réécrit la règle sous la forme : p(x,z,y) <-... & Z = a La relation associée au prédicat Z=a est une relation unaire, composée de l'unique 1-uplet <a> Cas d'occurrence multiple d'une même variable dans la tête de règle p(x,y,x) <-... & q(...,x,...) &... Ici, occurrence multiple de la variable X On remplace la 2ème variable X par une nouvelle variable, on impose en partie droite l'égalité de ces deux variables p(x,y,z) <-... & q(...,x,...) &... & X=Z La relation associée au prédicat Z=X est une relation unaire, calculée à partir du premier prédicat q du corps de la règle qui contient X

7 Exemple : R1 : p(x,x,y) <- q(x,y) & r(x) p(x,z,y) <- q(x,y) & r(x) & X = Z Expr (p) (R1) : Π 1,2,4 [σ 1=3=4 q x r x rel ] où rel = Π 1q Exemple : arc(a,b) arc(b,c) arc(b,d) chemin(x,y) <- arc(x,y) chemin(x,y) <- arc(x,z) & chemin(z,y) Expressions algébriques : Expr(chemin) = arc Π1,4 [σ 2=3 arc x chemin ] Chemin.0 = vide Chemin.1 =? on évalue l'expression algébrique associée à chemin, Chemin.1 = arc U Π 1,4 [σ 2=3 arc x chemin.0 ] = arc = { <a,b>, <b,c>, <b,d> } Chemin.2 = arc U Π 1,4 [σ 2=3 arc x chemin.1 ] arc U Π 1,4 [σ 2=3 arc x arc] = { <a,b>, <b,c>, <b,d>, <a,c>, <a,d>} Chemin.3 = arc U Π 1,4[σ 2=3 arc X chemin.2 ] = arc U Π 1,4[σ 2=3 arc x arc ] U Π 1,6[σ 2=3, 4=5 arc x arc x arc] pas de nouveaux N-uplets, fin des traitements Sélection de la réponse à la requête : chemin (a,y)? Π 2 [σ 1=a Chemin.2] Datalog Conclusion Datalog est un langage basé sur l utilisation de règles Plusieurs méthodes d évaluation ont été étudiées/proposées : évaluation naïve résolution SLD-AL méthode des requêtes sous requêtes les ensembles magiques Datalog et Le langage Datalog «pur» ne permet pas : D utiliser la négation dans le corps des règles D utiliser des termes fonctionnels dans les littéraux Exemple : chemin (f(x), Y ) <=. f(x) est un terme fonctionnel Des extensions ont été proposées Pour traiter la négation (mécanisme de stratification des programmes Datalog) Pour les termes fonctionnels et les objets complexes Introduction Datalog et La F-logique est une réponse aux restrictions de Datalog, Avec une approche orientée objet Des termes fonctionnels Et des règles Prise en charge de la négation dans le corps des règles (stratification)

8 Introduction Les modèles orientés objet Les modèles orientés objets sont basés sur : Les classes Attributs, méthodes, droits d accès Encapsulation Les hiérarchies de généralisation/spécialisation Mécanisme d héritage Surcharge des méthodes Polymorphisme Possibilité de définir des objets complexes et de spécifier leur utilisation et leurs comportements Ré-utilisation Introduction Les modèles OO et la La propose une approche orientée objet Attributs et méthodes sont décrits de façon similaire des approches OO «classiques» Mécanisme d héritage La F-logique offre en plus des modèles OO, la description de connaissances avec des règles Introduction La La est donc un formalisme entre les modèles déductifs comme Datalog et les modèles orientés objet. La permet de définir Des classes Les objets ont des propriétés (attributs/méthodes) Des hiérarchies d héritage Des objets complexes à l aide de règles 45 Introduction La La a été introduite en 1995, par M. Kifer, G. Lausen, J Wu Logical foundations of object-oriented and framebased languages. Journal of the ACM Des implémentations de la ont été développées Système Florid (1998) Système OntoBroker (1999) Le système Flora (2000) 46 Classes et méthodes Les classes et les propriétés des objets (attributs et méthodes) sont définies à l aide de signatures. L ensemble des signatures des classes et la hiérarchie d héritage peut être vu comme le schéma de la base de données Les signatures des classes sont vues en F- Logique comme des contraintes de type sur les propriétés des objets Classes et méthodes Signatures person[father => man] person[daugther =>> woman] person[friend =>> (man, woman)] =>> man] father, daugther et friend sont des méthodes de la classe person Le symbole => désigne une méthode mono-valuée Le symbole =>> désigne une méthode multi-valuée La méthode son est une méthode avec paramètre de type woman Attention : le terme méthode est à prendre au sens large (attributs + méthodes)

9 Classes et méthodes Les méthodes avec paramètres peuvent être surchargées man => man] man integer) => man] Deux propriétés «homonymes» sont décrites pour les objets de type man la 1ère propriété décrit le fils (son) d un homme (man) paramétré par le nom de sa mère (woman) La 2ème propriété décrit le fils (son) d un homme (man) paramétré par le nom de la mère (woman) et le rang de l enfant (integer). Hiérarchies d héritage Les classes peuvent être organisées en hiérarchies de spécialisation/généralisation man :: person woman :: person Les classes man et woman sont des sousclasses de la classe person Hiérarchies d héritage Deux types d héritage sont considérés en F-logique L héritage structurel i.e. la propagation des restrictions de classes (signatures) de la super-classe vers la sous-classe. L héritage comportemental qui indique le «comportement d une méthode» qui est héritée par ses sous-classes mais qui peut être «surchargée» person[believes_in *->god] Toutes les instances de la classe person vont hériter du comportement de la méthode believes_in -> god, Cependant un «individu» peut avoir un comportement différent individu :: person[believes_in -> nothing] Ici «god» et «nothing» sont des objets particuliers 51 Objets et propriétés Des objets (instances des classes) et leurs propriétés (valeurs des méthodes des classes) peuvent être explicitement décrits. abraham : man sarah : woman isaac : man [father ->abraham, mother -> sarah] Jacob : man [son ->> {reuben, simeon} ] Jacob : man simeon] Jacob est un objet de type man, Avec un fils «reuben», 1er enfant de la femme «leah» Avec un fils «simeon», 2ème enfant de la femme «leah» 52 Règles Les règles permettent de définir de la connaissance de façon intensionnelle Une règle de la forme : X[son ->>Y] <- Y:man[father -> X] se lit Si Y est un homme (Y:man) dont le père est X (father -> X) alors X a comme fils Y (son ->> Y) La méthode father est mono-valuée mais la méthode son est multivaluée Règles X[ancestors ->>Y] <- X[father ->Y] X[ancestors ->>Y] <- X[mother ->Y] X[ancestors ->>Y] <- X[father ->Z], Z[ancestors ->> Y] X[ancestors ->>Y] <- X[mother ->Z], Z[ancestors ->> Y] Ces règles permettent de calculer l ensemble des ancêtres (Y) d une personne (X). La méthode ancestors est multi-valuée. Les ancêtres sont définis soit comme les ancêtres directs (mother, father) soit de façon récursive;

10 Règles Le corps d un règle peut contenir des négations. X[notrelated ->>Y] <- X:person, Y:person, not X[ancestors ->>Y], not Y[ancestors ->> X]. Le traitement de la négation dans le corps des règles est un problème important. la stratification des règles est une approche possible 55 Expression de chemin Les expressions de chemins permettent d exprimer les informations dans les règles ou dans les requêtes de façon plus concise. Pour désigner, le père du père d isaac, on peut écrire : <- isaac[father ->Y],Y[father ->X] avec Y qui est une valeur «intermédiaire» <- isaac.father[father ->X] avec isaac.father est une expression de chemin qui désigne le père d isaac sans variable intermédiaire 56 Requêtes Les requêtes sont des règles particulières avec une tête de règle «vide» La requête : <- jacob[ancestors->>y:woman] Permet de rechercher tous les ancêtres femme de jacob. 57 Négation et stratification L idée intuitive de la stratification comme mécanisme pour évaluer un «littéral» nié dans le corps d une règle, est de décomposer un programme en «couches» appelées «strates» et d avoir complètement évaluer le littéral (positivement et négativement) avant d évaluer la règle. Par exemple : B(b) C(a) A(X) <= B(X) & not(c(x)) Ce programme peut être stratifié en 2 strates : 1ère strate : {B, C} 2ème strate : {A} L évaluation de la règle nécessite l évaluation préalable de B et C. Ici B(b) et ~B(a), C(a) et ~C(b) La règle est appliquée en utilisant ces connaissances. L ajout d une 3ème règle : E(X) <= not(a(x)) nécessiterait une nouvelle strate de calcule préalable de A ici A(b) et ~A(a), avant de calculer E(X) avec les strates précédentes. 58 Bilan La propose une modélisation qui s appuie sur les modèles orientés objets Signatures des objets, hiérarchies des objets Et sur la logique Spécification de règles Des mécanismes d inférences pour l évaluation des règles Principe de résolution de la logique du 1er ordre La négation dans le corps de règles peut être évaluée en utilisant la stratification des Le système Florid/FloXML FLORID (F-LOgic Reasoning In Databases) Est un système de bases de données orienté objet déductif Qui utilise la comme langage de définition des données et de requêtes Version1.0 en 1996, Version 2.0 en 1998, Version 2.1 et 2.2 en 1999 L intérêt croissant pour les données semi-structurées (XML) a conduit à l extension de Florid pour gérer ces données dans un contexte d intégration Version 3.0 en 2000 FloXML Version 4.0 programmes

Logique et bases de données

Logique et bases de données Logique et bases de données Plan Théorie du premier ordre Hypothèses CWA, unique name, domain closure BD comme interprétation BD comme théorie du 1er ordre BD déductives Signification des différentes formes

Plus en détail

Logique et bases de données

Logique et bases de données Logique et bases de données Vision logique d une BD relationnelle Signification des règles logiques Le modèle DATALOG Evaluation des règles non récursives Signification et évaluation des règles récursives

Plus en détail

Bases de données Cours 5 : Base de données déductives

Bases de données Cours 5 : Base de données déductives Cours 5 : ESIL Université de la méditerranée Odile.Papini@esil.univmed.fr http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 Introduction 2 approche sémantique approche axiomatique

Plus en détail

Programmation Avancée - Prolog

Programmation Avancée - Prolog Programmation Avancée - Prolog N. Prcovic Programmation Avancée - Prolog p.1/26 Introduction La programmation logique est une forme particulière de programmation déclarative. La programmation déclarative

Plus en détail

Systèmes d'informations Géographiques - Graphes

Systèmes d'informations Géographiques - Graphes Systèmes d'informations Géographiques - Graphes Institut National des Sciences Appliquées - Rouen Département Architecture des Systèmes d'information michel.mainguenaud@insa-rouen.fr Graphe et Spatialisation!

Plus en détail

BD DEDUCTIVES 1. INTRODUCTION 2. PROBLEMATIQUE DES SGBD DEDUCTIFS

BD DEDUCTIVES 1. INTRODUCTION 2. PROBLEMATIQUE DES SGBD DEDUCTIFS BD DEDUCTIVES 1. INTRODUCTION Depuis que la notion de base de données déductive est bien comprise [Gallaire84], sous la pression des applications potentielles, les concepteurs de systèmes s efforcent de

Plus en détail

Langage SQL (1) 4 septembre 2007. IUT Orléans. Introduction Le langage SQL : données Le langage SQL : requêtes

Langage SQL (1) 4 septembre 2007. IUT Orléans. Introduction Le langage SQL : données Le langage SQL : requêtes Langage SQL (1) Sébastien Limet Denys Duchier IUT Orléans 4 septembre 2007 Notions de base qu est-ce qu une base de données? SGBD différents type de bases de données quelques systèmes existants Définition

Plus en détail

Chapitre 2 : Conception de base de données relationnelle

Chapitre 2 : Conception de base de données relationnelle Chapitre 2 : Conception de base de données relationnelle Le modèle entité-association 1. Les concepts de base 1.1 Introduction Avant que la base de données ne prenne une forme utilisable par le SGBD il

Plus en détail

Bases de données et sites WEB Cours 2 : SQL3 Modèle

Bases de données et sites WEB Cours 2 : SQL3 Modèle Bases de données et sites WEB Cours 2 : SQL3 Modèle 1 Plan Insuffisances du modèle relationnel Concepts objet Modèle Objet-relationnel et SQL3 2 Insuffisances du modèle relationnel Opérations séparées

Plus en détail

Un langage logique de requêtes (ProLog restreint) DataLog. Règles logiques. Structure d une règle / clause. Sous-requêtes.

Un langage logique de requêtes (ProLog restreint) DataLog. Règles logiques. Structure d une règle / clause. Sous-requêtes. Transparents de Jeffrey Ullman --- légèrement modifiés et mis en français par Christian Retoré Université Bordeaux 1 DataLog Règles logiques Récursion Un langage logique de requêtes (ProLog restreint)!si-alors(-sinon)

Plus en détail

Information utiles. cinzia.digiusto@gmail.com. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/

Information utiles. cinzia.digiusto@gmail.com. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/ Systèmes de gestion de bases de données Introduction Université d Evry Val d Essonne, IBISC utiles email : cinzia.digiusto@gmail.com webpage : http://www.ibisc.univ-evry.fr/ digiusto/ Google+ : https://plus.google.com/u/0/b/103572780965897723237/

Plus en détail

Chapitre 3: Modèle relationnel et conception

Chapitre 3: Modèle relationnel et conception LOG660 - Base de données de haute performance Solutions: Chapitre 3: Modèle relationnel et conception QUESTION 1 Plusieurs schémas sont acceptables. Les points à considérer sont: 1. L'agrégation entre

Plus en détail

SGBD orientés objet. Généralités Modèles de données et SGBD orientés objet 03/03/2015. Définitions. Concepts Généraux

SGBD orientés objet. Généralités Modèles de données et SGBD orientés objet 03/03/2015. Définitions. Concepts Généraux SGBD orientés objet Définitions Généralités Modèles de données et SGBD orientés objet MDOO : Un modèle de données qui capture la sémantique des objets supportée en programmation objet. Concepts Généraux

Plus en détail

FSAB 1402 - Suggestions de lecture

FSAB 1402 - Suggestions de lecture FSAB 1402 - Suggestions de lecture 2006 Concepts, techniques and models of computer programming Cours 1 - Intro Chapitre 1 (sections 1.1, 1.2, 1.3, pages 1-3) Introduction aux concepts de base Chapitre

Plus en détail

1. Objectifs de la Modélisation. Dériver le schéma de la BD. Élaborer un modèle conceptuel. Modélisation E/R des Données

1. Objectifs de la Modélisation. Dériver le schéma de la BD. Élaborer un modèle conceptuel. Modélisation E/R des Données . Objectifs et principes Modélisation E/R des Données 2. Le modèle Entité-Association (E/R) 3. Passage au relationnel 4. Conclusion. Objectifs de la Modélisation Permettre une meilleure compréhension Le

Plus en détail

Introduction aux Bases de Données

Introduction aux Bases de Données Introduction aux Bases de Données I. Bases de données I. Bases de données Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Exemples classiques d'applications BD

Plus en détail

Les bases de données

Les bases de données Les bases de données Introduction aux fonctions de tableur et logiciels ou langages spécialisés (MS-Access, Base, SQL ) Yves Roggeman Boulevard du Triomphe CP 212 B-1050 Bruxelles (Belgium) Idée intuitive

Plus en détail

Chapitre 2 Modélisation de bases de données

Chapitre 2 Modélisation de bases de données Pourquoi une modélisation préalable? Chapitre 2 Modélisation de bases de données 1. Première étape : le modèle conceptuel Eemple : le modèle Entités-Associations (E/A) 2. Deuième étape : le modèle Traduction

Plus en détail

Chapitre VIII. Les bases de données. Orientées Objet. Motivation

Chapitre VIII. Les bases de données. Orientées Objet. Motivation Chapitre VIII Motivation Le modèle relationnel connaît un très grand succès et s avère très adéquat pour les applications traditionnelles des bases de données (gestion) Les bases de données Orientées Objet

Plus en détail

OPTIMISATION DE QUESTIONS

OPTIMISATION DE QUESTIONS OPTIMISATION DE QUESTIONS Luc Bouganim Luc.Bouganim@prism.uvsq.fr Page 2 Architecture en couche d un SGBD Gestion de Mémoire Interface Analyseur sémantique Optimiseur Moteur d exécution Opérations relationnelles

Plus en détail

Contenu. ELFE - Cours 4. Datalog et l algèbre relationnelle. Exemple : schéma du TP5 BDD. Opérations de l algèbre relationnelle

Contenu. ELFE - Cours 4. Datalog et l algèbre relationnelle. Exemple : schéma du TP5 BDD. Opérations de l algèbre relationnelle Contenu ELFE - Cours 4 Requêtes relationnelles en Datalog Satisfaisabilité de formules booléennes en Datalog C. Kuttler Licence 3 informatique, Université Lille 24 janvier 2013 Requêtes relationnelles

Plus en détail

Algèbre relationnelle

Algèbre relationnelle Algèbre relationnelle 1. Introduction L algèbre relationnelle est le support mathématique cohérent sur lequel repose le modèle relationnel. L algèbre relationnelle propose un ensemble d opérations élémentaires

Plus en détail

Plan du cours de Programmation logique

Plan du cours de Programmation logique Plan du cours de Programmation logique 1 Introduction 2 3 Igor Stéphan 1/ 64 La logique comme langage de programmation Un langage de programmation logique est défini par : un langage des données Ω; et

Plus en détail

Conception de BDR et requêtes. Migration vers une BDR. Conception d'une BDR par Décomposition. Objectifs de la Décomposition

Conception de BDR et requêtes. Migration vers une BDR. Conception d'une BDR par Décomposition. Objectifs de la Décomposition Conception de BDR et requêtes Migration vers une BDR Approche décomposition Fragmentation Allocation des fragments Fragmentation de requêtes Optimisation de requêtes Décomposition en BD locales BD BD1

Plus en détail

BASES DE DONNÉES AVANCÉES

BASES DE DONNÉES AVANCÉES L3 Informatique Option : ISIL BASES DE DONNÉES AVANCÉES RAMDANI MED U-BOUIRA M. R A M D A N I @ U N I V - B O U I R A. D Z P E R S O. L I V E H O S T. F R Cours 5 : Evaluation et optimisation des requêtes

Plus en détail

Chapitre 4 Modélisation et Conception de BD

Chapitre 4 Modélisation et Conception de BD Pourquoi une modélisation préalable? Chapitre 4 Modélisation et Conception de BD Il est difficile de modéliser un domaine sous une forme directement utilisable par un SGBD. Stockage physique Cohérence/intégrité

Plus en détail

Les principaux domaines de l informatique

Les principaux domaines de l informatique Les principaux domaines de l informatique... abordés dans le cadre de ce cours: La Programmation Les Systèmes d Exploitation Les Systèmes d Information La Conception d Interfaces Le Calcul Scientifique

Plus en détail

L2: cours I4c Langages et automates

L2: cours I4c Langages et automates L2: cours I4c Langages et automates Olivier Togni, LE2I (038039)3887 olivier.togni@u-bourgogne.fr Modifié le 31 mai 2007 Sommaire Utiles pour compilation, interprétation,... 1. Langages rationnels 2. Langages

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

Fondements des bases de données. Marc Plantevit

Fondements des bases de données. Marc Plantevit Fondements des bases de données Introduction Marc Plantevit marc.plantevit@liris.cnrs.fr Objectif de l enseignement : Approfondir les connaissances du modèle relationnel et les fondements de la conception

Plus en détail

Chapitre-4 Logique du 1er ordre - Syntaxe -

Chapitre-4 Logique du 1er ordre - Syntaxe - Chapitre-4 Logique du 1er ordre - Syntaxe - Plan 1- Introduction 2- Alphabet 3-Termes d'un langage 4- Formule de la logique du 1er ordre 5-Sous-formule d'une formule du 1er ordre 6- Arbre de décomposition

Plus en détail

Dossier I Découverte de Base d Open Office

Dossier I Découverte de Base d Open Office ETUDE D UN SYSTEME DE GESTION DE BASE DE DONNEES RELATIONNELLES Définition : Un SGBD est un logiciel de gestion des données fournissant des méthodes d accès aux informations. Un SGBDR permet de décrire

Plus en détail

Évaluation et implémentation des langages

Évaluation et implémentation des langages Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation

Plus en détail

Bases de Données Relationnelles. L algèbre relationnelle

Bases de Données Relationnelles. L algèbre relationnelle Bases de Données Relationnelles L algèbre relationnelle Langages de manipulation Langages formels : base théorique solide Langages utilisateurs : version plus ergonomique Langages procéduraux : définissent

Plus en détail

Systèmes d information et bases de données (niveau 1)

Systèmes d information et bases de données (niveau 1) Systèmes d information et bases de données (niveau 1) Cours N 1 Violaine Prince Plan du cours 1. Bibliographie 2. Introduction aux bases de données 3. Les modèles 1. Hiérarchique 2. Réseau 3. Relationnel

Plus en détail

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents)

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Numéro d anonymat: 1 Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Sauf mention contraire en caractères gras,

Plus en détail

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique Notes de cours Cours introductif sur la théorie des domaines Paul-André Melliès Modèles des langages de programmation Master Parisien de Recherche en Informatique 1 Ensembles ordonnés Definition 1.1 (ensemble

Plus en détail

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Unité Systèmes d'information CM : 45h - TD : 60h - TP : 12h - Coeff 2 Systèmes de Gestion de Bases de Données Modéliser

Plus en détail

I. Bases de données. Exemples classiques d'applications BD. Besoins de description

I. Bases de données. Exemples classiques d'applications BD. Besoins de description I. Bases de données Exemples classiques d'applications BD Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Gestion des personnels, étudiants, cours, inscriptions,...

Plus en détail

Théorie de la Normalisation 1/44

Théorie de la Normalisation 1/44 Théorie de la Normalisation 1/44 La phase de design d une BD q Analyse des besoins q Design conceptuel q Modèle EA, UML q Design logique q EA vers relations q raffinement de schéma: normalisation q Design

Plus en détail

Projet de Programmation Fonctionnelle

Projet de Programmation Fonctionnelle Projet de Programmation Fonctionnelle L objectif de ce projet est de concevoir, en Objective Caml, un évaluateur pour le langage mini-ml (un sous ensemble du langage Objective Caml). Votre programme devra

Plus en détail

Utilisation des tableaux sémantiques dans les logiques de description

Utilisation des tableaux sémantiques dans les logiques de description Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal bergerja@iro.umontreal.ca

Plus en détail

CHAPITRE II CONCEPTION D'UN SCHEMA RELATIONNEL. [GARD01] Chapitre XVII

CHAPITRE II CONCEPTION D'UN SCHEMA RELATIONNEL. [GARD01] Chapitre XVII CHAPITRE II CONCEPTION D'UN SCHEMA RELATIONNEL [GARD01] Chapitre XVII 27 CONCEPTION D'UN SCHEMA RELATIONNEL - Introduction 1. INTRODUCTION 1.1. Lien entre la base de données et le système d'information

Plus en détail

Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base)

Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base) Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base) 1. Généralités sur l'information et sur sa Représentation 1.1 Informations et données : a. Au sen de la vie : C

Plus en détail

Correction de programmes : Logique de Hoare

Correction de programmes : Logique de Hoare 16 juillet 2009 Logique et informatique Vis-à-vis de l informatique la logique a au moins 2 rôles : 1 Externe et théorique (fondements de l informatique - Électif en S4) : Logique comme méta-informatique

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Modèle relationnel Création et modification des relations en SQL

Modèle relationnel Création et modification des relations en SQL Modèle relationnel Création et modification des relations en SQL ENT - Clé sql2009 BD - Mírian Halfeld-Ferrari p. 1 Insertion dans une relation Pour insérer un tuple dans une relation: insert into Sailors

Plus en détail

Analyse syntaxique et application aux langues naturelles. Grammaires Lexicales Fonctionnelles (LFG)

Analyse syntaxique et application aux langues naturelles. Grammaires Lexicales Fonctionnelles (LFG) Université de Nice Sophia Antipolis Master 2 Recherche PLMT Analyse syntaxique et application aux langues naturelles Grammaires Lexicales Fonctionnelles (LFG) Jacques Farré et Sylvain Schmitz Analyse syntaxique

Plus en détail

FlexIS: vers un système d intégration d information flexible

FlexIS: vers un système d intégration d information flexible FlexIS: vers un système d intégration d information flexible P. Colomb 1, et H. Jaudoin 2 1 LIMOS - CNRS UMR 6158, Université Blaise Pascal, France email: colomb@isima.fr LIMOS, 24 Avenue des Landais,

Plus en détail

COMMENT DÉFINIR L ORIENTÉ OBJET

COMMENT DÉFINIR L ORIENTÉ OBJET COMMENT DÉFINIR L ORIENTÉ OBJET De manière superficielle, le terme «orienté objet», signifie que l on organise le logiciel comme une collection d objets dissociés comprenant à la fois une structure de

Plus en détail

A QUOI SERVENT LES BASES DE DONNÉES?

A QUOI SERVENT LES BASES DE DONNÉES? BASE DE DONNÉES OBJET Virginie Sans virginie.sans@irisa.fr A QUOI SERVENT LES BASES DE DONNÉES? Stockage des informations : sur un support informatique pendant une longue période de taille importante accès

Plus en détail

CONCEPTION Support de cours n 3 DE BASES DE DONNEES

CONCEPTION Support de cours n 3 DE BASES DE DONNEES CONCEPTION Support de cours n 3 DE BASES DE DONNEES Auteur: Raymonde RICHARD PRCE UBO PARTIE III. - LA DESCRIPTION LOGIQUE ET PHYSIQUE DES DONNEES... 2 A. Les concepts du modèle relationnel de données...

Plus en détail

SQL Requêtes simples. Outline ... A.D., S.B. Février 2013. .1 Introduction. .2 Requêtes mono-relation. .3 Requêtes multi-relations

SQL Requêtes simples. Outline ... A.D., S.B. Février 2013. .1 Introduction. .2 Requêtes mono-relation. .3 Requêtes multi-relations SQL Requêtes simples BD4 AD, SB Licence MASS, Master ISIFAR, Paris-Diderot Février 2013 BD4 (Licence MASS, Master ISIFAR, Paris-Diderot) SQL 1/19 Février 2013 1 / 19 Outline 1 2 Requêtes mono-relation

Plus en détail

Introduction aux bases de données

Introduction aux bases de données 1/73 Introduction aux bases de données Formation continue Idir AIT SADOUNE idir.aitsadoune@supelec.fr École Supérieure d Électricité Département Informatique Gif sur Yvette 2012/2013 2/73 Plan 1 Introduction

Plus en détail

10 Intégration de données sur le web

10 Intégration de données sur le web 10 Intégration de données sur le web 240 Requête utilisateur : Où est-ce que je peux voir les films qui ont participé au dernier Festival de Cannes? Je voudrais les résumés et critiques des films de Pedro

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

L2 sciences et technologies, mention informatique SQL

L2 sciences et technologies, mention informatique SQL Bases de données L2 sciences et technologies, mention informatique SQL ou : le côté obscure de la jolie théorie films titre réalisateur année starwars lucas 1977 nikita besson 1990 locataires ki-duk 2005

Plus en détail

Bases de données avancées Introduction

Bases de données avancées Introduction Bases de données avancées Introduction Dan VODISLAV Université de Cergy-Pontoise Master Informatique M1 Cours BDA Plan Objectifs et contenu du cours Rappels BD relationnelles Bibliographie Cours BDA (UCP/M1)

Plus en détail

L INFORMATION GEOGRAPHIQUE

L INFORMATION GEOGRAPHIQUE Champs sur Marne ENSG/CERSIG Le 19-nove.-02 L INFORMATION GEOGRAPHIQUE Archivage Le Système d information géographique rassemble de l information afin de permettre son utilisation dans des applications

Plus en détail

Conseil, Etudes et Edition de logiciels NORMES & CONVENTIONS DE DEVELOPPEMENT JAVA ET SQL

Conseil, Etudes et Edition de logiciels NORMES & CONVENTIONS DE DEVELOPPEMENT JAVA ET SQL Conseil, Etudes et Edition de logiciels NORMES & CONVENTIONS DE DEVELOPPEMENT JAVA ET SQL Table des matières Système d'exploitation... 3 Environnement de développement intégré... 3 Le workspace... 3 Le

Plus en détail

Conception et Programmation par Objets GLIN404. Langages et paradigmes de programmation

Conception et Programmation par Objets GLIN404. Langages et paradigmes de programmation Conception et Programmation par Objets GLIN404 Marianne Huchard, Clémentine Nebut LIRMM / Université de Montpellier 2 2013 Langages et paradigmes de programmation Le raisonnement classicatoire paradigme

Plus en détail

Plan. Bases de données. Cours 1 : Généralités & rappels. But du cours. Organisation du cours. Polytech Paris-Sud. Apprentis 4 ème année

Plan. Bases de données. Cours 1 : Généralités & rappels. But du cours. Organisation du cours. Polytech Paris-Sud. Apprentis 4 ème année Plan Bases de données Polytech Paris-Sud Apprentis 4 ème année Cours 1 : Généralités & rappels 1.1 Avant-propos 1.2 Algèbre relationnelle kn@lri.fr http://www.lri.fr/~kn 2/18 But du cours Organisation

Plus en détail

Table des matières. Remerciements... Avant-propos... 1. Introduction... 7

Table des matières. Remerciements... Avant-propos... 1. Introduction... 7 Remerciements..................................................... VI Avant-propos...................................................... 1 À qui s adresse cet ouvrage?..........................................

Plus en détail

Analyse statique de programmes Typage et analyse statique au sein de Java

Analyse statique de programmes Typage et analyse statique au sein de Java Analyse statique de programmes Typage et analyse statique au sein de Java Master Professionnel Informatique spécialité FSIL/FSI Jean-Marc Talbot jean-marc.talbot@lif.univ-mrs.fr Aix-Marseille Université

Plus en détail

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.

Théorie des langages. Automates à pile. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes. Automates à pile Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 62 Automates à pile Introduction Rappels sur les piles Automates à pile : définition Automates

Plus en détail

L outil Cup. Licence info et GMI documentation COMPIL 2007-2008. Pour toutes remarques, questions, suggestions : mirabelle.nebut@lifl.

L outil Cup. Licence info et GMI documentation COMPIL 2007-2008. Pour toutes remarques, questions, suggestions : mirabelle.nebut@lifl. UFR IEEA Licence info et GMI documentation COMPIL 2007-2008 FIL Pour toutes remarques, questions, suggestions : mirabelle.nebut@lifl.fr 1 raccourci pour Java-Based Constructor of Useful Parsers est un

Plus en détail

4. Concepts pour la manipulation des données Implémentation en SQL

4. Concepts pour la manipulation des données Implémentation en SQL 4. Concepts pour la manipulation des données Implémentation en SQL 4.1. OPERATEURS DE L ALGEBRE RELATIONNEL ALGEBRE RELATIONNELLE = { opérateurs sur les relations donnant en résultat des relations } Opérateurs

Plus en détail

Les requêtes de consultation. Ex. bibliothèque état de la base. Ex. bibliothèque état de la base. Consultation simple d'une table

Les requêtes de consultation. Ex. bibliothèque état de la base. Ex. bibliothèque état de la base. Consultation simple d'une table Les requêtes de consultation Représente la ma jorité des requêtes SQL (Deuxième partie) Walter RUDAMETKIN Bureau F011 Walter.Rudametkin@polytech-lille.fr Encapsule complètement l'algèbre relationnel Une

Plus en détail

Programmation logique par contraintes. Partie II

Programmation logique par contraintes. Partie II Programmation logique par contraintes Partie II Plan du cours Programmation logique et Prolog (PL) SWI-Prolog, Sicstus Programmation logique par contraintes (PLC) Sicstus Problèmes de satisfaction de contraintes

Plus en détail

Modèle relationnel Algèbre relationnelle

Modèle relationnel Algèbre relationnelle Modèle relationnel Algèbre relationnelle Modèle relationnel (Codd 1970) On considère D i où i = 1,2..n des ensembles, dits domaines Un domaine = ensemble de valeurs (ex. D1 : entiers sur 10 positions,

Plus en détail

IFT3030 Base de données. Chapitre 7 Conception de bases de données. Plan du cours

IFT3030 Base de données. Chapitre 7 Conception de bases de données. Plan du cours IFT3030 Base de données Chapitre 7 Conception de bases de données Plan du cours Introduction Architecture Modèles de données Modèle relationnel Algèbre relationnelle SQL Conception Fonctions avancées avancés

Plus en détail

Modélisation des Systèmes d Information Jean-Yves Antoine

Modélisation des Systèmes d Information Jean-Yves Antoine Modélisation des Systèmes d Information Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine Processus de développement logiciel Jean-Yves Antoine U. Bretagne Sud - UFR SSI - IUP Vannes année 2001-2002

Plus en détail

Notation fonctionnelle : Union (R,S) ou OR (R, S) Chapitre 4 : Algèbre Relationnelle

Notation fonctionnelle : Union (R,S) ou OR (R, S) Chapitre 4 : Algèbre Relationnelle Chapitre 4 : IV. Qu est-ce que l algèbre relationnelle? Une collections d opérations, chacune agissant sur une ou deux relations et produisant une relation en résultat. Un langage pour combiner ces opérations.

Plus en détail

TD 2 - Modèles de calcul

TD 2 - Modèles de calcul TD 2 - Modèles de calcul Remarques préliminaires Si ou désigne une relation binaire (de dérivation/transition suivant le contexte), on notera ou sa clôture transitive, comprendre la relation obenue en

Plus en détail

Bases de Données Cours de SRC 1. Mathieu MANGEOT mathieu.mangeot@univ-savoie.fr

Bases de Données Cours de SRC 1. Mathieu MANGEOT mathieu.mangeot@univ-savoie.fr Bases de Données Cours de SRC 1 Mathieu MANGEOT mathieu.mangeot@univ-savoie.fr Objectifs du cours Analyser les besoins et modéliser les données d un système d information Mettre en œuvre des bases de données

Plus en détail

Rappels sur l objet. Yannick Prié Département Informatique - UFR Sciences et Techniques Université Claude Bernard Lyon 1 2011-2012

Rappels sur l objet. Yannick Prié Département Informatique - UFR Sciences et Techniques Université Claude Bernard Lyon 1 2011-2012 Rappels sur l objet Yannick Prié Département Informatique - UFR Sciences et Techniques Université Claude Bernard Lyon 1 2011-2012 Objectifs de ce cours 2 Rappels sur les concepts fondamentaux liés à la

Plus en détail

2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels

2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels 2A-SI 4 - Bases de Données 4.4 - Normalisation de schémas relationnels Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Avec l aide du cours de Y. Bourda Intérêt de la «normalisation»

Plus en détail

Diagramme de Classe UML et Base de Données Relationnelle-objet

Diagramme de Classe UML et Base de Données Relationnelle-objet Ecole des Hautes Etudes Commerciales HEC Alger Diagramme de Classe UML et Base de Données Relationnelle-objet par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Plan Introduction

Plus en détail

Résolution générique à la volée de systèmes d équations booléennes et applications

Résolution générique à la volée de systèmes d équations booléennes et applications Résolution générique à la volée de systèmes d équations booléennes et applications Radu Mateescu INRIA Rhône-Alpes / VASY Plan Introduction Systèmes d équations booléennes d alternance 1 Algorithmes de

Plus en détail

Plan. Exemple: Application bancaire. Introduction. OCL Object Constraint Language Le langage de contraintes d'uml

Plan. Exemple: Application bancaire. Introduction. OCL Object Constraint Language Le langage de contraintes d'uml OCL Object Constraint Language Le langage de contraintes d'uml Plan 1. Introduction 2. Les principaux concepts d'ocl Object Constraint Language 1 Object Constraint Language 2 Exemple: une application bancaire

Plus en détail

EXAMEN PROFESSIONNEL DE VÉRIFICATION D APTIDUDE AUX FONCTIONS DE PROGRAMMEUR. Session 2012. Notation : sur 20

EXAMEN PROFESSIONNEL DE VÉRIFICATION D APTIDUDE AUX FONCTIONS DE PROGRAMMEUR. Session 2012. Notation : sur 20 MINISTÈRE DE L ÉGALITÉ DES TERRITOIRES ET DU LOGEMENT MINISTÈRE DE L ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE ET DE L ÉNERGIE EXAMEN PROFESSIONNEL DE VÉRIFICATION D APTIDUDE AUX FONCTIONS DE PROGRAMMEUR Session

Plus en détail

Modélisation de la Résolution de Problèmes

Modélisation de la Résolution de Problèmes Modélisation de la Résolution de Problèmes - Rappels : «Suite d opérations par lesquelles on conclut qu une proposition implique la vérité d une autre proposition» ( * ) Historiquement : Nécessité de séparer

Plus en détail

Résumé XML XML. XPATH SVG Schema XSL. VoiceXML. Figure 1 : évolution des langages à balises

Résumé XML XML. XPATH SVG Schema XSL. VoiceXML. Figure 1 : évolution des langages à balises XML, extensible Markup Language 1-Origine de XML On trouve l origine des langages à balises dans la nécessité d échanger des informations dont la structure est trop complexe pour être simplement mise sous

Plus en détail

Chapitre 6 Héritage en Java

Chapitre 6 Héritage en Java Chapitre 6: Héritage 1/12 Chapitre 6 Héritage en Java Chapitre 6: Héritage 2/12 1. Généralités L'héritage est le troisième des paradigmes de la programmation orientée objet (le 1 er étant l'encapsulation,

Plus en détail

MANIPULATION D OBJETS

MANIPULATION D OBJETS MANIPULATION D OBJETS Introduction Manipuler des objets à structure complexe Résultat des requêtes Identité, égalité, gestion des doubles Hiérarchie de généralisation Comportement Conclusion LANGAGES DE

Plus en détail

Langage et Concepts de Programmation Objet. 1 Attributs et Méthodes d instance ou de classe. Travaux Dirigés no2

Langage et Concepts de Programmation Objet. 1 Attributs et Méthodes d instance ou de classe. Travaux Dirigés no2 Langage et Concepts de Programmation Objet Travaux Dirigés no2 Pôle Informatique École Nationale Supérieure des Mines de St-Etienne Vous trouverez plus de détails sur les concepts abordés lors de ce TD

Plus en détail

Optimisation des Requêtes D après J. Akoka - I. Wattiau

Optimisation des Requêtes D après J. Akoka - I. Wattiau NFE113 Administration et configuration des bases de données 2011 Optimisation des Requêtes D après J. Akoka - I. Wattiau 1 Eric Boniface Introduction Fournir l'algorithme d'accès à la B.D. pour répondre

Plus en détail

Diagramme de classes

Diagramme de classes Diagramme de classes Un diagramme de classes décrit les classes et leurs relations (associations, généralisation/spécialisation, ). classe association méthodes attributs héritage Diagramme de classes :

Plus en détail

Examen, Bases de Données Avancées, 2012-2013. Exercice 1 : Bases de Données Relationnelles - 7 Points

Examen, Bases de Données Avancées, 2012-2013. Exercice 1 : Bases de Données Relationnelles - 7 Points Examen, Bases de Données Avancées, 2012-2013 Les s sont autorisés. Les exercices sont indépendants. Le barème est sur 25 mais il suffit d avoir 20 points pour avoir 20. Exercice 1 : Bases de Données Relationnelles

Plus en détail

Bases de Données relationnelles et leurs systèmes de Gestion

Bases de Données relationnelles et leurs systèmes de Gestion III.1- Définition de schémas Bases de Données relationnelles et leurs systèmes de Gestion RAPPELS Contraintes d intégrité sous Oracle Notion de vue Typage des attributs Contrainte d intégrité Intra-relation

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

IFT2255 : Génie logiciel

IFT2255 : Génie logiciel IFT2255 : Génie logiciel Chapitre 6 - Analyse orientée objets Section 1. Introduction à UML Julie Vachon et Houari Sahraoui 6.1. Introduction à UML 1. Vers une approche orientée objet 2. Introduction ti

Plus en détail

Raisonnement symbolique et géométrique pour la robotique mobile

Raisonnement symbolique et géométrique pour la robotique mobile Introduction à la réunion finale Raisonnement symbolique et géométrique pour la robotique mobile J. Guitton, J.L. Farges Control Architectures of Robots - Bourges - 30 mai 2008 1 Plan Introduction Vers

Plus en détail

Feuille 1 Modèle Relationnel et Requêtes Conjonctives

Feuille 1 Modèle Relationnel et Requêtes Conjonctives Université de Bordeaux M2 d Informatique, 2015-2016 Cours de Bases de Données Avancées Feuille 1 Modèle Relationnel et Requêtes Conjonctives Le but de cette feuille est d introduire le modèle de bases

Plus en détail

Un automate à états fini

Un automate à états fini Automates à états et langages Notion d automate Langage reconnu par un automate Automates non déterministes Expressions régulières et automates Limites des automates Notion d automate Objectif : définir

Plus en détail

Programmation objet en Java.

Programmation objet en Java. Programmation objet en Java. Didier Rémy 2001-2002 http://cristal.inria.fr/ remy/mot/7/ http://www.enseignement.polytechnique.fr/profs/informatique/didier.remy/mot/7/ Cours Exercices Slide 1 1. Classes,

Plus en détail

Feuille 5 Algèbre Relationnelle et Calcul Relationnel

Feuille 5 Algèbre Relationnelle et Calcul Relationnel Université de Bordeaux M2 d Informatique, 2014-2015 Cours de Bases de Données Avancées Feuille 5 Algèbre Relationnelle et Calcul Relationnel On va définir les deux principaux langages de requêtes (équivalents)

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Conception de la base de données

Conception de la base de données Rapport T.E.R HLIN405 Conception de la base de données des projets de licence deuxième et troisième année Réalisé par Achraf Tajani Cvete Maceski Mohamed Bareche Sous l encadrement de Christian Retoré

Plus en détail

Algorithmique et Programmation Fonctionnelle

Algorithmique et Programmation Fonctionnelle Algorithmique et Programmation Fonctionnelle RICM3 Cours 9 : Lambda-calcul Benjamin Wack Polytech 2014-2015 1 / 35 La dernière fois Typage Polymorphisme Inférence de type 2 / 35 Plan Contexte λ-termes

Plus en détail