T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013"

Transcription

1 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura développée. Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies.» Aucun prêt n est autorisé entre les élèves. Exercice 1-4,5 points - Une boîte de chocolats contient 50% de chocolats au lait, 30% de chocolats noirs et 20% de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique. Ils sont garnis soit de praliné soit de caramel et, parmi les chocolats au lait, 56% sont garnis de praliné. On choisit au hasard un chocolat de la boîte. On suppose que tous les choix sont équiprobables. On note : L : l événement «le chocolat choisi est au lait» ; N : l événement «le chocolat choisi est noir» ; B : l événement «le chocolat choisi est blanc» ; A : l événement «le chocolat choisi est garni de praliné» ; : l événement «le chocolat choisi est garni de caramel». Tous les résultats seront donnés sous forme décimale. 1) Traduire les données du problème à l aide d un arbre de probabilité. 2) Donner la probabilité que le chocolat choisi soit garni de praliné sachant que c est un chocolat au lait. 3) Déterminer la probabilité que le chocolat choisi soit au lait et garni de praliné. 4) Dans la boîte, 21% des chocolats sont noirs et garnis de praliné. Montrer que la probabilité que le chocolat choisi soit garni de praliné, sachant que c est un chocolat noir, est égale à 0,7. 5). Dans la boîte, 60% des chocolats sont garnis de praliné. a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. b) En déduire la probabilité que le chocolat choisi soit garni de praliné sachant que c est un chocolat blanc.

2 Exercice 2-6 points - 1) Dans cette question aucune justification n est demandée, tous les tracés demandés seront effectués sur le repère orthonormé ci-dessous qui sera rendu avec la copie. On souhaite tracer la courbe représentative d une fonction suivantes : - La fonction est définie et dérivable sur l intervalle [0 ; 6]. - Le maximum de la fonction est 5, il est atteint pour 0. - Le minimum de la fonction est 1. satisfaisant les conditions - La fonction est dérivable sur l intervalle [0 ; 6]. On note la fonction dérivée de et on sait que 0 3, 6 3 et Le signe de la fonction dérivée de est donné par le tableau suivant : Signe de 0 + a) Compléter le tableau de variations de la fonction f, fourni en annexe 1. On fera figurer dans le tableau les images par de 0, de 4 et de 6. b) Donner l équation de la tangente à la courbe au point d abscisse 6. c)tracer dans le repère fourni en annexe 2 la courbe représentative d une fonction satisfaisant toutes les conditions ci-dessus. On placera les points d abscisses 0, 4, 6 et on tracera les tangentes à la courbe en ces points. 2) Dans cette question toute réponse doit être justifiée. On considère la fonction g définie sur l intervalle [0 ; 6] par a) Déterminer le sens de variation de la fonction sur l intervalle [0 ; 6]. Compléter le tableau de variation de la fonction fourni en annexe 3. On précisera les valeurs de 0, 4 et 6. b) Déterminer 0.

3 Annexe Signe de f '( x ) 0 + Variations de Annexe 2 Annexe Variations de

4 Exercice 3-7 points - I - Etude d une fonction Soit f la fonction définie sur l intervalle [0 ; + [ par : 0,5,,. 1) Calculer où désigne la dérivée sur l intervalle [0 ; + [. 2) Étudier les variations de sur l intervalle [0 ; + [ et vérifier que admet un minimum en 0,8. II - Application économique Une entreprise fabrique des objets. est le coût total de fabrication, en milliers d euros, de centaines d objets. Chaque objet fabriqué est vendu 6. 1) Quel nombre d objets faut-il produire pour que le coût total de fabrication soit minimum? 2) a) Montrer que le résultat (recette moins coûts), en milliers d euros, obtenu par la vente de centaines d objet est : 0,1,,. b) Montrer que la dérivée de la fonction est définie par 0,1 0,5,, c) Étudier les variations de sur l intervalle [0 ; + [. d) Montrer que l équation 0 a une unique solution α dans l intervalle [0 ; 10]. Déterminer un encadrement de α à 10 2 près. e) En déduire la quantité minimale d objets à produire afin que cette entreprise réalise un bénéfice sur la vente des objets. Exercice 4-2,5 points - Démontrer que est une primitive de sur, puis déterminer la primitive de sur vérifiant la condition indiquée. ; 3 1 0

5 T ES/L CORRECTION DEVOIR SURVEILLE 4 23 / 01 / 2013 Exercice 1-4,5 points - Une boîte de chocolats contient 50% de chocolats au lait, 30% de chocolats noirs et 20% de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique. Ils sont garnis soit de praliné soit de caramel et, parmi les chocolats au lait, 56% sont garnis de praliné. On choisit au hasard un chocolat de la boîte. On suppose que tous les choix sont équiprobables. On note : L : l événement «le chocolat choisi est au lait» ; N : l événement «le chocolat choisi est noir» ; B : l événement «le chocolat choisi est blanc» ; A : l événement «le chocolat choisi est garni de praliné» ; : l événement «le chocolat choisi est garni de caramel». Tous les résultats seront donnés sous forme décimale. 1) Traduire les données du problème à l aide d un arbre de probabilité. 0,56 A L 0,5 0,3 N A 0,2 A B 2) Donner la probabilité que le chocolat choisi soit garni de praliné sachant que c est un chocolat au lait. On cherche D après l énoncé : parmi les chocolats au lait, 56% sont garnis de praliné. Donc, 3) Déterminer la probabilité que le chocolat choisi soit au lait et garni de praliné. correspond au chocolat choisi soit au lait et garni de praliné 0,5 0,56 0,4 Donc, 4) Dans la boîte, 21% des chocolats sont noirs et garnis de praliné. Montrer que la probabilité que le chocolat choisi soit garni de praliné, sachant que c est un chocolat noir, est égale à 0,7. On sait que 21% des chocolats sont noirs et garnis de praliné D où 0,21 On cherche Alors, 0,7, Donc la probabilité que le chocolat choisi soit garni de praliné, sachant que c est un chocolat noir, est égale à 0,7.

6 5). Dans la boîte, 60% des chocolats sont garnis de praliné. a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. On sait que L, N et B forment une partition de l univers D après la formule des probabilités totales 0,6 0,28 0,21 0,6 0,49 0,11 Donc la probabilité que le chocolat choisi soit blanc et garni de praliné est de 0,11 b) En déduire la probabilité que le chocolat choisi soit garni de praliné sachant que c est un chocolat blanc. On cherche Alors,, 0,55 Donc la probabilité que le chocolat choisi soit garni de praliné sachant que c est un chocolat blanc est de 0,55. Exercice 2-6 points - Nouvelle Calédonie ) Dans cette question aucune justification n est demandée, tous les tracés demandés seront effectués sur le repère orthonormé ci-dessous qui sera rendu avec la copie. On souhaite tracer la courbe représentative d une fonction satisfaisant les conditions suivantes : - La fonction est définie et dérivable sur l intervalle [0 ; 6]. - Le maximum de la fonction est 5, il est atteint pour. - Le minimum de la fonction est 1. - La fonction est dérivable sur l intervalle [0 ; 6]. On note la fonction dérivée de et on sait que, et. - Le signe de la fonction dérivée de est donné par le tableau suivant : x Signe de 0 + a) Compléter le tableau de variations de la fonction f, fourni en annexe 1. On fera figurer dans le tableau les images par de 0, de 4 et de 6. Les variations de la fonction se déduisent du signe de sa dérivée b) Donner l équation de la tangente à la courbe au point d abscisse 6. Une équation de la tangente à la courbe au point d abscisse 6 est de la forme : Alors La tangente à la courbe au point d'abscisse 6 a pour équation 2 9

7 c)tracer dans le repère fourni en annexe 2 la courbe représentative d une fonction satisfaisant toutes les conditions ci-dessus. On placera les points d abscisses 0, 4, 6 et on tracera les tangentes à la courbe en ces points. Une équation de la tangente à la courbe au point d abscisse soit , alors la tangente à la courbe au point d abscisse 4 est parallèle à l'axe des anscisses. Son équation est 1 2) Dans cette question toute réponse doit être justifiée. On considère la fonction g définie sur l intervalle [0 ; 6] par a) Déterminer le sens de variation de la fonction sur l intervalle [0 ; 6]. Compléter le tableau de variation de la fonction fourni en annexe 3. On précisera les valeurs de, et. On a, sur [0 ;6], Donc la fonction a les même variations que la fonction sur [0 ;6] De plus D'où le tableau des variations de la fonction g :

8 b) Déterminer. est dérivable sur [0 ;6] puis et sa dérivée est la fonction définie sur [0 ;6] par D'où Donc Exercice 3-7 points - Nouvelle Calédonie deuxième session 2008 I - Etude d une fonction Soit f la fonction définie sur l intervalle [0 ; + [ par :,,,. 1) Calculer où désigne la dérivée sur l intervalle [0 ; + [. est dérivable sur [0 ; + [ comme somme de fonctions dérivables de [0 ; + [ On a avec 0,5 0,5 0,5 0,4 0,5 Alors D où pour tout réel de l'intervalle [0 ; + [, 0,5 0,5,, Donc pour tout réel de l'intervalle [0 ; + [,,,, 2) Étudier les variations de sur l intervalle [0 ; + [ et vérifier que admet un minimum en 0,8. Étudions le signe de la dérivée : 0 0,5 1,, 0 1,, 0 1,,,, 0 0,5 0,4 0,5 0,4,, 0,8 D où les variations de la fonction se déduisent du signe de la dérivée : Et 8 0,5 0,8,,, 0,4,, 0,4 0,4 1 1,4... D'après le tableau des variations, la fonction admet un minimum en 0,8 qui vaut 1,4.

9 II - Application économique Une entreprise fabrique des objets. est le coût total de fabrication, en milliers d euros, de centaines d objets. Chaque objet fabriqué est vendu 6. 1) Quel nombre d objets faut-il produire pour que le coût total de fabrication soit minimum? D après la question précédente, la fonction admet un minimum en 0,8 Donc le coût total de fabrication est minimum pour la production de 80 objets 2) a) Montrer que le résultat (recette moins coûts), en milliers d euros, obtenu par la vente de centaines d objet est :,,,. On sait que le résultat est la recette moins le coûts Or sachant chaque objet fabriqué est vendu 6, la recette en milliers d euros et en centaine d objets est ,6 Donc 0,6 0,6 0,5,, 0,6 0,5,,,,, b) Montrer que la dérivée de la fonction est définie par,,,, est dérivable sur [0 ; + [ comme différence de fonctions dérivables de [0 ; + [ On a avec 0,1 0,1 0,5 0,4 0,5 Alors D où pour tout réel de l'intervalle [0 ; + [,,,,, c) Étudier les variations de sur l intervalle [0 ; + [. Étudions le signe de la dérivée : Comme pour tout réel,,, 0 Alors 0,5,, 0 Donc 0,1 0,5,, 0 C'est-à-dire que pour tout réel, 0 Donc la fonction est strictement croissante sur [0 ;+ [ d) Montrer que l équation a une unique solution α dans l intervalle [0 ; 10]. Déterminer un encadrement de α à 10 2 près. On calcule 0 0,1 0,,, 1, ,1 10,, 1, 0, On sait que est dérivable donc continue sur [0 ;10] est strictement croissante sur [0 ;10] D'après le théorème de la valeur intermédiaire, l équation 0 admet une unique α sur [0 ;10] À l'aide de la calculatrice, on obtient des encadrements successifs de α 3 0,033 et 4 0,198 Donc 3 < α <4 3,1 0,007 et 3,2 0,019 Donc 3,1 < α <3,2 3,12 0,001 et 3,13 0,001 Donc 3,12 < α <3,13 Ainsi, sur l'intervalle [0 ;10], l équation 0 admet une unique α sur [0 ;10] avec 3,12<α<3,13.

10 e) En déduire la quantité minimale d objets à produire afin que cette entreprise réalise un bénéfice sur la vente des objets. Dire que l'entreprise réalise un bénéfice signifie que 0 Or la fonction étant strictement croissante, Donc 0 Pour que cette entreprise réalise un bénéfice elle doit produire et vendre au moins 313 objets. Exercice 4-2,5 points - Démontrer que est une primitive de sur, puis déterminer la primitive de sur vérifiant la condition indiquée. ; Pour montrer que est une primitive de sur, il faut montrer que la dérivée de est égale à, c'est-à-dire que pour tout,. On calcule donc la dérivée de. G dérivable sur ;3 de définition car c est une fonction rationnelle On a avec Alors ² D où ² ² ² Donc D'où G est une primitive de f sur ;3 3 1 Cherchons maintenant la primitive de telle que 1 0. On sait que On résout : La primitive cherchée a donc pour expression ( car toutes les primitives de ne diffèrent que d'une constante)

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné.

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. Eercice / 5 points Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 0 % de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique.

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Bac ES La Réunion juin 2009

Bac ES La Réunion juin 2009 Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces

Plus en détail

Baccalauréat ES La Réunion 19 juin 2009

Baccalauréat ES La Réunion 19 juin 2009 Baccalauréat ES La Réunion 9 juin 9 EXERCICE points Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces réponses est exacte. Aucune

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail

Baccalauréat STG Mercatique Pondichéry 21 avril 2010

Baccalauréat STG Mercatique Pondichéry 21 avril 2010 Baccalauréat STG Mercatique Pondichéry 21 avril 2010 La calculatrice (conforme à la circulaire N 99-186 du 16-11-99) est autorisée. Le candidat est invité à faire figurer sur la copie toute trace de recherche,

Plus en détail

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction Baccalauréat SG Mercatique Polynésie 8 juin 2012 Correction La calculatrice (conforme à la circulaire N o 99-186 du 16-11-99) est autorisée. EXERCICE 1 4 points Cet exercice est un questionnaire à choix

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2010 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 7 pages numérotées de 1 à 7 dont une page en annexe à rendre avec la copie. L

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction

Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction EXERCICE 1 8 points La société Bonbon.com commercialise des confiseries. On utilise une feuille de calcul d un tableur pour observer l évolution

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Série ST2S Durée de l épreuve : 2 heures Coefficient : 3 Une feuille de papier millimétré est fournie au candidat Les calculatrices électroniques de

Plus en détail

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6 BACCALAURÉAT BLANC 21 février 2013 MATHÉMATIQUES Série : STG DURÉE DE L ÉPREUVE : 3 heures Ce sujet comporte 6 pages, numérotées de 1 à 6 L utilisation d une calculatrice est autorisée, mais aucun prêt

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Probabilités conditionelles

Probabilités conditionelles Probabilités conditionelles Exercice 1 Cet exercice est un questionnaire à choix multiples constitué de six questions ; chacune comporte trois réponses, une seule est exacte On notera sur la copie uniquement

Plus en détail

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs MATHEMATIQUES BTS1 2013-201 Corrigés des devoirs CC 23 /09/2013 page2 CC 18/10/2013 page DV 25/11/2013 page 6 BTS Blanc 13/12/2013 page 8 CC 07/01/201 page 12 CC 0/02/201 page 1 BTS Blanc 27/02/201 page

Plus en détail

Brevet de technicien supérieur Comptabilité et gestion des organisations

Brevet de technicien supérieur Comptabilité et gestion des organisations Comptabilité et gestion des organisations Lycée Cassini Exercice 1 11 points A. Étude d une fonction Soit f la fonction définie sur l intervalle [1 ; 14] par x+ 1 ln x f (x)=. x 1. a. Démontrer que. pour

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 010 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

MATHÉMATIQUES Série ST2S. Sciences et Technologies de la Santé et du Social

MATHÉMATIQUES Série ST2S. Sciences et Technologies de la Santé et du Social BACCALAURÉAT TECHNOLOGIQUE Session 2016 MATHÉMATIQUES Série ST2S Sciences et Technologies de la Santé et du Social Durée de l épreuve : 2 heures Coefficient : 3 Ce sujet comporte 7 pages numérotées de

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Correction du baccalauréat STMG Centres étrangers 17 juin 2014

Correction du baccalauréat STMG Centres étrangers 17 juin 2014 orrection du baccalauréat STMG entres étrangers 17 juin 2014 EXERIE 1 4 points On considère une fonction f définie sur l intervalle [ 5 ; 3] dont la représentation graphique f est donnée ci-dessous. Soit

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE LIBAN 2014 On considère la fonction f définie sur l intervalle [0 ; 5] par f(x) = x+1+e

Plus en détail

Baccalauréat ST2S Métropole 17 juin 2014 Correction

Baccalauréat ST2S Métropole 17 juin 2014 Correction Baccalauréat ST2S Métropole 17 juin 2014 Correction EXERCICE 1 6 points On mesure la fréquence cardiaque d un athlète courant sur un tapis roulant dont la vitesse peut être modifiée. Les résultats sont

Plus en détail

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Durée : 2 heures EXERCICE 1 Les parties 1 et 2 sont indépendantes. 8 points Le tableau ci-dessous indique les dépenses de santé des soins hospitaliers

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

Baccalauréat ES Nouvelle-Calédonie novembre 2007

Baccalauréat ES Nouvelle-Calédonie novembre 2007 accalauréat S Nouvelle-alédonie novembre 007 XRI points ommun à tous les candidats Soit f une fonction définie et dérivable sur l intervalle ]0 ; [, strictement croissante sur l intervalle ]0 ; ] et strictement

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009

BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009 blabla BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009 Épreuve : MATHÉMATIQUES Sujet pour les élèves de TMERC1 Série SCIENCES ET TECHNOLOGIES DE LA GESTION Spécialité : Mercatique (coefficient : 3) Durée de l épreuve

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Session 2011

BACCALAURÉAT TECHNOLOGIQUE Session 2011 BACCALAURÉAT TECHNOLOGIQUE Session 2011 Épreuve : MATHÉMATIQUES Série SCIENCES ET TECHNOLOGIES DE LA GESTION Spécialités : Mercatique (coefficient : 3) Comptabilité et finance d entreprise (coefficient

Plus en détail

p. 1 Commun à tous les candidats. Les parties A et B sont indépendantes Partie A.

p. 1 Commun à tous les candidats. Les parties A et B sont indépendantes Partie A. Eercice 1 Commun à tous les candidats Les parties et B sont indépendantes Partie Un site de jeu vidéo en ligne possédait, en 21, milliers d abonnés dans le monde Un administrateur remarque que, chaque

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Fonctions affines Exercices corrigés

Fonctions affines Exercices corrigés Fonctions affines Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : antécédent, image, résolution d équation, représentation graphique d une fonction affine (coefficient directeur et ordonnée

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

FRANCE METROPOLITAINE (juin 2003)

FRANCE METROPOLITAINE (juin 2003) FRANCE METROPOLITAINE (juin 200) Eercice 1 : (4 points)(correction) Commun à tous les candidats Les guichets d une agence bancaire d une petite ville sont ouverts au public cinq jours par semaine : les

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2014

Baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,

Plus en détail

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1.

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1. Chapitre 1 Rappels sur les fonctions Continuité Sommaire 1.1 Rappels sur les fonctions.... 1 1.1.1 Fonctions de référence.... 1 1.1. Fonction trinôme....... 1 1. Continuité............. 4 1..1 Activités............

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban Exercice 1 : 5 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Baccalauréat ES Amérique du Sud 16 novembre 2011

Baccalauréat ES Amérique du Sud 16 novembre 2011 Baccalauréat ES Amérique du Sud 16 novembre 2011 L utilisation d une calculatrice est autorisée. EXERCICE 1 Commun à tous les candidats 4 points Soit u une fonction définie et dérivable sur l intervalle

Plus en détail

Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004.

Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004. Mathématiques, série ES Exemples d exercices, série ES Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004. 20 novembre

Plus en détail

Correction Bac blanc mai 2013

Correction Bac blanc mai 2013 Correction Bac blanc mai 2013 Exercice 1 Commun à tous les candidats. 4 points (1 point par bonne réponse) 1. La fonction F définie sur R par F (x) = e x2 est une primitive de la fonction f définie par

Plus en détail

Correction Bac, série STG CFE

Correction Bac, série STG CFE Correction Bac, série STG CFE juin 2011 Exercice n o 1 4 points 1. Pout tout nombre réel strictement positif, le nombre ln(7 a) est égal à ln(7) + ln(a) 2. Dans R, e x 5 = 0 e x = 5 x = ln(5) 3. Dans cette

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES1 Le 11/03/003 MATHEMATIQUES Devoir N 6 Calculatrice et ormulaire autorisés Durée : 3h Exercice 1 : (5 points) (correction) Un magasin de distribution vend deux types de téléphones portables

Plus en détail

Fonctions de référence

Fonctions de référence CLASSE : 2nde Durée approximative : 1 H DS 2N3 Correction Fonctions de référence EXERCICE 1 : / 4 points Difficulté : L'alcoolémie est le taux d'alcool présent dans le sang. Elle se mesure généralement

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

On hachurera la partie du plan qui ne convient pas sans aucune justification.

On hachurera la partie du plan qui ne convient pas sans aucune justification. Exercice 1 (7 points) : PARTIE I En annexe 1, à rendre avec la copie, on a construit dans un repère orthonormal les droites D et D d équations respectives D : x + y = 6 et D : x + 2y = 8. Déterminer graphiquement

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série STG. Mercatique, Comptabilité

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série STG. Mercatique, Comptabilité BACCALAURÉAT GÉNÉRAL Session février 2009 MATHÉMATIQUES Série STG Mercatique, Comptabilité Durée de l épreuve : 3 heures Coefficient : 3 Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

Baccalauréat ES Polynésie juin 2008

Baccalauréat ES Polynésie juin 2008 Baccalauréat ES Polynésie juin 2008 Exercice 1 4 points Le plan est muni d un repère orthonormal. Soient f une fonction définie et dérivable sur l ensemble R des nombres réels et C sa courbe tracée ci-contre.

Plus en détail

Deuxième partie : L'objectif est de déterminer la valeur de x pour laquelle l'aire de l'entrepôt est maximale.

Deuxième partie : L'objectif est de déterminer la valeur de x pour laquelle l'aire de l'entrepôt est maximale. EXERCICES SUR LES FONCTIONS DU SECOND DEGRÉ Exercice 1 Une entreprise doit aménager un bâtiment industriel, constitué de trois parties : un atelier, un hall d'exposition et un entrepôt. La figure ci-dessous

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion Baccalauréat ST Pondichéry 17 avril 015 Sciences et technologies du management et de la gestion Correction EXERCICE 1 6 points Le tableau ci-dessous, extrait d une feuille de calcul, donne le revenu disponible

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Baccalauréat ES Antilles Guyane juin 2009

Baccalauréat ES Antilles Guyane juin 2009 Baccalauréat ES Antilles uyane juin 2009 EXERCICE PARTIE A : aucune justification n est demandée 4 points Cette partie est un questionnaire à choix multiples. Pour chacune des questions, trois réponses

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( )

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( ) Amérique du Nord Eercice ) Le coeicient multiplicateur associé à une hausse de % est égal à + =, Le coeicient multiplicateur associé à une hausse de % est égal à + =, Donc le coeicient multiplicateur associé

Plus en détail

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures Mathématiques Contrôle commun de Seconde Mardi 01 mars 011 Durée de l épreuve : heures L usage de la calculatrice est autorisé. Aucun prêt de matériel n est toléré. La qualité de la rédaction et le soin

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Chapitres 5 : la fonction exponentielle 10 décembre 2012 Contrôle de mathématiques Lundi 10 décembre 2012 Exercice 1 ROC On suppose connu le résultat suivant : pour tout réel x, on a e x > x 1) Soitϕla

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités: Mercatique, Comptabilité et Finance d'entreprise, Gestion des systèmes d'infornlation.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités: Mercatique, Comptabilité et Finance d'entreprise, Gestion des systèmes d'infornlation. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités: Mercatique, Comptabilité et Finance d'entreprise, Gestion des systèmes d'infornlation. SESSION 200 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

Terminale STG4 GRH Corrigé devoir maison n 7 A remettre le :Mardi 03/05/2011

Terminale STG4 GRH Corrigé devoir maison n 7 A remettre le :Mardi 03/05/2011 Exercice 1 Dans un lycée, on interroge les élèves de terminale STG sur leurs intentions d orientation post-bac après le conseil de classe du troisième trimestre. On compte parmi ces élèves 45 % de filles

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire Chapitre 4 Fonction exponentielle Sommaire 4.1 Activité............................................. 37 4. Fonctions exponentielles de base q (q > 0)........................ 39 4..1 Définition.........................................

Plus en détail

Exercice 1 Partie A Soit f la fonction définie, sur R, par :

Exercice 1 Partie A Soit f la fonction définie, sur R, par : Exercice Partie A Soit f la fonction définie, sur R, par : f (x)= ex e x +. On ( appelle (C ) sa courbe représentative dans le plan muni d un repère orthonormal O, ı, ) j ( unité graphique : cm).. a. Déterminer

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2009

Baccalauréat ES Amérique du Nord 4 juin 2009 Baccalauréat ES Amérique du Nord 4 juin 009 EXERCICE 4 points Commun à tous les candidats Cet exercice constitue un questionnaire à choix multiples. Les questions sont indépendantes les unes des autres.

Plus en détail

BACCALAUREAT TECHNOLOGIQUE

BACCALAUREAT TECHNOLOGIQUE BACCALAUREAT TECHNOLOGIQUE SESSION 2013 Epreuve : MATHEMATIQUES Série : Sciences et Technologies de la Santé et du Social (ST2S) Durée de l épreuve : 2 heures Coefficient : 3 L usage de la calculatrice

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Séquence 7 : Fonctions affines. Seconde. Séance 1 Généralités. est appelée fonction affine. est une fonction affine si son expression algébrique vaut

Séquence 7 : Fonctions affines. Seconde. Séance 1 Généralités. est appelée fonction affine. est une fonction affine si son expression algébrique vaut Seconde Définition : Soient Séquence 7 : Fonctions affines Séance 1 Généralités deux nombres réels La fonction { est appelée fonction affine Concrètement, est une fonction affine si son expression algébrique

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 Métropole 2001..........................................

Plus en détail

Couper en deux, encore et encore : la dichotomie

Couper en deux, encore et encore : la dichotomie Couper en deux, encore et encore : la dichotomie I : Jeu du nombre inconnu Un élève volontaire choisit un nombre entier compris entre 0 et 56. Un autre élève cherche à deviner ce nombre, en adoptant la

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail