TD Thermodynamique. Diffusion de particules

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TD Thermodynamique. Diffusion de particules"

Transcription

1 TPC2 TD Thermodynamique Diffusion de particules Exercice n o 1 : Diffusion du CO 2 On observe la diffusion du CO 2 dans l air, en régime stationnaire, à l intérieur d un tube de longueur L = 0, 25 m et de section s = 15 cm 2. La densité de flux de CO 2 est de 5, m 2.s 1. La concentration de CO 2 est de 1, m 3 à une extrémité du tube et 8, m 3 à l autre. En déduire le coefficient de diffusion D et calculer le débit de molécules de CO 2 à travers une section du tube. Exercice n o 2 : Modèle de réaction photochimique On considère un modèle très sommaire de réaction photochimique de substitution radicalaire du chlore sur un alcane. Le récipient où se produit la réaction est un cylindre de surface S situé entre les plans d abscisse x = a et x = a. On s intéresse à la densité particulaire de radicaux Cl, noté n(x), en régime permanent. L initiation photochimique produit p radicaux par unité de volume et de temps. Les radicaux ainsi produits vont disparaître sur les parois du récipient qui imposent des conditions aux limites n( a) = n(a) = 0. 1 En supposant que le nombre de radicaux entre les plans d abscisses x et x reste constant, en utilisant la loi de Fick (on appelle D la diffusivité des radicaux dans le milieu) et en admettant que la symétrie du problème impose à n(x) d être une fonction paire, établir l équation différentielle vérifiée par n(x). 2 La résoudre en tenant compte des conditions aux limites. Donner l allure de la courbe n(x) et préciser la valeur maximale n 0 de n(x). Exercice n o 3 : Évaporation de l eau On plonge un tube vertical, ouvert aux extrémités, dans une cuve d eau. À l extrémité supérieure passe un courant d air horizontal qui entraîne, à vitesse constante, les molécules de vapeur d eau qui ont diffusé dans l air du tube. 1 En supposant qu un régime stationnaire est atteint, exprimer la densité de courant de molécules d eau en fonction des densités volumiques n 0 à la surface et n 1 à l extrémité supérieure du tube, et de sa longueur L. Dans la suite on prendra n 1 0 (l air qui arrive est sec). 2 Le processus de diffusion et assez lent pour qu à la base du tube on soit en présence de vapeur d eau saturante et l on admet que cette vapeur suit approximativement la loi des gaz parfaits. Déterminer la masse d eau qui s évapore par unité de temps à travers ce dispositif à 20 C. p sat = 133 P a ; L = 1, 00 m ; S = 20, 0 cm 2 ; D = 0, 220 m 2.s 1 ; R = 8, 31 J.K 1.mol 1. Exercice n o 4 : Modèle de conduction dans un semi-conducteur On étudie la diffusion de particules dans un barreau cylindrique de silicium en présence de termes sources. Ce phénomène est responsable de l apparition d un courant électrique. On note n(x, t) la densité particulaire. Le nombre de particules créées par unité de volume et de temps est n 1 /τ, n 1 étant une constante, et le nombre de particules détruites par unité de volume et de temps est n/τ. 1

2 1 En effectuant un bilan de matière sur un système bien choisi, établir l équation reliant n et j, j étant le vecteur densité de courant de particules. 2 On se place en régime permanent. Déterminer l équation différentielle vérifiée par n(x). On posera L p = Dτ. 3 On suppose que la longueur du barreau est pratiquement infinie (en fait grande devant L p ). Exprimer n(x) en fonction de n(0), n 1 et L p. 4 La charge de chacune des particules étant q et la section du barreau S, en déduire l intensité I du courant électrique dans le barreau. Exercice n o 5 : Équilibre de l atmosphère On considère l équilibre de l atmosphère isotherme, l air étant assimilé à un gaz parfait. 1 Retrouver l expression de la densité volumique des molécules n(z) en fonction de leur masse m, de l altitude z, de la constante de Boltzmann k B = R/N A, de la température T, de l accélération de la pesanteur g (supposée indépendante de z), et de la densité au sol n 0. 2 Montrer, en utilisant la loi de Fick, qu il existe un courant de diffusion dirigé vers le haut. Déterminer la vitesse (moyenne) u des molécules de ce courant en fonction du coefficient de diffusion D (autodiffusion) et des autres données. 3 Pourquoi doit-il exister également un courant de molécules descendant de vitesse u? Quelle en est l origine? En considérant que les collisions subies par une molécule sont en moyenne équivalentes à une force de frottement fluide α.u, dirigée vers le haut, exprimer le coefficient de frottement α en fonction de D et des données du problème. Calculer α et u. k B = 1, J.K 1 ; R = 8, 31 J.K 1.mol 1 ; D = 1, m 2.s 1 ; g = 9, 8 m.s 2 ; T = 0 C et p = 1 bar ; M air = 29 g.mol 1. Exercice n o 6 : Diffusion de neutrons dans un barreau de plutonium On étudie la diffusion unidirectionnelle de neutrons dans un barreau de plutonium cylindrique d axe (Ox) et de section droite d aire S, s étendant entre les abscisses x = 0 et x = L et on note n (M, t) le nombre de neutrons par unité de volume. Cette diffusion satisfait à la loi de Fick, avec un coefficient de diffusion D = 22 m 2.s 1. D autre part, du fait des réactions nucléaires entre les neutrons et la matière, des neutrons sont produits : pendant une durée dt, dans un élément de volume dτ(m), il apparaît δn p = Kn (M, t)dτ(m)dt neutrons, où K = 3, s 1 est une constante positive homogène à l inverse d un temps et caractéristique des réactions nucléaires. On admettra en première approximation que n doit s annuler à tout instant aux extrémités du cylindre en x = 0 et x = L. En revanche on supposera que n (x, t) ne s annule pas à l intérieur du cylindre. 1 Établir l équation aux dérivées partielles dont n (x, t) est solution. 2 Déterminer n (x) à une constante multiplicative près en régime stationnaire. Montrer que ce régime n est possible que pour une valeur particulière L s de L. 3 a En régime quelconque, chercher n (x, t) à une constante multiplicative près sous la forme factorisée n (x, t) = h(x).g(t). b En déduire que n (x, t) diverge si L est supérieur à une valeur critique L c que l on explicitera et que l on calculera. Exercice n o 7 : Diffusion à travers une membrane La diffusion de molécules à travers une membrane est très utilisée dans des domaines très divers, en médecine par exemple. On considère le dispositif représenté sur la figure. 2

3 Les deux compartiments séparés par une membrane verticale poreuse, contiennent une même solution moléculaire, mais à des concentrations molaires différentes C 1 et C 2 (C 1 > C 2 ). Leurs volumes constants seront notés respectivement V 1 et V 2. La membrane, de surface S et d épaisseur e, comporte par unité de surface n pores cylindriques d axe horizontal normal à la paroi. Les pores sont supposés identiques. Dans chacun d eux s établit un flux macroscopique de molécules suivant (Ox), de densité moléculaire j d, tendant à égaliser les concentrations. On admettra que j d z = 0 et que j d est donné par la loi de Fick : j d = D C x. À une date t, les concentrations, maintenues homogènes sur les volumes V 1 et V 2, sont donc C 1 (t) et C 2(t). On notera C = C 1 (t) C 2 (t). 1 En admettant que dans un pore la concentration est une fonction affine de x, montrer que la densité de flux molaire J des molécules à travers toute la membrane est de la forme : J = KS C u x. On donnera K, appelée perméabilité de la membrane, en fonction de n, D, e et r, rayon d un pore. 2 Calculer r numériquement. On donne : K = 10 6 m.s 1 ; n = 10 6 pores.cm 2 ; e = 10 µm ; D = 10 9 SI. 3 Établir l équation différentielle donnant C(t). 4 Intégrer cette équation. On notera 1 τ = KS( 1 V V 2 ). Au bout de quelle durée la différence des concentrations est-elle égale au dixième de sa valeur initiale? On donne : V 1 = 2 L ; V 2 = 1 L ; S = 200 cm 2. Exercice n o 8 : Diffusion dans un tuyau poreux On étudie l état stationnaire de diffusion gazeuse dans un tuyau cylindrique d axe (Ox), de rayon a, de longueur L très grande. Les concentrations des molécules sont maintenues constantes aux deux extrémités : n(x = 0) = n 0 et n(x = L) = n 1. On note D le coefficient de diffusion des molécules. Le tube est légèrement poreux : les molécules s échappent vers l extérieur à travers la paroi latérale du tube, d épaisseur e << a. Cette diffusion est caractérisée par un coefficient D << D. Avec ces hypothèses, nous pouvons supposer que la densité moléculaire est linéaire dans la paroi latérale du tube. Elle est en outre supposée nulle à l extérieur. 1 Effectuer un bilan de particules dans la tranche x, x + dx et en déduire une relation entre la densité moléculaire n(x) et le vecteur densité de courant de particules j(x). 2 En utilisant la loi de Fick, établir l équation différentielle vérifié par n(x) et la résoudre. On posera d 2 = aed/2d. Quelle est l unité de d? Quelle est sa signification physique? Étudier le cas L << d. Exercice n o 9 : Croissance d une couche d oxyde Un métal occupe le demi-espace z 0, en contact en z = 0 avec de l air. On s intéresse à l évolution de l épaisseur L(t) de la couche d oxyde qui apparaît en z 0. Un modèle simplifié explique la croissance de l oxyde par la diffusion d"atomes de métal M de z = 0 jusqu en L(t) où ils réagissent avec le dioxygène pour former de l oxyde qui s ajoute à la couche. On note C(z) le nombre d atomes M par unité de volume, C 0 sa valeur en z = 0 et C 1 sa valeur en z = L(t) ; C 0 et C 1 sont considérées constantes et on étudie la diffusion comme si le régime était stationnaire, bien que L soit fonction de t. 1 Déterminer la densité de courant de particules j dans la couche d oxyde, le coefficient de diffusion de M dans l oxyde étant noté D. 3

4 2 Chaque atome M arrivant en z = L(t) augmente de Ω le volume d oxyde, en déduire la variation dl de l épaisseur en une durée dt en fonction de Ω et j, puis l équation différentielle vérifiée par L(t). 3 Avec L = 0 à t = 0, déterminer la loi L(t) et commenter le résultat. Exercice n o 10 : État stationnaire de diffusion On désire étudier le cas d une diffusion de particules entre deux réservoirs. Le premier, de concentration n 1, est à l abscisse x 0, le second, de concentration n 2 < n 1, est à l abscisse +x 0. Initialement, le milieu séparant ces deux réservoirs est interrompu par une paroi imperméable à la diffusion placée en x = 0. À l instant initial la paroi est retirée. Les courbes ci-dessus représentent les concentrations n(x, t) pour x compris entre x 0 et x 0 et pour différentes dates t i. 1 Commenter ces courbes après les avoir situées chronologiquement. On s intéressera notamment aux concavités des courbes pour x < 0, x > 0, et x = 0. Que représentent 2x 0 et 4x 2 0/D? 2 Établir l expression de n(x) en régime stationnaire pour x compris entre x 0 et x 0. Quand peut-on considérer que celui-ci est atteint? 3 Donner l expression du flux de particules dans le milieu séparant les deux réservoirs. Montrer comment ce résultat peut être rapproché de la loi d Ohm : I = GU. Exercice n o 11 : Diffusion axiale avec section variable On considère une hotte de forme tronconique dont les caractéristiques (R 1, R 2, h et α) sont représentées sur la figure. 4

5 Un grand récipient contenant de l eau en ébullition produit en z = 0 une concentration C 1 de vapeur d eau supposée constante au cours du temps. Par diffusion verticale dans la hotte, cette vapeur d eau est évacuée dans un conduit d aération. On supposera qu en z = h, C(h) = C Faire un bilan de moles d eau vapeur, de coefficient de diffusion D dans l air, pour une tranche d épaisseur dz. 2 Dans l hypothèse d un régime d évacuation stationnaire, donner la loi C(z) et le flux de diffusion. 3 Quelle est la vitesse de diffusion au niveau d une section S(z) en régime stationnaire? 5

Partie II TEMPERATURES DANS LE REACTEUR

Partie II TEMPERATURES DANS LE REACTEUR Spé y 2001-2002 Devoir n 2 THERMODYNAMIQUE Ce problème étudie quelques aspects des phénomènes intervenants dans une centrale nucléaire de type Réacteur à Eau Pressurisée (ou PWR en anglais) qui est le

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

Devoir Surveillé n 2

Devoir Surveillé n 2 Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

TD n 1 : Dopage des semiconducteurs

TD n 1 : Dopage des semiconducteurs TD n 1 : Dopage des semiconducteurs Exercice 1 : Silicium intrinsèque : On s intéresse au Silicium dans cet exercice On considère le semiconducteur intrinsèque 10 3 qui a une densité n i = 10 cm à T=300K

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

SCIENCES PHYSIQUES. Les tables et calculatrices réglementaires sont autorisées.

SCIENCES PHYSIQUES. Les tables et calculatrices réglementaires sont autorisées. UNIVERSITÉ CHEIKH NT DIOP DE DKR /5 6 G 8 Durée : heures OFFICE DU BCCLURET Séries : S-S3 Coef. 8 Téléfax () 8 65 8 - Tél. : 8 95 9-8 65 8 Epreuve du er groupe SCIENCES PHYSIQUES Les tables et calculatrices

Plus en détail

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE mini INTERROS de Prépas & Deug MPSI-PCSI-PTSI SUP-SPÉ Thermodynamique MP-MP*-PC-PC*-PT-PT* Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE pages 1. Introduction à la thermodynamique.......................

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES

CONCOURS COMMUNS POLYTECHNIQUES CONCOURS COMMUNS POLYTECHNIQUES la liaison étant supposée parfaite. Le rouleau n est entraîné en rotation par un moteur extérieur non figuré, sa vitesse de rotation est ω > constante au cours du temps.

Plus en détail

UE 303 - Thermodynamique - 2010/2011

UE 303 - Thermodynamique - 2010/2011 UE 303 - Thermodynamique - 2010/2011 Contrôle Continu du 03/11/2010. Durée: 2h00mn Exercice 1 : On suppose que l atmosphère est un gaz réel en équilibre dans le champ de pesanteur. L équation d état de

Plus en détail

Corps remorqué dans l eau

Corps remorqué dans l eau ACCUEIL Corps remorqué dans l eau Frédéric Elie, août 2007 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures,

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 004 EPREUVE SPECIFIQUE FILIERE MP PYSIQUE Durée : 4 heures Les calculatrices sont autorisées. N : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de

Plus en détail

FILIÈRE BCPST COMPOSITION DE PHYSIQUE

FILIÈRE BCPST COMPOSITION DE PHYSIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES CONCOURS D ADMISSION SESSION 214 FILIÈRE BCPST COMPOSITION DE PHYSIQUE Épreuve commune aux ENS de Cachan, Lyon, Paris et de l ENPC Durée

Plus en détail

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations 4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce

Plus en détail

Thermodynamique de l atmosphère

Thermodynamique de l atmosphère Thermodynamique de l atmosphère 1 Introduction Notion de parcelle d air L atmosphère est composée d un ensemble de molécules. Pour la description de la plupart des phénomènes étudiés, le suivi des comportements

Plus en détail

Devoir Surveillé de Physique - Chimie n 3 - Mercredi 18 Novembre 2015 -

Devoir Surveillé de Physique - Chimie n 3 - Mercredi 18 Novembre 2015 - Devoir Surveillé de Physique - Chimie n 3 - Mercredi 18 Novembre 2015 - Durée : 3h00. Les calculatrices sont autorisées. Les trois parties sont complètement indépendantes. Tout résultat donné dans l énoncé

Plus en détail

Epreuve de Physique I-B Durée 4 h

Epreuve de Physique I-B Durée 4 h * Banque filière PT * BANQUE PT - EPREUVE I-B. Epreuve de Physique I-B Durée 4 h Etude d'une micropompe électrostatique Indications générales : On donnera tous les résultats avec leur unité. Les candidats

Plus en détail

Récupération d énergie

Récupération d énergie Récupération d énergie Le sujet propose d étudier deux dispositifs de récupération d énergie soit thermique (problème 1) soit mécanique (problème 2) afin de produire une énergie électrique. Chaque problème

Plus en détail

PROBLÈME 1 : Étude de l'eau en physique

PROBLÈME 1 : Étude de l'eau en physique Banque «Agro» A - 0304 PHYSIQUE Durée : 3 h 30 L usage d une calculatrice est autorisé pour cette épreuve L usage d abaques et de tables est interdit pour cette épreuve Les trois problèmes sont indépendants

Plus en détail

PHYSIQUE II. Partie I - Formation des bulles. une solution aqueuse diluée de dioxyde de carbone, contenant n l

PHYSIQUE II. Partie I - Formation des bulles. une solution aqueuse diluée de dioxyde de carbone, contenant n l PHYSIQUE II Les bulles du champagne sont constituées de dioxyde de carbone. Elles naissent à la surface du verre (partie I). Après une phase de croissance sur place, elles se détachent et montent dans

Plus en détail

PHYSIQUE Durée : 3 heures

PHYSIQUE Durée : 3 heures SESSION 2010 CONCOUS G2E PHYSIQUE Durée : 3 heures Les calculatrices programmables et alphanumériques sont autorisées. L usage de tout ouvrage de référence et de tout document est strictement interdit.

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

CHAUFFAGE PAR MICRO-ONDES

CHAUFFAGE PAR MICRO-ONDES A 2005 PHYS. I ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

En voiture! I. Détection des chocs frontaux et protection des passagers : l airbag

En voiture! I. Détection des chocs frontaux et protection des passagers : l airbag En voiture! Ce problème propose d étudier plusieurs phénomènes physiques mis en oeuvre dans un véhicule automobile. La première partie étudie la détection de chocs frontaux pour déclencher l ouverture

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures ***

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures *** SESSION 003 PCP1006 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures L'utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants Une feuille de papier millimétré devra

Plus en détail

Leçon n 4 : Loi d Ohm et de Joule

Leçon n 4 : Loi d Ohm et de Joule ELECTROMAGNETSME Electrocinétique Page sur Leçon n 4 : Loi d Ohm et de Joule. ntroduction Le terme courant électrique plus communément désigné par "courant" permet de décrire le déplacement de toute charge

Plus en détail

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Lycée François Arago Perpignan M.P.S.I. 2012-2013 TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Exercice 1 - Influence du chemin de transformation. Une mole de

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

Cours CH4. Description d un système physico-chimique Transformation chimique

Cours CH4. Description d un système physico-chimique Transformation chimique Cours CH4 Description d un système physico-chimique Transformation chimique David Malka MPSI 2014-2015 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Description d un système

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

Introduction à la description des systèmes thermodynamiques

Introduction à la description des systèmes thermodynamiques Introduction à la description des systèmes thermodynamiques 1. Définitions et généralités : La Thermodynamique est l étude des échanges d énergie ou de matière. La thermodynamique ne délimite a priori

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL Session 2012 PHYSIQUE-CHIMIE Série S Enseignement de Spécialité Durée de l épreuve : 3 heures 30 Coefficient : 8 L usage des calculatrices est autorisé. Ce sujet ne nécessite pas de

Plus en détail

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule Thermodynamique Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression Ludwig Boltzmann (1844-1906), Température et Energie Dégrés de liberté d'une molécule Equation d'état du gaz parfait Théorie

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

TD 4 : Systèmes, paramètres d'état et transformations

TD 4 : Systèmes, paramètres d'état et transformations TD 4 : Systèmes, paramètres d'état et transformations Applications de cours Thermodynamique Application 1 : échelles de température Le physicien allemand D.G. Fahrenheit établit en 1724 son échelle de

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

Chapitre 5.2 La pression d un gaz

Chapitre 5.2 La pression d un gaz Chapitre 5.2 La pression d un La pression d un Lorsqu on emprisonne un dans un ballon, le applique une force sur la du ballon, car celle-ci se déforme à mesure que le entre dans le ballon. Ainsi, un comprimé

Plus en détail

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE 1. DU MICROSCOPIQUE AU MACROSCOPIQUE BILANS THERMIQUES La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique: L approche microscopique décrit le comportement individuel

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

PHYSIQUE. n + 1. 1 z = = ---------------------

PHYSIQUE. n + 1. 1 z = = --------------------- PHYSIQUE j est le nombre complexe de module 1 et d argument + π 2 et donc j 2 = 1 Rappel mathématique : z étant un nombre complexe et n un entier naturel, on a pour z 1 l égalité : 1 z z 2 z n n + + +

Plus en détail

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques S3 PMCP 2015/2016 D de thermodynamique n 5 Conséquences des deux principes Machines thermiques Potentiels thermodynamiques 1 Cycle avec une seule source de chaleur. Soit un système pouvant, pendant un

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 PHYSIQUE-CHIMIE Série S DURÉE DE L ÉPREUVE : 3 h 30 COEFFICIENT : 6 L usage de la calculatrice EST autorisé Ce sujet ne nécessite pas de feuille de papier millimétré Ce

Plus en détail

Thermodynamique des gaz parfaits

Thermodynamique des gaz parfaits Chapitre 24 Sciences Physiques - BTS Thermodynamique des gaz parfaits 1 Le modèle du gaz parfait 1.1 Définition On appelle gaz parfait un ensemble de molécules sans interaction entre elles en dehors des

Plus en détail

Diffusion de particules

Diffusion de particules Diffusion de particules L. Menguy, PSI*, Lycée Montesquieu, Le Mans Septembre 2008 Plan du cours I. Les phénomènes de diffusion II. 1. Définitions 2. Le bilan de particules 3. Loi de Fick 4. Coefficient

Plus en détail

Concours Blanc N 1 Enoncé

Concours Blanc N 1 Enoncé Concours Blanc N 1 Enoncé Physique 20 QCM Durée de l épreuve : 60 min 20 pts Physique 1 QCM 1 Une bille, de masse m = 140 g, est accrochée à un fil inextensible de longueur l = 30 cm, de masse négligeable.

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10 Les calculatrices sont autorisées Les deux problèmes sont indépendants. On fera l application numérique chaque fois que cela est possible, en veillant à préciser l unité et à ne donner que les chiffres

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP CHIMIE. Durée : 2 heures. Les calculatrices sont autorisées * * *

EPREUVE SPECIFIQUE FILIERE MP CHIMIE. Durée : 2 heures. Les calculatrices sont autorisées * * * SESSION 2006 EPREUVE SPECIFIQUE FILIERE MP CHIMIE Durée : 2 heures Les calculatrices sont autorisées * * * NB : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision

Plus en détail

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits.

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits. 1 er cycle universitaire. BS. C. Haouy, professeur de hysique Appliquée Cours de hermodynamique n 4 : chaleur, travail et énergie interne des gaz parfaits. Mise à jour du 21-02-07. Colonne de gauche =

Plus en détail

Devoir de Sciences Physiques n 1 pour le 09-09-2015

Devoir de Sciences Physiques n 1 pour le 09-09-2015 1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Physique. chassis aimant. Figure 1

Physique. chassis aimant. Figure 1 Physique TSI 4 heures Calculatrices autorisées 2013 Les résultats numériques seront donnés avec un nombre de chiffres significatifs compatible avec celui utilisé pour les données. On s intéresse ici à

Plus en détail

Chimie Physique Appliquée Examen de Janvier 2013

Chimie Physique Appliquée Examen de Janvier 2013 Chimie Physique Appliquée Examen de Janvier 2013 1 Dégradation du PVC À haute température, le PVC se dégrade suivant la réaction suivante (CHCl CH 2 ) (CH = CH) + HCl (1) Cette réaction est irréversible.

Plus en détail

Thermochimie - TD 2 Corrigé

Thermochimie - TD 2 Corrigé Thermochimie - TD Corrigé Licence 1 «Groupes Concours & Polytech» - 007 / 008 Exercice 1 : combustion La combustion dans une bombe calorimétrique (volume constant) d une pastille de 3,76 g d acide benzoïque

Plus en détail

INTRODUCTION DU CFD. La perte de pression (dp) par unité-longueur (dl) est déterminée par la formule :

INTRODUCTION DU CFD. La perte de pression (dp) par unité-longueur (dl) est déterminée par la formule : INTRODUCTION DU CFD Introduction A l inverse des calculs de force de construction, au moyen du software de Ansys ou Pro/E par exemple, les calculs de courant ne sont pas très connus. Ceci est une introduction

Plus en détail

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS ANNÉE 2013 EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS CSEA 2013 ÉPREUVE DE PHYSIQUE Durée : 4 heures Coefficient : 1 - L usage de la calculatrice est autorisé ; - Les exercices sont indépendants

Plus en détail

Visiter notre page : https://www.facebook.com/bibliotheque.electronique.des.classes.prepa

Visiter notre page : https://www.facebook.com/bibliotheque.electronique.des.classes.prepa Visiter notre Forum : http://prepa-book.forummaroc.net/ Visiter notre page : https://www.facebook.com/bibliotheque.electronique.des.classes.prepa *************************************************** * bibliothéque

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

Les calculatrices sont interdites

Les calculatrices sont interdites Les calculatrices sont interdites Ce sujet coporte deux problèes indépendants qui portent sur des thèes différents. Chaque problèe coporte plusieurs parties qui sont le plus souvent indépendantes les unes

Plus en détail

TD 1. On considère une mole de gaz (CO 2 ) qui obéit à l'équation de Van der Waals. (p + a/v 2 ) (v-b) = RT.

TD 1. On considère une mole de gaz (CO 2 ) qui obéit à l'équation de Van der Waals. (p + a/v 2 ) (v-b) = RT. TD 1 1: On considère une mole de gaz (CO 2 ) qui obéit à l'équation de Van der Waals. (p + a/v 2 ) (v-b) = RT. 1) Etablir l'expression du travail reçu par le gaz, au cours d'une compression isotherme réversible

Plus en détail

G.P. DNS05 Octobre 2010

G.P. DNS05 Octobre 2010 DNS Sujet Effet Hall et magnétorésistance...1 I.Loi d'ohm...1 II.Champ magnétique propre...2 III.Loi d'ohm en présence de champ magnétique extérieur...2 IV.Influence de la géométrie...3 V.Disque de Corbino...4

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

Un modèle simple de formation d étoiles

Un modèle simple de formation d étoiles Un modèle simple de formation d étoiles [Exercice classique] Un modèle simple d étoile consiste à supposer que celle-ci est constituée d une masse M d atomes d hydrogène, adoptant une configuration sphérique

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Durée du TP : 3h30 1. RAPPELS. La densité d un corps, notée d, s'exprime suivant la relation suivante : corps. d ref

Durée du TP : 3h30 1. RAPPELS. La densité d un corps, notée d, s'exprime suivant la relation suivante : corps. d ref TP N 2 : MECANIQUE DES FLUIDES Durée du TP : 3h30 1. RAPPELS La densité d un corps, notée d, s'exprime suivant la relation suivante : corps d ref avec corps la masse volumique du corps considéré et ref

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE 1 Définitions Considérons un corps porté à une température T. Ce corps émet de l'énergie par sa surface sous forme de rayonnement thermique, c estàdire

Plus en détail

15 Notions sur les turbomachines

15 Notions sur les turbomachines 16 avril 2004 429 15 Au cours des chapitres précédents, on a maintes fois considéré des machines au sein desquelles s opérait un échange de travail avec le milieu extérieur (compresseurs, turbines). Parmi

Plus en détail

Conductivité conductimétrie

Conductivité conductimétrie Conductivité conductimétrie I. Généralités sur les milieux conducteurs Le courant électrique est dû à un mouvement d'ensemble des porteurs de charges sous l'action d'un champ électrique. Ils sont de trois

Plus en détail

Un sujet pour l épreuve B (modélisation et informatique)

Un sujet pour l épreuve B (modélisation et informatique) Un sujet pour l épreuve B modélisation et informatique) Présentation Le texte proposé ci-après est conçu pour l épreuve B, portant plus particulièrement sur la modélisation et l informatique l épreuve

Plus en détail

DEVOIR DE SYNTHESE N 2. Les solutions tampons

DEVOIR DE SYNTHESE N 2. Les solutions tampons MINESTERE DE L EDUCATION DIRECTION REGIONALE DE NABEUL LYCÉE TAIEB MEHIRI MENZEL TEMIME PROPOSÉ PAR : MOHAMED CHERIF, AHMED RAIES, SALWA RJEB. EPREUVE : SCIENCES PHYSIQUES NIVEAU: 4 EME SECTION : SC.EXPERIMENTALES

Plus en détail

MECA 1855 Thermodynamique et Énergétique Exercice supplémentaire n o 2

MECA 1855 Thermodynamique et Énergétique Exercice supplémentaire n o 2 MECA 855 Thermodynamique et Énergétique Exercice supplémentaire n o 2 Geoffrey COOMANS geoffrey.coomans@student.uclouvain.be 5 janvier 200 Première partie. Composition du combustible On connaît les concentrations

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

PHYSIQUE - MATHÉMATIQUES

PHYSIQUE - MATHÉMATIQUES SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE - MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche à alimentation autonome, sans imprimante et sans document d accompagnement

Plus en détail

CHAPITRE IV: ONDES DE CHOCS DROITES

CHAPITRE IV: ONDES DE CHOCS DROITES CHAPITRE IV: ONDES DE CHOCS DROITES Nous avons souligné au chapitre II, ainsi qu au chapitre III, que pour les écoulements à grande vitesse le modèle continu ne permettait pas de décrire la totalité des

Plus en détail

MECA0003-2 - MÉCANIQUE RATIONNELLE

MECA0003-2 - MÉCANIQUE RATIONNELLE L G L G Octobre 015 MEA0003- - MÉANIQUE RATIONNELLE Prof. Éric J.M.DELHEZ Un constructeur de jouets souhaitant mettre au point un nouveau système de propulsion de petites voitures pour son circuit miniature

Plus en détail

Groupe : (h, k) ( 5, 12)

Groupe : (h, k) ( 5, 12) Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet

Plus en détail

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES NOM :. PRENOM : NUMERO DE CANDIDAT :... EPREUVE DE PHYSIQUE DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES Lire attentivement les consignes afin de vous placer dans les meilleures conditions de réussite

Plus en détail

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Master de Formation des Formateurs Groupe Modélisation Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Position du problème Modéliser le trafic routier c est tenter de prédire

Plus en détail

LIQUIDES, GAZ, SOLUTIONS

LIQUIDES, GAZ, SOLUTIONS LIQUIDES, GAZ, SOLUTIONS UE3 I) Niveaux d organisation de la matière A. Caractéristiques des 3 états de la matière 1 er niveau = atome. 2 ème niveau = molécule (H2O ; Buthane ; ADN). 3 ème niveau = état

Plus en détail

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire Chapitre 4 Fonction exponentielle Sommaire 4.1 Activité............................................. 37 4. Fonctions exponentielles de base q (q > 0)........................ 39 4..1 Définition.........................................

Plus en détail

Exercices (Energie solaire photovoltaïque)

Exercices (Energie solaire photovoltaïque) Exercices (Energie solaire photovoltaïque) 1- Qu'est-ce que une diode Schottky? 2- Qu'est-ce qu'un contact ohmique? 3- Est-ce que la caractéristique I-V d'une diode est ohmique? 4- Qu'est-ce que la barrière

Plus en détail

Chapitre VII: Chambres d ionisation

Chapitre VII: Chambres d ionisation Chapitre VII: Chambres d ionisation 1 Types de chambres d ionisation Volume sensible: gaz (la plus souvent de l air mesure directe de l exposition) chambre d ionisation Volume sensible: semiconducteur

Plus en détail

COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures)

COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures) ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES CONCOURS D ADMISSION 2014 FILIÈRE MP COMPOSITION DE PHYSIQUE (XULCR) (Durée : 4 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve.

Plus en détail

Problème de l'agrégation de chimie 1976

Problème de l'agrégation de chimie 1976 Problème de l'agrégation de chimie 1976 COMPOSITION DE CHIMIE (Durée : 6 heures) Cette épreuve comporte deux parties. La première étudie le modèle des solutions strictement régulières qui permet l'évaluation

Plus en détail

ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE

ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE Journal of Electron Devices, ol. 5, 2007, pp. 22-26 JED [ISSN: 682-3427 ] Journal of Electron Devices ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE I. Sari-Ali, B. Benyoucef,

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

HYDRODYNAMIQUE. 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire

HYDRODYNAMIQUE. 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire MHd 1 HYDRODYNAMIQUE 1 THEORIE 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire L'écoulement d un fluide est défini si, à un instant t, on donne en tout point x de l espace: v (x,t) la vitesse

Plus en détail

Pour stocker davantage d'informations sur un disque, les scientifiques travaillent sur la mise au point d'un laser ultra violet.

Pour stocker davantage d'informations sur un disque, les scientifiques travaillent sur la mise au point d'un laser ultra violet. nom : TS 6 CONTRÔLE DE SCIENCES PHYSIQUES 14/11/11 Lors de la correction il sera tenu compte de la présentation et de la rédaction de la copie Les réponses seront justifiées et données sous forme littérale

Plus en détail

Doc 3 transferts thermiques

Doc 3 transferts thermiques Activité Documentaire Transferts d énergie entre systèmes macroscopiques Doc 1 Du microscopique au macroscopique La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique.

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

CONCOURS D ADMISSION 2011

CONCOURS D ADMISSION 2011 A 2011 Chimie MP ECOLE DES PONTS PARISTECH, SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH, MINES DE SAINTETIENNE, MINES DE NANCY, TELECOM BRETAGNE, ENSAE PARISTECH (FILIERE MP) ECOLE

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr.

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr. COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015 Pr. Aziz OUADOUD Table des matières 1 Introduction 3 1.1 Définitions générales.......................

Plus en détail