GENERALITES ELECTRICITE.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "GENERALITES ELECTRICITE."

Transcription

1 GENERALITES ELECTRICITE. 1) STRUCTURE DE LA MATIERE: La MOLECULE est la plus petite partie d un corps simple ou composé. Le corps simple: Le corps composé: Est formé de 1 ou plusieurs atomes semblables. Est formé d atomes différents. EXEMPLE: Une molécule d eau est composée de 2 atomes d hydrogène et d un atome d oxygène (H2o ). 2) CONSTITUTION DE L ATOME: Il est analogue à un minuscule système solaire. Le soleil =======> Le noyau. Les planètes ======> Les électrons qui tournent sur l orbite en couches. EXEMPLE: Un atome d oxygène: Un noyau et 8 électrons sur 2 couches. Electrons: Particules chargées négativement. Protons: Particules chargées positivement. Neutrons: Particules non chargées. NOTA: Le noyau renferme les protons Le nombre de protons est égal au nombre d électrons. La couche périphérique la plus éloignée du noyau donne à l atome ses propriétés électriques. 3) CLASSEMENT: On classe les atomes à partir du nombre d électrons sur la couche périphérique la plus éloignée. Les atomes ayant 1,2 ou 3 électrons ont tendance à les perdre. Ces atomes deviennent des ions positifs car éléctriquement ils deviennent positifs. Ce sont de bons conducteurs électriques ( Cuivre,argent,or). Les atomes ayant 5,6 ou 7 électrons deviennent des ions négatifs car électriquement ils deviennent négatifs. Ce sont des isolants (Soufre,chlore). Les atomes ayant 4 électrons périphériques sont des semi-conducteurs (Carbone,Germanium, Silicium).

2 GENERALITES ELECTRICITE. 1) STRUCTURE DE LA MATIERE: La MOLECULE est la plus petite partie d un corps simple ou composé. Le corps simple: Le corps composé: Est formé de 1 ou plusieurs atomes semblables. Est formé d atomes différents. EXEMPLE: Une molécule d eau est composée de 2 atomes d hydrogène et d un atome d oxygène (H2o ). 2) CONSTITUTION DE L ATOME: Il est analogue à un minuscule système solaire. Le soleil =======>. Les planètes ======>. EXEMPLE: Un atome d oxygène: Un noyau et 8 électrons sur 2 couches. Electrons: Particules chargées. Protons: Particules chargées. Neutrons: Particules. NOTA: Le noyau renferme les protons Le nombre de protons est égal au nombre d électrons. La couche périphérique la plus éloignée du noyau donne à l atome ses propriétés électriques. 3) CLASSEMENT: On classe les atomes à partir du nombre d électrons sur la couche périphérique la plus éloignée. Les atomes ayant 1,2 ou 3 électrons ont tendance à les perdre. Ces atomes deviennent des ions positifs car éléctriquement ils deviennent positifs. Ce sont de bons conducteurs électriques ( ). Les atomes ayant 5,6 ou 7 électrons deviennent des ions négatifs car électriquement ils deviennent négatifs. Ce sont des isolants ( ). Les atomes ayant 4 électrons périphériques sont des semi-conducteurs (Carbone,Germanium, Silicium).

3 4) DEFINITION DU COURANT ELECTRIQUE: Si un conducteur est plaçé entre 2 sphères chargées,l une positivement,l autre négativement,les électrons libres du conducteur sont attirés par la sphère positive. C est la migration d électrons entre les atomes du conducteur qui est appelé COURANT ELECTRIQUE. 5) SENS CONVENTIONNEL DU COURANT: Le sens conventionnel du courant est l inverse du sens réel de déplacement des électrons. Le sens conventionnel a été adopté arbitrairement et antérieurement à la découverte du sens réel de passage. 6) QUANTITE D ELECTRICITE : Si une quantité Q traverse une section d un conducteur pendant le temps T, nous définirons l intensité du courant par le rapport: + A I = Q T R I L unité d intensité est l ampère ( A ). B - Définition: Un courant de 1 ampère correspond au passage d une quantité d électricité égale à un coulomb (C) par seconde. 7) NOTIONS DE RESISTANCE: La résistance électrique d un conducteur est sa propriété de réduire l intensité qui le traverse. L unité est l OHM. Définition: L OHM est la résistance qui existe entre deux points d un fil conducteur lorsqu une différence de potentiel de 1 volt entre ces deux points produit dans ce conducteur un courant de 1 ampère.

4 4) DEFINITION DU COURANT ELECTRIQUE: Si un conducteur est plaçé entre 2 sphères chargées,l une positivement,l autre négativement,les électrons libres du conducteur sont attirés par la sphère positive. C est la migration d électrons entre les atomes du conducteur qui est appelé COURANT ELECTRIQUE. 5) SENS CONVENTIONNEL DU COURANT: Le sens conventionnel du courant est l inverse du sens réel de déplacement des électrons. Le sens conventionnel a été adopté arbitrairement et antérieurement à la découverte du sens réel de passage. 6) QUANTITE D ELECTRICITE : Si une quantité Q traverse une section d un conducteur pendant le temps T,nous définirons l intens i- té du courant par le rapport: + A I = R I L unité d intensité est l ( ). B - Définition: Un courant de 1 ampère correspond au passage d une quantité d électricité égale à un coulomb (C) par seconde. 7) NOTIONS DE RESISTANCE: La résistance électrique d un conducteur est sa propriété de réduire l intensité qui le traverse. L unité est l. Définition: L OHM est la résistance qui existe entre deux points d un fil conducteur lorsqu une différence de potentiel de 1 volt entre ces deux points produit dans ce conducteur un courant de 1 ampère.

5 8) DIFFERENCE DE POTENTIEL OU TENSION: C est la différence de charge électrique de deux points A et B. Elle s exprime en volts : U Définition: Une différence de potentiel est égale à un volt lorsqu elle produit un courant de 1 ampère à travers une résistance de 1 Ohm. 9) LOI D OHM GENERALISEE : La différence de potentiel ou tension est égale à la résistance multipliée par l intensité. U U = R x I ===> I = ======> R = R U I U en VOLTS R en OHMS I en AMPERES EXEMPLES: I = 5 Ampères I = 0,2 Ampères U = 12 Volts R = 15 Ohms U = 0,6 Volts R= 3 Ohms U= 75 Volts R= 3 Ohms I = 4 Ampères 10) UNITES DE MESURE ELECTRIQUES ET EQUIVALENCES: A) TENSION en Volts 1 M V ( mégavolts) = Volts 1 K V ( Kilovolts ) = 1000 Volts 1 V ( Volt) = 1 Volt 1 mv ( millivolt) = 1/1000 = 0,001 Volt B) INTENSITE en Ampères 1 A (ampère) = 1 A 1 m A (milliampère) = 1/1000 ou 0,001 A 1 A ( microampère) = 1/ ou 0, A

6 8) DIFFERENCE DE POTENTIEL OU TENSION: C est la différence de charge électrique de deux points A et B. Elle s exprime en : Définition: Une différence de potentiel est égale à un volt lorsqu elle produit un courant de 1 ampère à travers une résistance de 1 Ohm. 9) LOI D OHM GENERALISEE : La différence de potentiel ou tension est égale à la résistance multipliée par l intensité. U = x ==> = ===> = U en VOLTS R en OHMS I en AMPERES EXEMPLES: I = 5 Ampères I = 0,2 Ampères U = 12 Volts R = 15 Ohms U = 0,6 Volts R= 3 Ohms U= Volts R= Ohms I = Ampères 10) UNITES DE MESURE ELECTRIQUES ET EQUIVALENCES: A) TENSION en Volts 1 M V ( mégavolts) = Volts 1 K V ( Kilovolts ) = 1000 Volts 1 V ( Volt) = 1 Volt 1 mv ( millivolt) = 1/1000 = 0,001 Volt B) INTENSITE en Ampères 1 A (ampère) = 1 A 1 m A (milliampère) = 1/1000 ou 0,001 A 1 A ( microampère) = 1/ ou 0, A

7 C) RESISTANCE en OHMS 1 M ( mégohms) = Ohms 1 K ( Kiloohmes ) = 1000 Ohms 1 ( Ohms) = 1 Ohm D) PUISSANCE en Watts 1 M W ( mégawatt) = Watts 1 K W ( Kilowatt ) = 1000 Watts 1 W ( Watt) = 1 Watt 1 mw ( milliwatt) = 1/1000 = 0,001 Watt E) TABLEAU DE CONVERSION: Km Hm Dam m Dm Cm mm 1/10mm 1/100mm Micron F) EXERCICES: 0,047 V ====> 47 mv ( milivolts). 647 mv ====> 0,647 V V ====> 6,5 KV. 33 ma ====> 0,033 A. 0,27 A ====> 270 ma. 101 ma ====> 0,101 A. 0,126 K ====> m ====> 0, mw ====> 0,63 W 0,036 ma ====> 36 A (microampères). 0,156 A ====> 156 ma. 1200W ====> 1,2 KW. = KV HV Da V V dv cv mv 1/10 mv 1/100mV microv

8 C) RESISTANCE en OHMS 1 M ( mégohms) = Ohms 1 K ( Kiloohmes ) = 1000 Ohms 1 ( Ohms) = 1 Ohm D) PUISSANCE en Watts 1 M W ( mégawatt) = Watts 1 K W ( Kilowatt ) = 1000 Watts 1 W ( Watt) = 1 Watt 1 mw ( milliwatt) = 1/1000 = 0,001 Watt E) TABLEAU DE CONVERSION: Km Hm Dam m Dm Cm mm 1/10mm 1/100mm Micron = KV HV Da V V dv cv mv 1/10 mv 1/100mV microv F) EXERCICES: 0,047 V ====> mv ( milivolts). 647 mv ====> V V ====> KV. 33 ma ====> A. 0,27 A ====> ma. 101 ma ====> A. 0,126 K ====>. 400 m ====>. 630 mw ====> W. 0,036 ma ====> A (microampères). 0,156 A ====> ma. 1200W ====> KW.

9 G) MONTAGE DE RESISTANCES: CIRCUIT SERIE: Dans un ciruit série,la résistance totale est égale à la somme des résistances: A + R Totale = R 1 + R 2. I 1 R 1 L intensité est identique en tous points d un circuit série. La D.D.P est variable suivant les points de mesure. C EXERCICE : I 2 R 2 Uab = 12 volts It = 2 ampères R1 = 2 ohms Calculez R2,Uac,Ucb. Solution : U 12 R totale = ====> R totale = = 6 Ohms I 2 R 2 = R t - R 1 = R 2 = 6-2 = 4 Ohms. B - Calcul des tensions correspondantes: Uac = R 1 x I = 2 x 2 = 4 volts. Ucb = R 2 x I = 4 x 2 = 8 volts. CIRCUIT PARALLELE : Le courant principal est égal à la somme des courants dérivés. Les courants dérivés sont inversement proportionnels aux résistances correspondantes. La D.D.P est constante entre les points A et B quelle que soit la dérivation considérée. R1 I1 Uab = R 1 x I 1 Uab = R 2 x I 2 A B R2 I2

10 G) MONTAGE DE RESISTANCES: CIRCUIT SERIE: Dans un ciruit série,la résistance totale est égale à la somme des résistances: A + R Totale =. I 1 R 1 L intensité est identique en tous points d un circuit série. La D.D.P est variable suivant les points de mesure. C EXERCICE : I 2 R 2 Uab = 12 volts It = 2 ampères R1 = 2 ohms Calculez R2,Uac,Ucb. Solution : R totale = ====> R totale = = Ohms B - R = R - R ===> R = - = Ohms. Calcul des tensions correspondantes: Uac = R x = x = volts. Ucb = R x = x = volts. CIRCUIT PARALLELE : Le courant principal est égal à la somme des courants dérivés. Les courants dérivés sont inversement proportionnels aux résistances correspondantes. La D.D.P est constante entre les points A et B quelle que soit la dérivation considérée. R1 I1 Uab = R 1 x I 1 Uab = R 2 x I 2 A B R2 I2

11 G) MONTAGE DE RESISTANCES: RESISTANCES EQUIVALENTES: La résistance équivalente est toujours inférieure à la plus faible des résistances montées. A R1 I1 B U U U I = I 1 = I 2 = R R 1 R 2 R2 I ====> = = R R 1 R 2 EXERCICE: Uab = 12 Volts ; It = 6 Ampères ; R1 = 3 Ohms. Solution: Calculez I1;I2;R2;R équivalente. Calcul de I 1: Uab = R1 x I 1 ===> 12 volts = 3 x I 1 ====> I 1 = 4 Ampères Calcul de I2 : I t = I 1 + I 2 ====> I 2 = I t - I 1 ====> I 2 = 2 ampères Calcul de R2 : Uab = R2 x I2 ===> 12 volts = R2 x 2 A ====> R2 = 6 Ohms Résistance équivalente: = + = + R = 3 Ohms. R R1 R2 R 3 6 Récapitulatif: La tension est identique en tous points du circuit: La tension est différente pour chaque composant: L intensité est identique en tous points du circuit: L intensité est différente pour chaque composant: Circuit série NON OUI OUI NON Circuit Parallèle OUI NON NON OUI

12 G) MONTAGE DE RESISTANCES: RESISTANCES EQUIVALENTES: La résistance équivalente est toujours à la plus des résistances montées. A R1 I1 B U U U I = I 1 = I 2 = R R 1 R 2 R2 I ====> = = R R 1 R 2 EXERCICE: Uab = 12 Volts ; It = 6 Ampères ; R1 = 3 Ohms. Solution: Calculez I1;I2;R2;R équivalente. Calcul de I 1: Calcul de I2 : Uab = ===> volts = x ====> I 1 = Ampères I t = ====> I 2 = ====> I 2 = ampères Calcul de R2 : Uab = ===> volts = x ====> R2 = Ohms Résistance équivalente: = + = + R = Ohms. R R1 R2 R 3 6 Récapitulatif: La tension est identique en tous points du circuit: La tension est différente pour chaque composant: L intensité est identique en tous points du circuit: L intensité est différente pour chaque composant: Circuit série Circuit Parallèle

13 G) MONTAGE DE RESISTANCES: R1 = 3 ohms R2 = 4 ohms R3 = 5 ohms U bat = 12 volts Calculez I total Calculez U /R1 Calculez U /R2/R3 Calculez I /R1 Calculez I /R2 SOLUTIONS: R equi R2 /R3 = 2.22 Ohms R total Circuit : 5.22 Ohms I total = 12 = 5.22 x I = 2.29 A U /R1 = 2,29 x 3 ohms = 6,87 volts U /R2/R3 = 12-6,87 = 5,13 volts I / R2 = 5,13 volts / 4 = 1.28 A I / R3 = 5,13 volts / 5 = A Verification : 1.28 A A

14 H) RESISTIVITE D UN CONDUCTEUR : La résistance d un conducteur cylindrique est : - proportionnelle à sa longueur. - inversement proportionnelle à sa section. - fonction de la nature du conducteur employé. - fonction de sa température. l R: résistance (ohms) R = l: longueur(mètre) s s s: section ( mm²) La résistivité est la résistance spécifique d un matériau. L unité employée est mm²/mm Le symbole employé est la lettre grecque Rho ( ) Conditions de mesure de la résistance d un conducteur. LONGUEUR SECTION 1 mètre 1 mm² TEMPERATURE 15 C METAUX mm²/m Argent 0,00163 Cuivre 0,0175 Or 0,022 Aluminium 0,029 Laiton 0,08 CHOIX DES CONDUCTEURS: Etain 0,142 Le fil de cuivre est généralement employé en automobile. Il convient de choisir: - Une longueur de fil la plus courte possible. (Chute de tension dans les conducteurs) - Une section adaptée à l intensité traversant le conducteur. (Risque d échauffement). - Une couleur adaptée à l usage. En pratique,on admet une intensité de 3 à 4 ampères par mm² de section.

15 H) RESISTIVITE D UN CONDUCTEUR : La résistance d un conducteur cylindrique est : l R: résistance (ohms) R = l: longueur (mètre) s s s: section ( mm²) La résistivité est la résistance spécifique d un matériau. L unité employée est mm²/m Le symbole employé est la lettre grecque Rho ( ) Conditions de mesure de la résistance d un conducteur. METAUX mm²/m LONGUEUR 1 mètre SECTION 1 mm² TEMPERATURE 15 C Argent 0,00163 Cuivre 0,0175 Or 0,022 Aluminium 0,029 CHOIX DES CONDUCTEURS: Le fil de cuivre est généralement employé en automobile. Laiton 0,08 Etain 0,142 Il convient de choisir: - Une longueur de fil la plus possible. (Chute de dans les conducteurs) - Une section adaptée à traversant le conducteur. (Risque d échauffement). - Une adaptée à l usage. En pratique,on admet une intensité de ampères par mm² de section.

16 I) CHOIX D UN CONDUCTEUR: DIAMETRE DES CONDUCTEURS 7/10 9/10 10/10 12/10 16/10 20/10 25/10 30/10 45/10 51/10 SECTION APPROCHEE EN mm² 0,4 0,6 0,8 1, INTENSITE ACCEPTABLE 0,5 A 1 A 2,3 A 5 A 5-10 A 25 A A A A A J) LE MULTIMETRE: EXEMPLES DE BRANCHEMENT DU MULTIMETRE: BATTERIE : 12 Volts RESISTANCE : 1800 Ohms Branchement du multimètre pour mesure de la tension: Position sélecteur: 20 volts Branchement du multimètre pour mesure de l intensité: Position sélecteur: 20 ma Branchement du multimètre pour mesure de la résistance: Position sélecteur: 2 Kohms

17 I) CHOIX D UN CONDUCTEUR: DIAMETRE DES CONDUCTEURS 7/10 9/10 10/10 12/10 16/10 20/10 25/10 30/10 45/10 51/10 SECTION APPROCHEE EN mm² 0,4 0,6 0,8 1, INTENSITE ACCEPTABLE 0,5 A 1 A 2,3 A 5 A 5-10 A 25 A A A A A J) LE MULTIMETRE: EXEMPLES DE BRANCHEMENT DU MULTIMETRE: BATTERIE : 12 Volts RESISTANCE : 1800 Ohms Branchement du multimètre pour mesure de la tension: Position sélecteur: volts Branchement du multimètre pour mesure de l intensité: Position sélecteur: ma Branchement du multimètre pour mesure de la résistance: Position sélecteur: Ohms

18 K) EXERCICE D APPLICATION: ENONCE: Un circuit électrique est composé d une batterie, d un bouton poussoir et d une ampoule. Précisez dans les symboles la tension mesurée dans les deux cas suivants. 1 ER CAS: 2 EME CAS:

19 L) NOTIONS D ELECTROMAGNETISME: Effets du courant électrique: - Chimiques: Electrolyses - Calorifiques: Résistances de chauffage - Magnétiques: Bobines d inductions Un champ magnétique est défini par: Le symbole employé est la lettre B L unité employée est : Le tesla - sa direction - son sens - son intensité. Le flux magnétique est la quantité de champ magnétique traversant perpendiculèrement un contour donné. Le symbole utilisé est la lettre Phi. L unité est le Weber. Dans le cas d une bobine comprenant N spires, chaque spire est considérée comme étant un contour. FORCE ELECTROMOTRICE D INDUCTION: BOBINE Une bobine,soumise à une variation de flux magnétique est le siège d une F.E.M d induction. LOI DE LENZ: E = - t E = F.E.M. = Variation de flux t = Temps de coupure. Sens de la F.E.M: Le sens du courant induit est tel que le flux qu il produit s oppose à la variation de flux qui lui a donné naissance. FORCE DE LAPLACE: Un conducteur,de longueur L,parcouru par un courant d intensité I et plaçé dans un champ magnétique est soumis à une force égale à: F = B.I.L F en Newtons. B en teslas. I en ampères. L en mètres.

20 L) NOTIONS D ELECTROMAGNETISME: Effets du courant électrique: - Chimiques: - Calorifiques: - Magnétiques: Un champ magnétique est défini par: Le symbole employé est la lettre L unité employée est : Le flux magnétique est la quantité de champ magnétique traversant perpendiculèrement un contour donné. Le symbole utilisé est la lettre. L unité est le. Dans le cas d une bobine comprenant N spires, chaque spire est considérée comme étant un contour. FORCE ELECTROMOTRICE D INDUCTION: BOBINE Une bobine,soumise à une variation de flux magnétique est le siège d une F.E.M d induction. LOI DE LENZ: E = E = = t = Sens de la F.E.M: Le sens du courant induit est tel que le flux qu il produit s oppose à la variation de flux qui lui a donné naissance. FORCE DE LAPLACE: Un conducteur,de longueur L,parcouru par un courant d intensité I et plaçé dans un champ magnétique est soumis à une force égale à: F = F en Newtons. B en teslas. I en ampères. L en mètres.

21 M) LOGIQUE DE DEPANNAGE: ENONCE: Le conducteur ne peut actionner la descente de la vitre passager,les autres fonctions sont assurées. Le contact supérieur de C2 commande la descente de la vitre passager. Etablissez la logique minimale de diagnostic. CONDITIONS DU CONTROLE ACTION SUR C2 CONTROLES CONTROLE U BORNE 3 MOTOREDUCTEUR PASSAGER ACTION SUR C2 CONTROLE U BORNE 5 de C2 BORNE 4 DE C1 BORNE 5 DE C1 CONTROLE MASSE BORNE 1 MOTOREDUCTEUR PASSAGER CONTROLE MASSE BORNE 1 de C1 BORNE 2 DE C1 BORNE 1 DE C2 BORNE 2 DE C2 BORNE M4

22 M) LOGIQUE DE DEPANNAGE: ENONCE: Le conducteur ne peut actionner la descente de la vitre passager,les autres fonctions sont assurées. Le contact supérieur de C2 commande la descente de la vitre passager. Etablissez la logique minimale de diagnostic. CONDITIONS DU CONTROLE CONTROLES

23

24 TRAVAIL DEMANDE: Etablissez le schéma de cablage des feux LP et AB. Calculez la valeur des fusibles F1 et F2. (Puissance de chaque lampe: 55 watts) CALCULS: Formule: INFORMATIONS: F1 pour AB /F2 pour LP Relais 1 pour AB / Relais2 pour LP Int 1 pour AB / Int 2 pour LP (interrupteur avec lampe témoin )

THEME TECHNIQUE L ELECTRICITE

THEME TECHNIQUE L ELECTRICITE 1) LE CIRCUIT ELECTRIQUE ELEMENTAIRE: Il est composé de: D un générateur de courant: ===> D un consommateur: ===> D un contacteur: ===> De liaisons électriques: ===> 2) DEFINITION DU COURANT ELECTRIQUE:

Plus en détail

Lois générales dans le cadre de l ARQS

Lois générales dans le cadre de l ARQS MPS - Électrocinétique - Lois générales dans le cadre de l AQS page /6 Lois générales dans le cadre de l AQS AQS=Approximation des égimes Quasi Stationnaires, consiste à négliger les temps de propagation

Plus en détail

Les bons conducteurs ont leur dernière couche incomplète. Ils céderont facilement leurs électrons. Argent, or, cuivre, aluminium, fer, carbone...

Les bons conducteurs ont leur dernière couche incomplète. Ils céderont facilement leurs électrons. Argent, or, cuivre, aluminium, fer, carbone... Le Courant Continu Un courant est un flux d'électrons électrons. Pour que ces électrons puissent se déplacer, il faut que les électrons soient libres. On trouve des électrons libres, en général, dans les

Plus en détail

ÉLECTRICITÉ DÉFINITION DÉFINITION NATURE DU COURANT UNITÉS DE MESURE

ÉLECTRICITÉ DÉFINITION DÉFINITION NATURE DU COURANT UNITÉS DE MESURE DÉFINITION NATURE DU COURANT DÉFINITION «Électricité» est un mot provenant du grec ἤλεκτρον, êlektron, signifiant ambre jaune. Les Grecs anciens avaient découvert qu après avoir été frottée, l ambre jaune

Plus en détail

Utilisation d un multimètre numérique

Utilisation d un multimètre numérique Fonctions Mesure des Tensions en courant continu Mesure des tensions en courant alternatif (non utilisé actuellement en automobile) Mesure des intensités en courant continu (maxi 10 A, suivant contrôleur)

Plus en détail

UTILISATION DU MULTIMETRE EN AMPEREMETRE.

UTILISATION DU MULTIMETRE EN AMPEREMETRE. O.P. 4 : UTILISATION DU MULTIMETRE EN AMPEREMETRE. FICHE DE TECHNOLOGIE INTENSITE symbole R Résistance Ω symbole U Tension V Voici deux notions importantes que nous maîtrisons. Il reste la troisième :

Plus en détail

Electricité : bases et application aux datacentres. www.ecoinfo.cnrs.fr

Electricité : bases et application aux datacentres. www.ecoinfo.cnrs.fr Electricité : bases et application aux datacentres www.ecoinfo.cnrs.fr Octobre 2011 SOMMAIRE - Un peu de théorie - c est quoi un courant électrique? - intensité, tension et résistance - quelques lois fondamentales

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Leçon n 4 : Loi d Ohm et de Joule

Leçon n 4 : Loi d Ohm et de Joule ELECTROMAGNETSME Electrocinétique Page sur Leçon n 4 : Loi d Ohm et de Joule. ntroduction Le terme courant électrique plus communément désigné par "courant" permet de décrire le déplacement de toute charge

Plus en détail

3- Mesurer l intensité du courant dans un circuit Faire le schéma du montage en utilisant les symboles normalisés.

3- Mesurer l intensité du courant dans un circuit Faire le schéma du montage en utilisant les symboles normalisés. 1 1 Connaître la grandeur et l unité de l intensité électrique. Faire un schéma d un circuit électrique et indiquer le sens du courant 1- Sens du courant et Nature du courant De nombreuses expériences

Plus en détail

LA BOBINE ET LE DIPOLE RL

LA BOBINE ET LE DIPOLE RL LA BOBINE ET LE DIPOLE RL Prérequis 1. Cocher les ou la bonne réponse Un champ magnétique peut être produit par : un aimant permanant; un corps isolant un corps aimanté un fil de cuivre un solénoïde parcourue

Plus en détail

LES UNITES DE MESURE

LES UNITES DE MESURE Sciences et Technologies de l Industrie et du Développement Durable Les unités de mesure utilisées en sin 1 ère STI2D CI5 : Solutions constructives de la chaine d information Cours sin 1. Introduction

Plus en détail

Electricité 3QEM 1 CONTENU DES INTERROGATION ANNEE 2005-2006. Structure de la matière, atome, molécule, 1 ère partie

Electricité 3QEM 1 CONTENU DES INTERROGATION ANNEE 2005-2006. Structure de la matière, atome, molécule, 1 ère partie Electricité QEM CONTENU DES INTERROGATION ANNEE 00-00 IE 000 Structure de la matière, atome, molécule, ère partie 0% Caractérisez avec vos mots la molécule Donnez la composition chimique de l eau Pourquoi

Plus en détail

Exercices Electricité

Exercices Electricité Exercices Electricité EL1 Champ électrique 1 Deux charges ponctuelles Soit une charge ponctuelle q1 27 C située en x 0 et une charge q2 3 C en x 1m. a) En quel point (autre que l infini) la force électrique

Plus en détail

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère )

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère ) ÉLECTRICITÉ / Travail ( W ) en joule En translation : W = F.d Puissance mécanique ( P ) en watt Champ électrique uniforme ( e ) en volt/mètre Travail de la force électrique ( W ) en joule Champ et potentiel

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

Ce document a été fabriqué par PDFmail (Copyright RTE Multimedia) http://www.pdfmail.com

Ce document a été fabriqué par PDFmail (Copyright RTE Multimedia) http://www.pdfmail.com I- LE COURNT ÉLECTRIQUE : 1) Nature du courant : Le courant électrique est un déplacement de charges électriques dans la matière. Dans les métaux, les porteurs de charges sont les ÉLECTRONS. Circulation

Plus en détail

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts) SNC1D test d électricité Nom : Connaissance et Habiletés de la pensée compréhension (CC) (HP) Communication (Com) Mise en application (MA) 35 % 30 % 15 % 20 % /42 /31 grille /19 Dans tout le test, les

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Cours d électrotechnique

Cours d électrotechnique Cours d électrotechnique LES MACHINES A COURANT ALTERNATIF MACHINE STATIQUE A COURANT ALTERNATIF Les machines électriques statiques à courant alternatif - Table des matières générales TABLE DES MATIERES

Plus en détail

CH II Intensité et tension en courant continu

CH II Intensité et tension en courant continu CH II Intensité et tension en courant continu I) Les différentes formes de montage de récepteurs : 1) Le montage en série : Dans un montage en série, les différents récepteurs sont montés les uns à la

Plus en détail

mouvement des électrons Observation : En actionnant en permanence la manivelle de la machine, la lampe à lueur brille de façon continue.

mouvement des électrons Observation : En actionnant en permanence la manivelle de la machine, la lampe à lueur brille de façon continue. Chapitre 3 Électricité 3.1 Tension et énergie électriques 3.1.1 Énergie électrique Expérience 3.1 On relie les calottes d une lampe à lueur aux sphères métalliques d une machine de Wimshurst (figure 3.1).

Plus en détail

! " #$ % &' ( Quelle est la tension délivrée par une telle pile? Combien de volt faut-il pour déclencher un éclair d orage?

!  #$ % &' ( Quelle est la tension délivrée par une telle pile? Combien de volt faut-il pour déclencher un éclair d orage? ! " #$ % &' ( Quelle est la tension délivrée par une telle pile? Combien de volt faut-il pour déclencher un éclair d orage? La tension électrique aux «bornes du cœur» a-t-elle une valeur constante? Comment

Plus en détail

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma TP THÈME LUMIÈRES ARTIFICIELLES 1STD2A CHAP.VI. INSTALLATION D ÉCLAIRAGE ÉLECTRIQUE SÉCURISÉE I. RISQUES D UNE ÉLECTROCUTION TP M 02 C PAGE 1 / 4 Courant Effets électriques 0,5 ma Seuil de perception -

Plus en détail

Nous relevons U (V) I (A) Nous réalisons un deuxième montage avec la lampe, dit montage en charge. Nous relevons U (V) I (A)

Nous relevons U (V) I (A) Nous réalisons un deuxième montage avec la lampe, dit montage en charge. Nous relevons U (V) I (A) LÇON 7 Page 1/5 1. xpérience Nous disposons du matériel suivant : n générateur à courant continu 24 V. n voltmètre. n ampèremètre ne lampe à incandescence. Nous réalisons un premier montage sans récepteur,

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

L ELECTRICITE. L atome est le constituant élémentaire de la matière, c est un assemblage de particules fondamentales.

L ELECTRICITE. L atome est le constituant élémentaire de la matière, c est un assemblage de particules fondamentales. 1. Le courant électrique 2 1.1 Les atomes 2 1.2 Le noyau 2 1.3 Le nuage électronique 2 1.4 La tension électrique 3 1.5 Dipôle 3 1.6 Le courant électrique 4 2. Lois des tensions 4 2.1 Loi des branches 4

Plus en détail

Sciences physiques Stage n

Sciences physiques Stage n Sciences physiques Stage n C.F.A du bâtiment Ermont 1 Activité 1 : 1) Observer les plaquettes d appareils électriques suivantes et relever les indications utiles pour un utilisateur quelconque : Four électrique

Plus en détail

CHAPITRE 1 Le courant électrique

CHAPITRE 1 Le courant électrique Définition Question Sens de déplacement du courant II. Intensité du courant électrique Définition Formule III. Valeurs remarquables du courant électrique IV. Appareil de mesure Branchement Exemples Fiche

Plus en détail

Electricité et magnétisme

Electricité et magnétisme Le champ magnétique Activité 1 a) O α S N s G n b) Bobine O s G n α I Document 1 Une petite aiguille aimantée suspendue par son centre de gravité G à un fil sans torsion est placée au voisinage d un aimant

Plus en détail

Conditionneur pour les capteurs

Conditionneur pour les capteurs Conditionneur pour les capteurs Les éléments de la chaîne de mesure Grandeur Physique Grandeur électrique Capteur Conditionneur lecture/commande/controle Appareil mesure/ capteur par abus de langage Capteur

Plus en détail

Chapitre 14 Notion de résistance électrique. Loi d Ohm

Chapitre 14 Notion de résistance électrique. Loi d Ohm Chapitre 14 Notion de résistance électrique. Loi d Ohm Plan Introduction: I Mesurer avec un multimètre Mesure de l intensité Mesure de la tension II Pour aller plus loin Mesures en courant continu. Rappels

Plus en détail

B - COURANT ELECTRIQUE

B - COURANT ELECTRIQUE B - COURANT ELECTRIQUE B - I - DEFINITION DE L'INTENSITE D'UN COURANT ELECTRIQUE La propriété des conducteurs solides d'avoir des électrons libres correspond à l'échelle des atomes à un déplacement permanent

Plus en détail

Chap. 1 : Energie Solaire HABITAT

Chap. 1 : Energie Solaire HABITAT .La lumière.1. Onde électromagnétique Ultraviolet nfrarouge - La lumière visible et invisible transporte de l énergie sous la forme d ondes électromagnétiques qui se propagent à la vitesse c = 3.10 8 m.s

Plus en détail

Problème IPhO : Diode électroluminescente et lampe de poche

Problème IPhO : Diode électroluminescente et lampe de poche IPhO : Diode électroluminescente et lampe de poche Les diodes électroluminescentes (DEL ou LED en anglais) sont de plus en plus utilisées pour l éclairage : affichages colorés, lampes de poche, éclairage

Plus en détail

Chapitre 3.1 L électromotance, le courant et la résistance

Chapitre 3.1 L électromotance, le courant et la résistance Chapitre 3.1 L électromotance, le courant et la résistance Les circuits électriques Un circuit électrique est le nom que porte un regroupement de composants il y a une circulation de charges électriques

Plus en détail

Electricité Notions de base

Electricité Notions de base Didier Pietquin 2006 Version juin 2004 Electricité Notions de base Constitution de la matière 1.1 Les atomes L atome est le constituant élémentaire de la matière, c est un assemblage de particules fondamentales.

Plus en détail

Electricité appliqué à l automobile

Electricité appliqué à l automobile Page 1 sur 6 carrosse-bac-pro.eklablog.com Electricité appliqué à l automobile DÉFINITION : Un circuit électrique comporte un générateur et un ou plusieurs consommateurs, les liaisons entre ces éléments

Plus en détail

Électrodynamique. L'unité naturelle de charge est la charge de l'électron. Dû à une faute d'orthographe historique, cette charge s'appelle -e

Électrodynamique. L'unité naturelle de charge est la charge de l'électron. Dû à une faute d'orthographe historique, cette charge s'appelle -e Électrodynamique L'unité naturelle de charge est la charge de l'électron. Dû à une faute d'orthographe historique, cette charge s'appelle e Dû à un choix d'unités assez absurde, l'unité SI de charge est

Plus en détail

LE COURANT ELECTRIQUE CONTINU

LE COURANT ELECTRIQUE CONTINU LE COURT ELECTRQUE COTU 1- perçu historique de l'électricité Voir polycop 2- Le courant électrique l existe deux types de courant. EDF. faire tirages feuille exercice et T annexe Montrer effet induction

Plus en détail

PHYS-F-205. Physique 2. Examen du 6 juin 2012. I. Théorie (20 points 1 heure 15')

PHYS-F-205. Physique 2. Examen du 6 juin 2012. I. Théorie (20 points 1 heure 15') NOM, PRENOM (en majuscules)..... SECTION (barrer la mention inutile) Biologie Géographie Géologie PHYS-F-205 Physique 2 Examen du 6 juin 2012 I. Théorie (20 points 1 heure 15') Justifiez toujours vos réponses.

Plus en détail

Chapitre 3. Electrocinétique. Ressources à acquérir

Chapitre 3. Electrocinétique. Ressources à acquérir Chapitre 3. Electrocinétique Ressources à acquérir SAVOIR : Représenter par un schéma conventionnel d un circuit électrique élémentaire, préciser le rôle des différents éléments, indiquer le sens des électrons

Plus en détail

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture? Thème 2 La sécurité Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?! Il faut deux informations Le temps écoulé La distance parcourue Vitesse= distance temps > Activité

Plus en détail

Doc 3 transferts thermiques

Doc 3 transferts thermiques Activité Documentaire Transferts d énergie entre systèmes macroscopiques Doc 1 Du microscopique au macroscopique La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique.

Plus en détail

Les interactions électromagnétiques

Les interactions électromagnétiques Les interactions électromagnétiques Activité 1 Le champ magnétique La force électromagnétique 1. Le champ magnétique Document 1 : Champ magnétique d un aimant droit Document 2 : champ magnétique d un aimant

Plus en détail

Electricité. Un courant électrique est un déplacement de charges électriques.

Electricité. Un courant électrique est un déplacement de charges électriques. générale 1. Le sens du courant Un courant électrique est un déplacement de charges électriques. Par convention, dans un circuit électrique en boucle simple et en courant continu, le courant électrique

Plus en détail

UNITÉ 6.- L ÉLECTRICITÉ

UNITÉ 6.- L ÉLECTRICITÉ UNITÉ 6.- L ÉLECTICITÉ. LE CICUIT ÉLECTIQUE. LES SYMBOLES ÉLECTIQUES 2. LES GANDEUS ÉLECTIQUES BASIQUES. LA LOI D OHM. 3. LES TYPES DE CICUITS ÉLECTIQUES : Association série, association parallèle, association

Plus en détail

Lois de l électrocinétique

Lois de l électrocinétique Retour au menu! Lois de l électrocinétique 1 Courant électrique 1.1 Notion de courant n conducteur est un matériau contenant des charges libres capables de se déplacer. Dans les électrolytes les charges

Plus en détail

Le circuit électrique

Le circuit électrique BULLETIN SPÉCIAL N 2 Le circuit électrique Théorie un peu de réflexion Intro L électricité est une source d énergie. Une énergie que l on peut facilement transformer en mouvement, lumière ou chaleur. L

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant continu La théorie sur l électricité - les notions de base - DC - Table des matières générales TABLE DES MATIERES PARTIE

Plus en détail

Id = Uc = Ru x Id = 10 x 11,4 = 114 V Tension mortelle

Id = Uc = Ru x Id = 10 x 11,4 = 114 V Tension mortelle I. Protection des personnes : Régimes de neutre 1. Nécessité de la liaison à la terre L'énergie électrique demeure dangereuse et la majorité des accidents est due aux défauts d'isolement des récepteurs.

Plus en détail

Extraits de récents DS

Extraits de récents DS 1 Extraits de récents DS Chap. 3 : Magnétostatique 2 UT MARSELLE GE 1 Année D.S. d'électricité n 3 avec Corrigé 29 Mars 1997 2 ème exercice. Circuit avec mutuelle. M i 1 (t) Le primaire du circuit ci-contre

Plus en détail

Master ISIC Introduction 1. F. Wagner. 6 * 3h de cours + 1h d'exam écrit

Master ISIC Introduction 1. F. Wagner. 6 * 3h de cours + 1h d'exam écrit Master ISIC Introduction 1 F. Wagner 6 * 3h de cours + 1h d'exam écrit Master ISIC Introduction 2 Bref Historique de l instrumentation Science relative à la conception et l utilisation rationnelle d instruments

Plus en détail

Questionnaire : Notions d électricité et d électronique

Questionnaire : Notions d électricité et d électronique Questionnaire : Notions d électricité et d électronique 1. Qu est-ce que le courant électrique? ou Qu est ce qu un courant électrique? Cocher la ou les bonne(s) réponse(s) des forces électromagnétiques

Plus en détail

SCIENCES PHYSIQUES. secondaire. L'électricité : êtes-vous au courant? SCP-4011-2 DÉFINITION DU DOMAINE D'EXAMEN SEPTEMBRE 1996

SCIENCES PHYSIQUES. secondaire. L'électricité : êtes-vous au courant? SCP-4011-2 DÉFINITION DU DOMAINE D'EXAMEN SEPTEMBRE 1996 SCIENCES PHYSIQUES 4 e secondaire L'électricité : êtes-vous au courant? SCP-4011-2 DÉFINITION DU DOMAINE D'EXAMEN SEPTEMBRE 1996 SCIENCES PHYSIQUES 4 e secondaire L'électricité : êtes-vous au courant?

Plus en détail

NOTION D'ELECTRICITE LES GRANDEURS ELECTRIQUES LES CIRCUITS ELECTRIQUES LA SECURITE ELECTRIQUE EVALUATIONS

NOTION D'ELECTRICITE LES GRANDEURS ELECTRIQUES LES CIRCUITS ELECTRIQUES LA SECURITE ELECTRIQUE EVALUATIONS NOTION D'ELECTRICITE S LA NOTION D ELECTRICITE Petite expérimentation Frottez un petit objet plastique (par exemple un stylo à bille en plastique) sur votre chevelure. Juste après le frottement, faites

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique C est en 1831 que Michael Faraday découvre le phénomène d induction, il découvre qu un courant électrique est créé dans un conducteur lorsqu il est soumis à un champ magnétique

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

Chapitre 1 Circuits parcourus par un courant continu

Chapitre 1 Circuits parcourus par un courant continu Chapitre 1 Circuits parcourus par un courant continu NTRODUCTON 3 1. GENERALTES SUR LES CRCUTS ELECTRQUES 4 1.1. Notion de circuit électrique 4 1.2. Le courant électrique continu 4 1.3. La mesure de l

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

Courant alternatif. Université de Genève 21.1 M. Pohl

Courant alternatif. Université de Genève 21.1 M. Pohl Courant alternatif Au lieu d avoir toujours la même polarité, chaque borne d un générateur de tension alternative est positive puis négative en alternance. Les électrons du courant se déplacent dans un

Plus en détail

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F Chapitre 7 : CHARGES, COURANT, TENSION S 3 F I) Electrostatique : 1) Les charges électriques : On étudie l électricité statique qui apparaît par frottement sur un barreau d ébonite puis sur un barreau

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

U = R x I CAP PRO E. ELECTROTHECHNIQUE 1ère et 2ème année

U = R x I CAP PRO E. ELECTROTHECHNIQUE 1ère et 2ème année U = R x I P = U x I I1 I2 U1 U2 U3 I3 1ère et 2ème année : LE COURANT CONTINU sa lettre de désignation Q ampère.heure ou coulombs son unité Ah ou C I ampère A U t P R volt seconde ou heure watt watt.heure

Plus en détail

MODULE 1. Performances-seuils. Résistance interne (générateur). Pertes par effet Joule. Pertes en ligne.

MODULE 1. Performances-seuils. Résistance interne (générateur). Pertes par effet Joule. Pertes en ligne. MODUL 1 MODUL 1. ésistance interne (générateur). Pertes par effet Joule. Pertes en ligne. Performances-seuils. L élève sera capable 1. d expliquer l effet qu occasionne la résistance interne d une source

Plus en détail

TP D 3B LES RELAIS. Objectif pédagogique opérationnel

TP D 3B LES RELAIS. Objectif pédagogique opérationnel Académie de Clermont-Ferrand BEP Maintenance de véhicules LES RELAIS Objectif pédagogique opérationnel - Identifier un relais et sa représentation schématique. - Contrôler un relais. - Brancher un relais.

Plus en détail

L électricité, l électronique et les circuits électriques

L électricité, l électronique et les circuits électriques 14 ChapitreL ingénierie électrique L électricité, l électronique et les circuits électriques PAGES 458 À 462 En théorie 1. Indiquez si chacun des énoncés suivants caractérise le domaine de l électricité

Plus en détail

dans un circuit électrique

dans un circuit électrique ourant Titre et tension dans un circuit électrique Pourquoi un oiseau qui se pose sur un fil électrique ne s'électrocutt-il pas? http://lyc-renaudeau-49.ac-nantes.fr/img/swf/notionselectricit3.swf 1 Que

Plus en détail

Exercices (Energie solaire photovoltaïque)

Exercices (Energie solaire photovoltaïque) Exercices (Energie solaire photovoltaïque) 1- Qu'est-ce que une diode Schottky? 2- Qu'est-ce qu'un contact ohmique? 3- Est-ce que la caractéristique I-V d'une diode est ohmique? 4- Qu'est-ce que la barrière

Plus en détail

RÉSISTANCE ÉLECTRIQUE

RÉSISTANCE ÉLECTRIQUE RÉSISTANCE ÉLECTRIQUE Table des matières 1. Symboles et conventions... 2 1.1. Convention générateur... 2 1.1. Convention récepteur... 2 2. Loi d ohm... 2 3. Loi des nœuds (loi de kirchhoff)... 3 4. Loi

Plus en détail

QUESTIONNAIRE RELATIF A L ENSEMBLE DES ETUDES DU COURS D ELECTRICITE DE 3 T.Q.E.L.O.M. GP1 ET 2 REF D/2004/7362/3/12 ½ CYCLE

QUESTIONNAIRE RELATIF A L ENSEMBLE DES ETUDES DU COURS D ELECTRICITE DE 3 T.Q.E.L.O.M. GP1 ET 2 REF D/2004/7362/3/12 ½ CYCLE QUESTIONNAIRE RELATIF A L ENSEMBLE DES ETUDES DU COURS D ELECTRICITE DE 3 T.Q.E.L.O.M. GP1 ET 2 REF D/2004/7362/3/12 ½ CYCLE LA THEORIE 1. Expliquez un phénomène d électrisation au choix à l aide d un

Plus en détail

3) Cet appareil produit quel genre de courant (continu ou alternatif)? Expliquer votre choix.

3) Cet appareil produit quel genre de courant (continu ou alternatif)? Expliquer votre choix. EXERCICES SUR L INTENSITÉ & LA TENSION DU COURANT ÉLECTRIQUE Exercice 1 1) Donner la lecture de la mesure. 2) Quelle est la nature de la grandeur mesurée? 3) Cet appareil produit quel genre de courant

Plus en détail

LA BOBINE ET LE DIPOLE RL

LA BOBINE ET LE DIPOLE RL LA BOBINE ET LE DIPOLE RL Prérequis 1. Cocher les ou la bonne réponse Un champ magnétique peut être produit par : un aimant permanant un corps isolant un corps aimanté un fil de cuivre un solénoïde parcourue

Plus en détail

LE MAGNETISME DES AIMANTS ET DES COURANTS

LE MAGNETISME DES AIMANTS ET DES COURANTS LE MAGNETISME DES AIMANTS ET DES COURANTS 1. Les aimants Un aimant comporte toujours deux pôles appelés le pôle nord (N) et le pôle sud (S) situés, en général, à deux extrémités. Un aimant exerce une action

Plus en détail

Grandeurs électriques : énergie, puissance, tension et courant

Grandeurs électriques : énergie, puissance, tension et courant Grandeurs électriques : énergie, puissance, tension et courant Document 1 : Facture d électricité d un appartement témoin : Document 2 : Puissance de quelques appareils électriques http://www.maconsoelec.com/

Plus en détail

LA DIODE. Classe de première SI

LA DIODE. Classe de première SI LA DIODE Table des matières 1. Présentation... 2 2. Fonctionnement... 2 3. Caractéristiques... 3 3.1. Zone de claquage... 4 3.2. Techniques... 4 4. Exemples d utilisation... 6 4.1. Montage redresseur simple

Plus en détail

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES ANALYSE DE CIRCUITS A COURANT ALTERNATIF MODULE N : 8 ELECTROTECHNIQUE SECTEUR :

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES ANALYSE DE CIRCUITS A COURANT ALTERNATIF MODULE N : 8 ELECTROTECHNIQUE SECTEUR : OFPPT ROYAUME DU MAROC Office de la Formation Professionnelle et de la Promotion du Travail DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES MODULE N : 8 ANALYSE

Plus en détail

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes etour au menu La diode 1 La diode : un dipôle non linéaire 1.1 Diode idéale 1.2 Diode réelle à semi-conducteur C est un dipôle électrique unidirectionnel dont les bornes sont l anode (A) et la cathode

Plus en détail

4 Le courant électrique

4 Le courant électrique 4 Le courant électrique 4.1 La nature du courant électrique Expérience : Le circuit de la figure suivante n est pas fermé : A - + B - + V- 3000 V Figure.30 Transport d électrons On met alors en contact

Plus en détail

Document de révision

Document de révision Document de révision 1. La loi des charges électriques se résume en trois points. Énonce-les. 1-Les charges de signes contraires s attirent 2-Les charges de mêmes signes se repoussent 3-Les objets neutres

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

LES PREACTIONNEURS ELECTRIQUES

LES PREACTIONNEURS ELECTRIQUES I Définition Le préactionneur électrique est un constituant de gestion de l énergie électrique fournie à l actionneur. Ils distribuent donc, sur ordre de la Partie Commande (située dans la chaîne information),

Plus en détail

ELECTRICITE. Chapitre 0 Le courant électrique continu. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 0 Le courant électrique continu. Analyse des signaux et des circuits électriques. Michel Piou ELECTRCTE Analyse des signaux et des circuits électriques Michel Piou Chapitre 0 Le courant électrique continu Edition 11/03/2014 Table des matières 1 POURQUO ET COMMENT?... 1 2 LE COURANT ELECTRQUE...

Plus en détail

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE 1. DU MICROSCOPIQUE AU MACROSCOPIQUE BILANS THERMIQUES La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique: L approche microscopique décrit le comportement individuel

Plus en détail

MESURE DES TENSIONS ET DES COURANTS

MESURE DES TENSIONS ET DES COURANTS Chapitre 7 MESURE DES TENSIONS ET DES COURANTS I- MESURE DES TENSIONS : I-1- Généralités : Pour mesurer la tension UAB aux bornes d un récepteur, il faut brancher un voltmètre entre les points A et B (

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU CONVERTIR L ENERGIE MACHINES A COURANT CONTINU Les machines à courant continu sont réversibles. Elles peuvent devenir génératrices ou moteur. Energie mécanique GENERATRICE CONVERTIR L ENERGIE Energie électrique

Plus en détail

CHAPITRE 07 MISE EN EVIDENCE DU CHAMP ELECTRIQUE

CHAPITRE 07 MISE EN EVIDENCE DU CHAMP ELECTRIQUE CHAPITRE 07 MISE EN EVIDENCE DU CHAMP EECTRIQUE I) Champ électrique A l'intérieur des armatures d'un condensateur plan, le champ est uniforme. Ses caractéristiques sont : A l'intérieur des armatures d'un

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

1. Rappels de 5 ème 5 h + 1 h DS. 2. L intensité du courant 4 h + 1 h DS. 3. La tension électrique 4 h + 1 h DS

1. Rappels de 5 ème 5 h + 1 h DS. 2. L intensité du courant 4 h + 1 h DS. 3. La tension électrique 4 h + 1 h DS En classe de 5 ème : Comprendre, réaliser et représenter un circuit électrique simple Comprendre ce qu est un courant électrique et déterminer le sens du courant dans un circuit électrique Distinguer conducteur

Plus en détail

Le circuit de charge

Le circuit de charge 1 1. Mise en situation : 2. Définition : comprend l intégralité des pièces permettant l alimentation électrique de l ensemble des consommateurs du véhicule et la charge de la batterie 3. Fonction globale

Plus en détail

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique Chapitre 6 Électricité 6.1 Champ électrique 6.1.1 Interaction électrique L étude de l électricité peut se ramener à l étude des charges électriques et de leurs interactions. Rappelons que l interaction

Plus en détail

ATP ATELIER ELECTRICITE DE BASE. Cliquez pour modifier le style des sous-titres du masque

ATP ATELIER ELECTRICITE DE BASE. Cliquez pour modifier le style des sous-titres du masque ATP ATELIER ELECTRICITE DE BASE Cliquez pour modifier le style des sous-titres du masque Cet atelier a pour but de donner quelques bases sur le courant continu fourni par les batteries de nos bateaux.

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Courant, tension et Intensite

Courant, tension et Intensite eçon 01 : Courant, tension et Intensite Exercice N 1. Dans le montage ci-contre, on mesure la tension U égale à 6. aux bornes du générateur et la tension U 2 égale à 2,4 aux bornes de la lampe. En déduire

Plus en détail

J AUVRAY Systèmes Electroniques

J AUVRAY Systèmes Electroniques LE TRANITOR MO Un transistor MO est constitué d'un substrat semiconducteur recouvert d'une couche d'oxyde sur laquelle est déposée une électrode métallique appelée porte ou grille (gate).eux inclusions

Plus en détail

Chapitre 5 : LES CAPTEURS ET DETECTEURS

Chapitre 5 : LES CAPTEURS ET DETECTEURS Chapitre 5 : LES CAPTEURS ET DETECTEURS C est à partir du moment ou l on à su détecter une grandeur physique et exploiter sa variation que l on a pu faire des systèmes automatiques qui s auto contrôlent

Plus en détail

Les unités de mesure en physique

Les unités de mesure en physique CONCEPTION ET MISE EN PAGE : PAUL MILAN Les unités de mesure en physique 1 Système international d unité (SI) Pour créer un système d unités, il faut définir des unités de base, leurs valeurs et définir

Plus en détail