PÉTROCHIMIE DES OLÉFINES ET DES AROMATIQUES MISE EN ŒUVRE DU VAPOCRAQUAGE

Dimension: px
Commencer à balayer dès la page:

Download "PÉTROCHIMIE DES OLÉFINES ET DES AROMATIQUES MISE EN ŒUVRE DU VAPOCRAQUAGE"

Transcription

1 Maîtrise des Risques liés aux Procédés PÉTROCHIMIE DES OLÉFINES ET DES AROMATIQUES Ingénieurs en Sécurité Industrielle MISE EN ŒUVRE DU VAPOCRAQUAGE I - PRINCIPE DU VAPOCRAQUAGE Conditions de craquage Rendements obtenus - Charges de vapocraquage Investissements - Aspects économiques...5 II - UNITÉ DE VAPOCRAQUAGE Zone chaude Zone de compression Zone froide...22 III - HYDROGÉNATIONS SÉLECTIVES Caractéristiques communes des hydrogénations Hydrogénation sélective de la coupe C 2 de vapocraquage Hydrogénation sélective de la coupe C 3 de vapocraquage Hydrogénation sélective de la coupe C 4 de vapocraqueur Hydrostabilisation des essences de vapocraquage...31 Ce document comporte 35 pages PC VAP - - Rév. 5 23/11/2005

2 1 Le vapocraquage dont les premières installations datent de 1920 environ aux États-Unis s est rapidement imposé comme le procédé essentiel générateur d éthylène, propylène, butadiène et autres intermédiaires pétrochimiques de première génération. Les principales étapes de l évolution du procédé sont les suivantes : vers 1920 Fabrication d éthylène par craquage d éthane issu du gaz naturel (Union Carbide and Carbon Co) 1942 Première unité de vapocraquage de gazole (British Celanese) - Capacité environ 6000 t/an d éthylène 1950 Construction d unités de capacité allant jusqu à t d éthylène Apparition d installations produisant couramment t/an d éthylène à partir de naphta pétrochimique. Aujourd'hui les unités nouvelles ont des capacités de production de l'ordre de à t/an voire davantage. I - PRINCIPE DU VAPOCRAQUAGE 1 - CONDITIONS DE CRAQUAGE Le processus de craquage consiste à casser les liaisons chimiques carbone-carbone ou carbonehydrogène au sein des molécules d hydrocarbures. Il en résulte l apparition d autres molécules dont certaines, insaturées comme l éthylène ou le propylène, correspondent à l objectif recherché. Les réactions de craquage nécessitent un important apport d énergie thermique et un niveau de température élevé. Elles se développent à partir de 400 C à 500 C, mais elles ne conduisent pas dans ces conditions aux produits recherchés. Le vapocraquage exige, en effet, des conditions particulièrement sévères : - température de craquage : de l ordre de 800 à 850 C - temps de craquage : 0,1 à 0,5 seconde - pression faible légèrement supérieure à la pression atmosphérique - dilution de la charge par de grandes quantités de vapeur d eau : de l ordre de 0,6 tonne par tonne de charge dans le cas des naphtas Ces conditions difficiles sont obtenues dans des fours bien spécifiques appelés fours de pyrolyse. Elles sont justifiées par l analyse de la planche n 1 qui montre les stabilités relatives des hydrocarbures en fonction de la température. On constate que les hydrocarbures insaturés deviennent stables par rapport aux hydrocarbures saturés à haute température. L éthylène par exemple devient stable par rapport à l éthane à partir de 800 C. La planche n 1 montre également que les hydrocarbures aromatiques : benzène, naphtalène, etc. représentent un état de stabilité naturel et qu à la limite les produits les plus stables obtenus dans un processus de craquage sont le coke polyaromatique et l hydrogène gazeux. Il importe donc quand on veut craquer un naphta par exemple de travailler à température très élevée pour favoriser la formation d éthylène mais on doit parallèlement limiter le temps laissé aux réactions chimiques de craquage pour se développer afin de réduire la formation de produits lourds aromatiques et de coke.

3 2 C est pourquoi on limite le temps de réaction à quelques dixièmes de seconde par un passage très rapide dans le four de pyrolyse, et que l on impose à la sortie du four un refroidissement très rapide ou trempe des produits craqués. les fours les plus récents dits fours millisecondes mettent en œuvre des temps de séjour inférieurs au 1/10e de seconde compensés par une température plus élevée permettant d accroître le rendement en éthylène. La pression basse et la vapeur d eau quant à elles ont un rôle de dilution qui empêchent les espèces hydrocarbonées de se combiner entre elles pour former des hydrocarbures et du coke. Les réactions chimiques mises en jeu dans le vapocraquage sont extrêmement complexes. Elles comprennent d abord le craquage primaire des molécules de la charge puis ensuite le craquage secondaire des espèces craquées obtenues. La planche n 2 montre le schéma réactionnel type correspondant à une molécule d heptane (nc 7 ) que l on rencontre dans les naphtas. Les réactions de craquage des liaisons carbone-carbone conduisent à des hydrocarbures à chaînes plus courtes. Les réactions de déshydrogénation correspondent à des pertes d hydrogène et à l apparition d espèces insaturées. Les réactions d addition qui mettent en jeu des oléfines, des aromatiques et surtout des dioléfines amènent la formation d aromatiques et de coke. 2 - RENDEMENTS OBTENUS - CHARGES DE VAPOCRAQUAGE a - Rendements types sur naphta Le schéma ci-dessous précise la gamme des rendements types obtenus à partir de craquage de naphta. % masse 10 MÉTHANE NAPHTA Hydrocarbures P - N - A en C 5 -C 6 -C 7 principalement ÉTHYLÈNE ÉTHANE COUPE C 2 60 PROPYLÈNE COUPE C BUTADIÈNE 1-3 AUTRES C 4 COUPE C ESSENCE FUEL D PPC 095 A

4 3 On obtient une panoplie de produits allant de l hydrogène et du méthane au fuel très aromatique : - l hydrogène peut, après séparation, être utilisé dans des installations d hydrogénations sélectives des effluents craqués (coupe C 2, coupe C 3, coupe C 4, coupe essence) - le méthane est un excellent combustible pour les fours de vapocraquage - la coupe C 2 représente l effluent le plus important et contient surtout de l éthylène (80 % environ) - la coupe C 3 est très riche en propylène (90 % environ) - la coupe C 4 est constituée à peu près pour moitié de butadiène 1-3. Elle contient également en proportions notables de l isobutène et du butène 1 - la coupe essence (C 5 à C 10 ) est très riche en hydrocarbures aromatiques et en dioléfines. La partie C 6 de cette essence est notamment riche en benzène que l on peut chercher à séparer - le fuel très aromatique est un produit lourd de médiocre qualité en terme de combustible mais recherché éventuellement pour sa faible teneur en soufre Cette grille de rendement indique par aileurs que près de 80 % masse de l effluent réactionnel est constitué de composés gazeux dans les conditions ambiantes (H 2, C 1, C 2, C 3, C 4 ). b - Rendements types suivant la charge Selon la nature des charges, les rendements sont très différents. Le tableau ci-dessous donne les rendements typiques obtenus lors du vapocraquage d éthane, de G.P.L., de naphta, de gazole et de distillat sous vide. CHARGES Éthane Propane Butane Naphta Gazole Distillat sous-vide PRODUITS Rendements en % masse Hydrogène 8,8 2,3 1,6 1,5 0,9 0,8 Méthane 6,3 17,5 22,0 17,2 11,2 8,8 Éthylène 77,8 42,0 40,0 33,6 26,0 20,5 Propylène 2,8 26,8 17,3 15,6 16,1 14,0 Butadiène 1,9 3,0 3,5 4,2 4,5 5,3 Autres C 4 0,7 1,3 6,8 4,5 4,8 6,3 Essences C ,7 6,6 7,3 18,7 18,4 19,3 Fuel - 0,5 1,5 4,7 18,1 25,0 L éthane dont la production est associée à celle du gaz naturel est une charge donnant des rendements très élevés en éthylène. Les rendements correspondants en propylène, hydrocarbures en C 4 ou essences aromatiques sont par contre très faibles. Les gaz de pétrole liquéfiés propane et butane peuvent constituer une charge alternative au naphta sur des unités existantes. Les naphtas constituent la charge principale des vapocraqueurs en Europe et au Japon. Ils fournissent une large gamme de produits : 25 à 35 % d éthylène, 15 % environ de propylène, 20 à 25 % d essences. Les charges lourdes : gazoles, distillats donnent par rapport aux naphtas moins d éthylène et plus de fuel mais elles présentent souvent l intérêt d être moins chères.

5 4 c - Répartition mondiale des charges Le tableau ci-dessous montre la répartition estimée des charges de vapocraquage dans le monde en 2000 (en % poids) : Nature des charges Europe de l Ouest Amérique du Nord Japon Monde Hydrocarbures légers Éthane-GPL Naphtas Gazoles-distillats Le schéma ci-dessous donne globalement au niveau mondial la répartition de l utilisation des matières premières utilisées pour la production d éthylène. Divers 0,1% Propane 11,5% Gazole 10,5% Éthane 10,1% Naphta 52% Butane 15,8% D PPC 094 A

6 5 3 - INVESTISSEMENTS - ASPECTS ÉCONOMIQUES Les vapocraqueurs sont des installations complexes auxquelles correspondent des investissements élevés. Le tableau ci-dessous donne les ordres de grandeur correspondants pour diverses charges sur la base d une capacité de production de t/an d éthylène (Conditions Europe fin 2000). Nature de la charge Éthane Naphta moyen Gazole atmosphérique Investissement en limite d unité (milliards de F) 2,2-2,6 3-3,5 3,6-4,2 Les fours de pyrolyse ne représentent que 30 à 40 % du montant des investissements. Les 60 à 70 % restants correspondent aux installations de séparation et de purification des produits commerciaux. La consommation de combustible est parallèlement très élevée. Elle absorbe sensiblement la production de gaz résiduaires (hydrogène + méthane) dans le cas de vapocraqueurs de naphta.

7 6 II - UNITÉ DE VAPOCRAQUAGE Le vapocraqueur est une installation industrielle complexe dans laquelle les techniques utilisées et les conditions opératoires pratiquées sont très variées. L'unité peut toutefois être découpée en trois grandes zones regroupant chacune plusieurs équipements au rôle bien déterminé. On distingue ainsi habituellement : - la zone chaude comprenant : les fours de pyrolyse ou de craquage, les chaudières de trempe et la couronne de trempe, les colonnes du train chaud - la zone de compression comprenant : le compresseur des gaz craqués, les colonnes de purification et de séparation, les sécheurs - la zone froide comprenant : la boîte froide, le méthanateur, les colonnes de fractionnement du train froid, les convertisseurs C 2 et C 3, le réacteur d'hydrostabilisation des essences 1 - ZONE CHAUDE Le schéma typique de la zone chaude d'une unité traitant du naphta ou du gazole est présenté planche n 3. Partant du stockage où la charge naphta est disponible à température ambiante, on réalise successivement : - la mise en pression de la charge par une pompe puis son réchauffage par récupération de chaleur sur les effluents de l'unité dans plusieurs échangeurs de chaleur - la répartition de la charge dans différents fours au sein desquels s'opèrent les réactions de craquage thermique en présence de vapeur de dilution injectée dans le flux hydrocarboné et dont la quantité est fonction de la nature de la charge traitée - la trempe brutale des effluents du four pour arrêter les réactions chimiques et éviter la formation de coke. Cette opération est réalisée en deux étapes. Une trempe indirecte est d'abord pratiquée dans des échangeurs particuliers appelés TLE ou TLX (transfert line exchangers) ou chaudières de trempe. Puis une trempe directe est assurée par injection d'huile de quench au niveau de la couronne de trempe - la séparation des fractions lourdes des effluents four obtenues en fond de la tour de fractionnement primaire, la fraction essence et plus légers ainsi que la vapeur procédé passant en tête - la condensation de la fraction essence lourde ainsi que de la vapeur de procédé au sein de la tour de trempe à l'eau. En tête, sortent les gaz craqués légers C 6 -C 5 a - Caractéristiques des fours de craquage ou de pyrolyse Dans le procédé de vapocraquage, les réactions à réaliser prennent place au sein des fours. Ces derniers jouent le rôle de véritables réacteurs chimiques. Ils sont de technologies variées. Le schéma de la planche n 4 représente la géométrie la plus courante. Architecture générale La charge hydrocarbonée d'un four est divisée en plusieurs flux fonction du nombre de passes dont dispose le four, en général quatre à huit passes. Intégrant le four dans sa partie supérieur dite zone de convection aux environs de 140 C, la charge naphta va continuer d'être réchauffée et va commencer à se vaporiser dans un premier faisceau de tubes. Ressortant du four, chaque passe est alors alimentée avec de la vapeur de dilution nécessaire au procédé.

8 7 Le faisceau inférieur de la zone de convection véhiculant le mélange vapeur d'eau-hydrocarbures permet d'atteindre en sortie de zone de convection une température avoisinant 600 C. Le faisceau intermédiaire de la zone de convection permet indépendamment la récupération de chaleur soit pour réchauffer l'eau de chaudière de trempe avant l'alimentation du ballon de chaudière soit pour surchauffer de la vapeur. Le schéma ci-dessous montre une vue en coupe d'un four de pyrolyse (figure 1). On y distingue les trois faisceaux de la zone de convection. Figure 1 Figure 2 Charge naphta Zone de convection Charge Eau ou vapeur Charge + vapeur Eau de Entrée chaudière de trempe Sortie Entrée vapeur de dilution Zone de radiation Brûleurs Mélange vapeur de dilution - hydrocarbures vers radiation D PCD 125 A La figure 2 présente le détail de ces faisceaux et indique que le mélange vapeur d'eau-hydrocarbures quittant la zone de convection est ensuite dirigé vers la zone de radiation constituant la partie basse du four. Cette dernière est aussi visible sur la figure 1.

9 8 Cette zone est la zone de craquage proprement dite. Les tubes de craquage y sont disposés verticalement afin de permettre un chauffage violent mais souvent indirect par les brûleurs. Les tubes forment des épingles dont quelques agencements sont donnés ci-dessous. Serpentin à 3 épingles tubes de même diamètre Fours conventionnels Serpentin à tubes de diamètre croissant Simple tube vertical Fours millisecondes D PCD 126 A Les brûleurs sont généralement placés sur les murs verticaux de chaque côté des tubes. Dans ce cas il s'agit le plus souvent de brûleurs de type radiant. Ils utilisent du gaz et la flamme est dirigée vers le mur sur une masse réfractaire qui, portée à haute température, transmet par rayonnement la chaleur aux tubes. Les parois des fours comportent 8 à 10 rangées de brûleurs à gaz. Il n'est pas rare d'en avoir une centaine par four. Volet de réglage de l'air primaire Volet de réglage de l'air secondaire Bloc du brûleur Arrivée gaz combustible Air primaire Tube mélangeur Air secondaire D MTE 205 A Dans certains cas, on utilise également des brûleurs à fuel disposés sur la sole à la base du four. La recherche de basse teneur en oxydes d azote dans les fumées semble, aujourd hui, privilégier l utilisation de brûleurs à gaz disposés à la sole.

10 9 Problèmes associés aux tubes de craquage Les fours possèdent aujourd hui des tubes verticaux mieux agencés que les anciens fours à tubes horizontaux pour résister aux conditions particulièrement sévères du craquage qui peuvent entraîner des phénomènes : de fluage correspondant à l allongement lent du tube sous l effet de la température. Les tubes supportent en effet des températures de peau de l ordre de 1000 à 1200 C et s allongent peu à peu au cours du temps. Les métallurgies utilisées doivent en tout premier lieu résister au fluage. La technologie des fours à tubes verticaux a permis d implanter les supports de tubes à l extérieur de la zone de radiation (figure 1) et de les protéger ainsi du rayonnement de la flamme ; de la carburation des tubes qui, à haute température, correspond à un enrichissement en carbone du tube métallique à partir de sa surface intérieure en contact avec les hydrocarbures et le coke. Le carbone diffuse ou migre à l intérieur de l alliage, modifie sa structure chimique et en altère la résistance mécanique ; de l érosion provoquée par la vitesse très élevée des gaz ; de fatigues liées aux cycles thermiques répétés intervenant dans les différentes phases d opération. Ces conditions très exigeantes imposent l utilisation d aciers hautement alliés contenant 25 à 30 % de chrome, 20 à 35 % de nickel, 0,4 à 0,5 % de carbone ainsi que d autres éléments comme le silicium destinés à améliorer notamment la résistance à la carburation et au fluage. Parallèlement, l état de surface intérieure des tubes est un élément important pour la pyrolyse et les conditions de formation du coke ainsi que pour la carburation des tubes. Mécanisme de formation du coke - Décokage Les conditions typiques d'opération d'un tube situé dans la zone de craquage sont présentées sur le schéma ci-après.

11 10 D i = 145 mm e = 9 mm Vitesse : 200 à 300 m/s Au voisinage de la paroi, les hydrocarbures ont une vitesse faible comparée à celle qui existe dans l'axe du tube. En fonction des aspérités présentées par la surface intérieure du tube il existe même une zone de quasi immobilité du flux hydrocarbure. Il se forme ainsi un film fluide dans lequel la température des espèces hydrocarbonées dépasse largement la température moyenne enregistrée ce qui conduit à un état d'avancement beaucoup plus important des réactions de craquage. Il en résulte l'apparition d'hydrocarbures lourds s'éliminant difficilement et de coke qui reste "accroché" à la paroi des tubes. D PCD 133 A t = 820 C t métal = 1050 C Partant de la température moyenne du fluide, le schéma ci-contre montre l'évolution de la température dans le film d'hydrocarbures lourds, le coke et la paroi métallique du tube C 1050 C Métal La vitesse de formation du coke dépend des conditions opératoires du four que l'on désigne souvent par le terme sévérité fonction de la température, du débit ou temps de séjour, de la proportion hydrocarbures-vapeur, et aussi des caractéristiques de la charge. 950 C 820 C D PCD 132 A Coke Film fluide d'hydrocarbures lourds La formation de coke a des conséquences très néfastes pour le fonctionnement du four : - elle introduit une résistance à la transmission de la chaleur de la flamme au mélange réactionnel. Cette résistance conduit à une chauffe plus intense et à une élévation de la température de peau des tubes préjudiciable à leur durée de vie. On considère par exemple que chaque épaisseur de 1 mm de coke accroît la température de peau d'une valeur de l'ordre de 30 C - elle réduit la section de passage des produits et augmente la perte de charge, c'est-à-dire la perte de pression du fluide entre l'entrée et la sortie du serpentin - elle impose l'arrêt régulier du four pour procéder aux opérations de décokage. Il en résulte une perte de production et un cycle thermique pouvant être préjudiciable à la métallurgie.

12 11 Le décokage d'un four est mis en oeuvre quand les températures de peau mesurées atteignent la limite admissible (par exemple 1100 C) ou quand la perte de charge du serpentin devient trop importante. Il consiste à réaliser une circulation de vapeur au sein du tube coké et à introduire à dose mesurée lorsque la température est adéquate de l'air pour provoquer la combustion progressive du coke. La vapeur agit comme diluant et évacue la chaleur dégagée par la combustion du coke. La température du mélange air-vapeur est maintenue à C pendant les opérations de décokage. La teneur en oxygène évolue de 1 % volume au début du brûlage jusqu'à 15 %. Les périodes de décokage sont espacées habituellement de quelques semaines. Les unités sont généralement conçues pour un décokage des fours à tour de rôle. La durée des opérations de décokage est de quelques dizaines d'heures. b - Principaux paramètres de réglage de la pyrolyse Notion de sévérité et de sélectivité La sévérité de la pyrolyse est utilisée pour repérer le degré de transformation de la charge en produits craqués. Si l'on augmente la sévérité du traitement, on augmente le craquage de la charge et jusqu'à un certain point on augmente la formation des produits recherchés c'est-à-dire les oléfines légères. Au-delà on sait que l'on favorise la décomposition de ces produits en gaz et en coke. La sévérité est le résultat très complexe de la combinaison des différentes variables opératoires du craquage et ne peut pas être déterminée directement à partir de ces dernières. On préfère plutôt la repérer à partir de l'analyse des effluents du craquage : - dans le cas du craquage de l'éthane la sévérité peut directement s'exprimer par le degré de conversion de l'éthane. On peut ainsi utiliser le rapport bien sûr avec la sévérité. C 2 = /C 2 dans l'effluent du four, ce dernier augmentant - lorsque la charge est un mélange très complexe, naphta ou gazole, on peut utiliser : la notion de KSF (Kinetic Severity Function) introduite par Stone et Webster. Ce terme est relié à la conversion d'un corps de référence, le n-pentane, car ce composé souvent présent dans les naphtas n'est pas formé lors de la pyrolyse à partir des autres constituants de la charge. Partant des teneurs en nc 5 dans la charge et dans les effluents des fours de craquage, on peut calculer la conversion du nc 5 et obtenir la valeur du KSF par la figure 1 de la planche n 5. À partir du KSF la figure 2 donne ensuite l'évolution des rendements en différents produits en fonction de la sévérité. le rapport C 1 /C 3 = dans les effluents On constate en effet, que ce rapport augmente de façon très sensible avec l'intensité du craquage. Sévérité = C 1 C 3 = Si la quantité de méthane C 1 rapportée au propylène C 3 = est un élément donnant une bonne indication de la sévérité, il est intéressant d'avoir parallèlement un critère concernant la sélectivité de l'opération. Celle-ci est souvent estimée par le rapport éthylène C 2 = sur méthane C 1. Sélectivité = C 2 = C 1

13 12 Sur le plan de la conduite des fours de craquage les différents paramètres qui permettent de moduler la sévérité sont : la température, le temps de séjour, la pression totale et la pression partielle des hydrocarbures. Influence de la température de craquage Le tableau ci-après montre l'influence de la température et les performances de craquage d'un naphta correspondant aux caractéristiques suivantes : Intervalle de distillation C Composition chimique (% vol) P N A Dilution vapeur d'eau t/t 0,6 Les rendements des principaux produits de pyrolyse sont exprimés en % poids par rapport à la charge. Le tableau montre l'évolution de la sévérité, de la sélectivité et du rapport C 3 = /C 2 =. Produits Température ( C) Évolution Hydrogène Méthane Éthylène Propylène Butadiène Benzène Essence H2 CH4 C2H4 C3H6 C4H6 C6H6 C ,66 13,82 24,71 17,34 4,18 4,89 22,64 0,74 15,65 27,06 16,28 4,17 5,90 20,84 0,81 17,40 29,17 14,44 3,99 7,08 20,01 = Sévérité Sélectivité Rapport C1/C3 = C2 = /C1 C3 = /C2 = 0,797 1,788 0,701 0,961 1,729 0,602 1,205 1,676 0,495 On peut observer que le rendement en éthylène croît avec la température mais qu'il n'en est pas de même pour le propylène. A haute température en effet, le propylène est craqué à son tour et contribue à l'accroissement du rendement éthylène. L'augmentation de sévérité ainsi obtenue conduit à une baisse modérée de la sélectivité et à une diminution importante du rapport C 3= /C 2=. On en déduit qu'une marche à haute sévérité favorise l'éthylène ; à l'inverse, une marche à basse sévérité est favorable à la production de propylène.

14 13 Influence du temps de séjour Le temps de séjour de la charge dans le serpentin est une variable à considérer en même temps que la température. La sévérité maximale acceptable est en effet, déterminée par la vitesse de formation du coke, ce qui, si l'on se place dans ces conditions limites d'opération, conduit à diminuer le temps de séjour quand on augmente la température. Dans les années 1950, les limites de température imposées par la métallurgie des tubes de radiation étaient compensées par des temps de séjour longs de 0,7 à 1 seconde. Les rendements en éthylène correspondant étaient limités à % sur de relativement bons naphtas. A partir du milieu des années 1960, les progrès de la métallurgie ont permis d'abaisser les temps de séjour à 0,2-0,4 seconde ce qui a accru les rendements en éthylène jusqu'à %. Depuis quelques années enfin, on parle de "fours millisecondes" dans lesquels les temps de séjour sont situés entre 50 et 100 millisecondes (0,05 à 0,1 seconde) pour des températures de craquage atteignant 870 à 925 C. Il en résulte des gains importants dans le rendement en éthylène comme l'indique le tableau ci-après. % Poids Four conventionnel Craquage de naphta Four milliseconde Hydrogène H2 Méthane CH4 Éthylène C2H4 Propylène C3H6 Butadiène C4H6 Essence C ,9 15,8 28,6 15,0 4,4 21,7 1,1 14,9 32,2 14,3 3,6 18,9 En pratique, le temps de séjour est surtout imposé par les caractéristiques de construction du four et il varie relativement peu au cours de l'exploitation. Pression et pression partielle des hydrocarbures Une pression de fonctionnement plus faible conduit notamment : - à la formation plus facile d'oléfines légères - à une moindre formation de coke On cherche donc à travailler dans les fours de vapocraquage à pression aussi basse que possible. Ceci est obtenu : - en maintenant la pression de sortie des fours à une valeur aussi proche que possible de la pression atmosphérique. Cela suppose une pression voisine de la pression atmosphérique à l'aspiration du compresseur de gaz craqués et des pertes de charge pas trop importantes entre les fours et le compresseur. La pression dans les tubes est, compte tenu des pertes de charge dans les serpentins de l'ordre de 2 bars absolus en moyenne - en réduisant la pression des hydrocarbures par l'injection de vapeur d'eau. La vapeur dilue les hydrocarbures et diminue ainsi leur pression partielle, elle a aussi une grande influence sur le ralentissement des réactions de formation de coke. L'injection de vapeur est déterminée par le ratio vapeur/charge. Ce dernier doit être maintenu à une valeur suffisante pour limiter la formation de coke

15 14 Le tableau ci-dessous donne les valeurs habituelles de dilution en fonction de la nature de la charge. H2O/HC (t/t) C2 C3 C4 Naphta Gazole 0,3-0,4 0,5-0,6 0,6-0,8 Caractéristiques de la charge On connaît déjà l'impact de la nature des différentes charges craquées sur la structure des rendements obtenus dans les vapocraqueurs. Pour une charge donnée, un naphta par exemple, la nature chimique des hydrocarbures à craquer a une incidence importante sur les performances de l'installation, notamment sur le rendement en éthylène. Les naphtas sont constitués souvent en grande partie d'hydrocarbures en C 5 et C 6, il s'agit alors de naphta légers dont l'intervalle de distillation est C. On rencontre également des naphtas longs contenant également des hydrocarbures en C 7, C 8, C 9 et C 10. L'analyse des naphtas comprend généralement : - la densité à 15 C - la teneur en soufre - la distillation ASTM - le PONA global et la répartition par nombre d'atomes de carbone ainsi que la répartition n-paraffines-isoparaffines Les meilleurs rendements en éthylène sont obtenus avec les naphtas riches en paraffines. Les hydrocarbures plus courts et de préférence les n-paraffines donnent les meilleurs résultats. Rendements types en éthylène (% poids) C2 C3 C4 Naphta riche en np Naphta aromatique

16 15 Dans les unités capables de traiter plusieurs charges différentes il est intéressant de comparer les débits nécessaires à l'obtention d'une même production d'éthylène. Le tableau ci-dessous montre la comparaison propane-butane-naphta-gazole. Charges (tonnes) Propane 238 Butane 250 Naphta 298 Gazole 385 Hydrogène Méthane Éthylène Propylène Butadiène Autres C4 Essence Fuel-oil 5,5 41, ,7 7,1 3,1 15,8 1, ,3 8, ,3 3,7 4,5 51, ,6 12,5 13,4 55,7 14 3,5 43, ,3 18,5 70,9 69,7 Enfin et en fonction du marché, il peut être intéressant d'utiliser comme charge certains effluents des fours de craquage. Il en est ainsi de l'éthane dans les vapocraqueurs de naphta. L'éthane est recyclé puis craqué dans des fours spécifiques de craquage d'éthane contribuant ainsi à l'accroissement de la production d'éthylène. Le co-craquage permet également de transformer certains hydrocarbures recyclés en mélange avec la charge naphta. On pratique ainsi le co-craquage éthane-naphta, butane-naphta ou coupe C 4 - naphta.

17 16 c - Chaudières de trempe - Couronne de trempe Effluent four vers couronne de trempe Les chaudières de trempe (TLE ou TLX) ont pour but de refroidir très rapidement le mélange réactionnel à la sortie du four de craquage ce qui nécessite une tuyauterie de transfert four-chaudière de trempe aussi courte que possible. Cela explique par ailleurs le positionnement des chaudières au-dessus des zones de radiation des fours. Vapeur haute pression Ces chaudières sont de technologie très particulière et leur mise en oeuvre est illustrée par le schéma ci-contre. Les gaz craqués passent dans des tubes verticaux refroidis à l'extérieur par de l'eau sous pression en vaporisation. On génère de cette manière de la vapeur bars qui est surchauffée ensuite avant d'être utilisée comme vapeur motrice dans des turbines d'entraînement. Les problèmes posés par ces chaudières de trempe concernent essentiellement : - les risques d'encrassement des tubes véhiculant les gaz craqués par des dépôts de polymères lourds et de coke. Cela exige une température suffisamment élevée pour l'eau de réfrigération afin d'éviter les condensations de produits lourds Dans le cas où l'on craque des charges lourdes comme des distillats sous vide, la présence de grande quantité de lourds dans les effluents du four interdit d'utiliser ce type de chaudière Effluent four (sortie zone de radiation) D MTE 136 A Eau liquide - le maintien d'une température suffisamment basse des gaz craqués pour arrêter le processus de craquage. On vise généralement une température de l'ordre de 400 C à la sortie des chaudières. Celle-ci s'élève progressivement au cours du temps en raison de l'encrassement et bien que le décokage des fours participe au décokage des TLE, ce dernier reste imparfait. Il est donc nécessaire d'envisager de décoker mécaniquement l'équipement à l'aide d'eau sous pression ce qui implique l'arrêt du four. Cette opération a lieu généralement à la suite du troisième décokage subi par le four ou lorsque la température en sortie TLE devient trop élevée ( C).

18 17 Sortie gaz craqués Collecteur vapeur Tube intérieur Tube extérieur D MTE 137 A gaz craqués Eau sous forme liquide et vapeur Détail d'un double tube de TLE En raison de l'absence de contact direct entre les effluents du four et le fluide de refroidissement au niveau des TLE, cette opération de trempe est dite trempe indirecte. Cependant le niveau de température atteint en sortie des TLE est encore trop élevé pour permettre l'alimentation des colonnes de séparation situées en aval. On réalise alors une injection de fuel froid dans le flux procédé au travers d'une couronne de trempe, ceci afin de continuer le refroidissement du flux gazeux et d'assurer un début de condensation des fractions les plus lourdes. La température de mélange s'établit aux alentours de C. Le fuel utilisé appelé huile de quench provient du fond de la tour de fractionnement primaire. Il est refroidi aux alentours de 160 à 200 C pour assurer cette deuxième trempe dite trempe directe. d - Tour de fractionnement primaire Cette première tour de fractionnement reçoit les effluents des différents fours de l'installation. Elle a pour buts principaux : - de séparer les produits craqués les plus lourds : fuel de craquage et éventuellement dans certaines unités gazole de craquage - de mettre en oeuvre le circuit d'huile de quench qui est récupérée en fond de la colonne. Cette tour comporte peu de plateaux, elle fonctionne à des températures de l'ordre de C en tête et 180 à 220 C en fond. Le circuit huile de quench est tout à fait important dans le fonctionnement de l'installation car il doit être conçu pour éliminer une grande partie de la chaleur possédée par les gaz craqués à la sortie des TLX.

19 18 Les principales caractéristiques de ce circuit sont les suivantes : - débit d'huile très important pouvant atteindre 10 à 30 fois le débit de naphta - grand débit de chaleur à éliminer : l'huile de quench est refroidie aux environs de 160 C et cela nécessite la mise en oeuvre de nombreux échangeurs de chaleur - présence de filtres destinés à éliminer les particules de coke qui ont pu se former dans les produits craqués ou dans le liquide qui transite en fond de colonne Il est à noter que la séparation fuel-oil-essence est assurée par un reflux d'essence injecté en tête de la tour de fractionnement primaire. La température de tête détermine la qualité de l'essence produite. Enfin le fuel-oil est généralement strippé avant sa sortie de l'installation pour éliminer les fractions essences pouvant être dissoutes afin d'assurer un point d'éclair correct. e - Tour de trempe à l'eau Les gaz de tête de la tour de fractionnement primaire alimentent à sa base la tour de trempe à l'eau. Celle-ci a pour fonctions : - de condenser la vapeur de dilution, - de refroidir les produits craqués et d'en condenser les fractions essences les plus lourdes. Les extractions de chaleur correspondantes sont obtenues par la mise en oeuvre d'un circuit d'eau de trempe. Partant de l'eau chaude obtenue en fond de colonne ce circuit comprend des échangeurs réfrigérants qui permettent de ramener l'eau en tête de colonne à 50 C pour la première injection et à 35 C pour la seconde. On récupère ainsi : - l'eau de procédé qui est strippée pour éliminer des impuretés dissoutes (CO 2, H 2 S, etc.) avant d'être revaporisée et utilisée à nouveau comme vapeur de dilution - les fractions lourdes de l'essence qui sont recyclées pour partie en reflux de la tour de fractionnement primaire. L'autre partie est dirigée vers un stripper d'essence qui récupère aussi les condensats inter-étages du compresseur de gaz craqués. Ce stripper permet de revaporiser les gaz dissous dans l'essence et de les mélanger avec les gaz craqués obtenus en tête de la tour de trempe

20 ZONE DE COMPRESSION a - Composition type des gaz craqués A la sortie de la tour de trempe à l'eau les problèmes posés sont des problèmes de séparation des différents produits et d'élimination d'impuretés gênantes vis-à-vis des spécifications des intermédiaires pétrochimiques commerciaux. Dans le cas du vapocraquage de naphta comportant un four de recraquage de l'éthane, la composition type des gaz craqués est donnée dans le tableau ci-dessous. Ce dernier précise également les objectifs des séparations à réaliser et la nature des impuretés à éliminer. % Poids valeur typique Objectifs et problèmes particuliers H 2 Hydrogène 1,1 Séparation de l'hydrogène à un bon niveau de pureté (95 %) pour les unités d'hydrogénation CH 4 Méthane 16,2 Récupération du méthane pour utilisation comme combustible C 2 H 4 Éthylène 29,2 Pureté requise pour l'éthylène (99,95 % poids) C 2 H 2 Acétylène 0,3 Acétylène à séparer ou à éliminer C 2 H 6 Éthane 7,2 Éthane à recycler vers fours spécifiques de craquage d'éthane CO CO 2 H 2 S 0,15 Impuretés à éliminer pour respecter les spécifications des différents produits ou en raison de problèmes d'empoisonnement des catalyseurs C 3 H 6 Propylène 14,3 Puretés requises pour le propylène 92 % ou 99,5 % C 3 H 8 Propane 0,5 C 3 H 4 Propyne C 3 H 4 Propadiène 0,5 Propyne et propadiène à éliminer Coupe C 4 8,45 Récupération du butadiène Élimination des acétyléniques Essence C ,8 Élimination des dioléfines instables Récupération du benzène Eau 2,3 Élimination de l'eau pour éviter les bouchages à basse température par formation de cristaux d'hydrates de gaz. 100

21 20 Le mélange précédent est disponible à l'état gazeux à basse température et à basse pression : quelques centaines de millibars au-dessus de la pression atmosphérique. La séparation des différents produits requiert une élévation importante de la pression pour éviter des températures de distillation trop basses qui conduiraient à des coûts de réfrigération trop élevés. La planche n 6 en annexe montre les courbes de tension de vapeur des hydrocarbures légers et précise la relation entre température d'ébullition et pression. Elle fait apparaître par exemple que pour séparer le méthane par distillation à 100 C il est nécessaire d'obtenir une pression de l'ordre de 25 atmosphères. Elle montre également que : - le monoxyde de carbone CO est un peu plus volatil que le méthane - l'acétylène se situe entre l'éthylène et l'éthane - le propadiène et le méthylacétylène sont un peu plus lourds c est-à-dire un peu moins volatils que le propane Les schémas de séparation des produits du vapocraqueur exigent le plus souvent une pression de l'ordre de bars. Il en résulte une importante dépense énergétique de compression des gaz craqués. b - Compresseur de gaz craqués Il s'agit d'un compresseur centrifuge réalisant la compression en général en cinq étages. Le schéma type de l'installation est présenté à la planche n 7. Les principaux problèmes posés par la compression sont les suivants : - nécessité de limiter les températures atteintes à la sortie de chaque étage de compression à 100 C environ pour éviter les polymérisations des composés insaturés les plus réactifs (dioléfines) et l'encrassement de la machine. Une injection d'huile de lavage est généralement prévue à chaque aspiration pour empêcher l'adhérence des polymères sur les parties mécaniques en mouvement. C'est cette raison qui, principalement, conduit à réaliser la compression en 4 ou 5 étages avec une réfrigération entre chaque étage - nécessité de récupérer des condensats inter-étages : au refoulement de chaque étage, les gaz sont refroidis à 30 C environ, ce qui, compte tenu de l'accroissement de pression, conduit à la condensation d'eau et d'hydrocarbures Les condensats liquides sont séparés de la phase gazeuse dans des ballons inter-étages. Les condensats hydrocarbures les plus lourds (refoulement des 1er, 2ème et 3ème étages) alimentent le stripper d'essence. Les condensats au refoulement des derniers étages sont obtenus après une réfrigération à 15 C et sont strippés au niveau d'un stripper dééthaniseur pour séparer les C 2 recyclés dans le train de compression et les C 3 + dirigés directement vers le dépropaniseur. - mise en œuvre d'une importante dépense d'énergie de compression : la puissance de compression exigée par la compression des gaz craqués est de l'ordre de à kw pour une production d'éthylène de t/an à partir de naphta. Cette puissance importante est fournie de manière classique par une turbine à vapeur à condensation alimentée par la vapeur 120 bars générée dans les chaudières de trempe et surchauffée. L'ajustement de la puissance de compression au débit et à la composition des gaz craqués est alors obtenu en faisant varier la vitesse de la turbine. Les possibilités d'utilisation d'énergie électrique à un prix intéressant conduisent dans certains cas à remplacer les turbines à vapeur par des moteurs électriques à vitesse variable. Cependant, les variations du coût de l'énergie et en conséquence de la vapeur, modifient en permanence les analyses économiques correspondantes.

22 21 c - Tour de lavage des gaz La tour de lavage des gaz située en général entre le 3 ème et le 4 ème étage de compression, a pour fonctions principales : - d'éliminer l'hydrogène sulfuré H 2 S et les mercaptans légers (RSH) qui ont pu se former à partir des composés sulfurés de la charge dans les fours de pyrolyse. On injecte aussi souvent des composés sulfurés dans les serpentins des fours pour réduire la formation de CO et CO 2 et pour ralentir la formation de coke - d'absorber le gaz carbonique CO 2 formé par action de la vapeur d'eau à haute température sur le coke à l'intérieur des tubes des fours. Les installations industrielles comportent, le plus souvent, un lavage à la soude, les gaz étant contactés à 40 C environ avec des solutions diluées mais à concentration croissante en soude au fur et à mesure de l'ascension des gaz dans la tour. L'hydrogène sulfuré H 2 S est alors éliminé sous forme de sulfure de sodium, les mercaptans sous forme de mercaptides de sodium solubles dans la solution de soude et enfin le gaz carbonique (CO 2 ) sous forme de carbonate de sodium. Pour éviter les entraînements de soude, un lavage à l'eau des gaz achève l'opération. La température et la concentration des solutions de soude ne doivent pas être trop élevées compte tenu des risques de formation de polymères. Dans certains cas, le lavage à la soude est précédé d'un traitement à l'amine qui élimine la majeure partie de l'h 2 S lorsque les charges traitées par le vapocraqueur conduisent à l'apparition d'h 2 S en grande quantité. d - Sécheurs de gaz craqués Compte tenu de l'augmentation de pression et de la baisse de température qui atteint 15 C après échange de chaleur à la sortie du dernier étage de compression, une grande partie de la vapeur d'eau présente dans les gaz craqués a été condensée et évacuée dans les ballons séparateurs. On peut estimer à 0,05 % soit 500 ppm masse la teneur en eau résiduelle soit environ 30 kg/h sur la base d'un débit de gaz craqués de 60 t/h. Bien que présente en faible concentration, l'eau est très gênante car elle conduit à basse température, à la formation de glace et d'hydrates de gaz qui compte tenu de la pression apparaissent dès que la température devient inférieure à 15 C. Ces hydrates de gaz résultent de l'association d'eau et d'hydrocarbures à l'état solide et se présentent sous la forme de cristaux volumineux susceptibles de boucher les installations. Il est donc impératif d'éliminer l'eau présente. C'est pour cette que raison que la charge traverse des sécheurs disposant en général d'un lit fixe constitué de petites billes d'adsorbants solides : alumine, tamis moléculaires. L'eau présente dans le gaz traité est adsorbée sélectivement à la surface du solide. La capacité de rétention d'eau étant limitée, il est nécessaire de prévoir plusieurs sécheurs et un système permettant la régénération du sécheur saturé en eau. Généralement, on met en oeuvre trois sécheurs : - deux sont en service et placés en série ou en parallèle - le troisième subit une régénération qui consiste à éliminer l'eau retenue par passage à contre courant d'un gaz chaud Le contrôle de l'efficacité de l'opération est effectué à la sortie des sécheurs. On exige, en principe, moins de 1 ppm masse d'eau.

23 ZONE FROIDE a - Boîte froide À la sortie des sécheurs, le flux ne contenant plus d'eau, ce dernier va pouvoir être refroidi sans risque d'apparition d'hydrates. La planche n 8 montre le principe de fonctionnement du système mis en œuvre. L'ensemble échangeurs-ballons de séparation constitue ce que l'on dénomme habituellement la boîte froide. Les fluides de refroidissement mis en œuvre sont : le propylène, l'éthylène, le méthane produit ainsi que l'hydrogène produit. Les deux premiers fluides froids participent à la marche de cycles frigorifiques dont le principe est présenté à la planche n 9. Les gaz craqués issus des sécheurs sont refroidis en 5 étapes. Première étape La température des gaz craqués est réduite de 15 à 36 C grâce à des échangeurs utilisant le propylène comme fluide frigorigène (le propylène permet d'obtenir au plus bas une température de 40 C). Les condensats obtenus sont séparés dans un ballon de flash. La phase liquide correspondant aux plus lourds des gaz craqués, est dirigée vers le déméthaniseur, la phase vapeur subit la deuxième étape de réfrigération. Deuxième étape De 36 C à 70 C. Le cycle de réfrigération à l'éthylène est utilisé pour réfrigérer et condenser partiellement la charge gazeuse à 70 C (le cycle éthylène permet d'obtenir au plus bas 100 C). Le processus déjà présenté se répète ; la phase liquide lourde alimente le déméthaniseur, la phase vapeur poursuit le processus de réfrigération. Troisième étape De 70 C à 100 C grâce au cycle éthylène. Quatrième et cinquième étapes De 100 C à 125 C puis de 125 C à 165 C. Par échange de chaleur avec les produits froids sortant de l'installation (méthane liquide à très basse température et hydrogène froid), on parvient à abaisser la température à 125 C puis à 165 C. Les échanges de chaleur mis en oeuvre sont complexes et font intervenir des échangeurs à plaques dans lesquels plusieurs fluides peuvent échanger de la chaleur. Ces échangeurs à plaques sont également mis en oeuvre en appui aux échangeurs des cycles frigorifiques dès les deuxième et troisième étapes. Le dernier ballon travaillant à 165 C sépare : - une phase gaz riche en hydrogène (95 % environ). Le gaz contient en outre du méthane et de l'oxyde de carbone CO (0,15 à 0,7 % vol.). Après élimination du monoxyde de carbone, le flux hydrogène alimente les diverses sections d'hydrogénation - une phase liquide correspondant essentiellement à du méthane qui, détendu et vaporisé, sert à produire un fluide de refroidissement au sein de la boîte froide. Le méthane est utilisé à terme comme combustible sur les fours

24 23 b - Méthanateur L'oxyde de carbone CO présent en faible proportion dans les gaz craqués a une température d'ébullition normale voisine de 190 C. Sa volatilité se rapproche donc de celle de l'hydrogène. Aux concentrations couramment rencontrées, la présence de CO est très gênante dans la mesure où ce composé est un poison des catalyseurs d'hydrogénation utilisés pour convertir les impuretés trop insaturées des coupes hydrocarbonées C 2, C 3, C 4 et essence obtenues ultérieurement. L'élimination du CO est réalisée au sein d'un réacteur appelé méthanateur où est mise en œuvre la réaction de méthanation consistant à faire réagir le CO avec de l'hydrogène pour le transformer en eau et en méthane. La réaction est fortement exothermique c'est-à-dire qu'elle dégage beaucoup de chaleur et doit être réalisée sur un catalyseur spécifique constitué souvent de nickel (15 à 35 %) déposé sur alumine. La température d'opération est de l'ordre de 250 C à l'entrée du réacteur, ce qui nécessite le réchauffage du flux hydrogène de 165 C à 250 C environ. Ce flux est dit flux hydrogène non méthané. La température de sortie est plus élevée compte tenu de l'exothermicité de la réaction. On considère que la transformation de 1 % volume de CO en méthane conduit à une augmentation de température de 70 C. Le flux sortant est dit flux hydrogène méthané. Il est refroidi afin de condenser une partie de l'eau produite et séché par passage sur un absorbant avant de pouvoir être utilisé. En dehors de situations transitoires contrôlées pouvant conduire à davantage de CO et demandant en conséquence une attention accrue du fait de l'accroissement d'exothermicité correspondant, le danger principal est lié à un éventuel dérèglement de la boîte froide. En effet si le niveau des températures devient trop élevé, il y a risque d'arrivée d'éthylène gazeux sur le réacteur. Il s'ensuit alors l'hydrogénation de l'éthylène, réaction elle-même exothermique. Le réacteur s'emballe conduisant potentiellement à un accident majeur. c - Train de séparation froid Ce dernier consiste en un ensemble de colonnes de distillation ayant pour objectif d'isoler les différentes coupes ainsi que les différents produits fabriqués par le vapocraqueur. L'agencement des colonnes peut être différent d'un vapocraqueur à l'autre. Classiquement, on rencontre : - un déméthaniseur : il reçoit sa charge sous la forme de quatre alimentations distinctes provenant du fond des quatre premiers ballons de la boîte froide. Son rôle est de séparer par distillation : le méthane C 1 et l'hydrogène résiduel en tête les hydrocarbures à partir des C 2 en fond constituant la coupe dite C 2 + Sa pression de fonctionnement est de 30 bars environ ce qui conduit à : une température négative de 98 C en tête, ce qui correspond approximativement à la température d'ébullition du méthane sous 30 bars en présence d hydrogène résiduel une température positive de + 5 C en fond La condensation des vapeurs en tête à 98 C est assurée par le cycle frigorifique éthylène. Le méthane obtenu au ballon de reflux à l'état liquide est détendu et vaporisé en produisant du froid dans les échangeurs à plaques de la boîte froide.

25 24 Le méthane gazeux obtenu au ballon de reflux sert aussi à la production de froid avant d'être détendu dans le réseau gaz. Le flux méthane est finalement disponible en sortie d'unité à basse pression et à l'état gazeux, aussi doit il être recomprimé pour alimenter le réseau gaz combustible des fours de pyrolyse. Les quatre colonnes mentionnées ci-après sont présentées à la planche n un dééthaniseur Sa charge correspond à la coupe C 2 + obtenue en fond du déméthaniseur. Son rôle est de séparer par distillation : une coupe C 2 en tête contenant l'éthylène ( 80 %) mais aussi l'éthane (19 %) et l'acétylène (1 %) une coupe C 3 + en fond Sa pression est de l'ordre de 24 bars ce qui conduit à : une température négative de 15 C en tête une température positive de + 74 C en fond La condensation des vapeurs de tête à 15 C est assurée par le cycle frigorifique propylène. - un splitter éthane-éthylène Il reçoit la coupe C 2 provenant du dééthaniseur après que l'acétylène présent ait été éliminé classiquement par hydrogénation sélective. Conduite sous une pression de 17 bars environ, la distillation de l'éthylène est relativement difficile dans la mesure où l'on recherche un niveau de pureté élevé. La colonne comporte une bonne centaine de plateaux et permet d'obtenir : en tête, purgés au ballon de reflux, un faible flux gazeux d'hydrogène, de méthane et d'éthylène en soutirage latéral liquide, dix à quinze plateaux sous la tête de la colonne, l'éthylène au niveau de pureté requis en fond l'éthane que l'on recycle vers des fours spécifiques de craquage de l'éthane Compte tenu de la pression opératoire, la température de tête est de l'ordre de 30 C, exigeant un condenseur utilisant comme fluide de réfrigération le propylène. La température de fond est comprise entre 5 et 10 C. - un dépropaniseur Sa charge est constituée de la coupe C + 3 provenant du fond dééthaniseur à laquelle vient s'ajouter la coupe C + 3 produite en fond du stripper dééthaniseur mentionné au niveau de la zone de compression. Son rôle est de réaliser la séparation : d'une coupe C 3 en tête contenant le propylène (91 %) mais aussi le propane (5 %) et les composés propadiène et méthylacéthylène (4 %) d'une coupe C + 4 En fonction des procédés, cette colonne fonctionne à des pressions variables : de 6 bars à 15 bars. Ces choix différents résultent surtout des problèmes posés en fond de la colonne où la coupe C 4 + atteint des températures relativement élevées favorisant l'apparition de la polymérisation des dioléfines présentes.

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. DE3: I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. Aujourd hui, nous obtenons cette énergie électrique en grande partie

Plus en détail

Annexe 3 Captation d énergie

Annexe 3 Captation d énergie 1. DISPOSITIONS GENERALES 1.a. Captation d'énergie. Annexe 3 Captation Dans tous les cas, si l exploitation de la ressource naturelle est soumise à l octroi d un permis d urbanisme et/ou d environnement,

Plus en détail

C3. Produire de l électricité

C3. Produire de l électricité C3. Produire de l électricité a. Electricité : définition et génération i. Définition La matière est constituée d. Au centre de l atome, se trouve un noyau constitué de charges positives (.) et neutres

Plus en détail

Présentation générale des principales sources d énergies fossiles.

Présentation générale des principales sources d énergies fossiles. Présentation générale des principales sources d énergies fossiles. Date : 19/09/2012 NOM / Name SIGNATURE Etabli / Prepared Vérifié / Checked Approuvé /Approved G J-L & R-SENE R.SENE R.SENE Sommaire 1.

Plus en détail

Réduction de la pollution d un moteur diesel

Réduction de la pollution d un moteur diesel AUBERT Maxime SUP B Professeur accompagnateur : DELOFFRE Maximilien SUP B Mr Françcois BOIS PAGES Simon SUP E Groupe n Réduction de la pollution d un moteur diesel Introduction L Allemand Rudolf Diesel

Plus en détail

Solutions de mesure pour le raffinage

Solutions de mesure pour le raffinage Solutions de mesure pour le raffinage Débitmétrie et densimétrie de précision Les meilleures des mesures en ligne «Il est difficile de répondre à la demande de façon efficace, économique et responsable.»

Plus en détail

L énergie sous toutes ses formes : définitions

L énergie sous toutes ses formes : définitions L énergie sous toutes ses formes : définitions primaire, énergie secondaire, utile ou finale. Quelles sont les formes et les déclinaisons de l énergie? D après le dictionnaire de l Académie française,

Plus en détail

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Production d eau chaude sanitaire thermodynamique, que dois-je savoir? COURS-RESSOURCES Production d eau chaude sanitaire thermodynamique, que Objectifs : / 1 A. Les besoins en eau chaude sanitaire La production d'eau chaude est consommatrice en énergie. Dans les pays occidentaux,

Plus en détail

ALFÉA HYBRID DUO FIOUL BAS NOX

ALFÉA HYBRID DUO FIOUL BAS NOX ALFÉA HYBRID BAS NOX POMPE À CHALEUR HYBRIDE AVEC APPOINT FIOUL INTÉGRÉ HAUTE TEMPÉRATURE 80 C DÉPART D EAU JUSQU À 60 C EN THERMODYNAMIQUE SOLUTION RÉNOVATION EN REMPLACEMENT DE CHAUDIÈRE FAITES CONNAISSANCE

Plus en détail

TECHNIQUES: Principes de la chromatographie

TECHNIQUES: Principes de la chromatographie TECHNIQUES: Principes de la chromatographie 1 Définition La chromatographie est une méthode physique de séparation basée sur les différentes affinités d un ou plusieurs composés à l égard de deux phases

Plus en détail

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I L École nationale des pompiers du Québec Dans le cadre de son programme de formation Pompier I QUATRIÈME ÉDITION MANUEL DE LUTTE CONTRE L INCENDIE EXPOSÉ DU PROGRAMME D ÉTUDES POMPIER 1 SUJET 4 Énergie

Plus en détail

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Kokouvi Edem N TSOUKPOE 1, Nolwenn LE PIERRÈS 1*, Lingai LUO 1 1 LOCIE, CNRS FRE3220-Université

Plus en détail

Babcock Wanson. Bienvenue. L expertise thermique au service de l environnement dans l industrie

Babcock Wanson. Bienvenue. L expertise thermique au service de l environnement dans l industrie Babcock Wanson Bienvenue L expertise thermique au service de l environnement dans l industrie BABCOCK WANSON INTERNATIONAL L expertise thermique au service de l environnement dans l industrie Le Groupe

Plus en détail

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien. LE CHAUFFAGE 1. LE CHAUFFAGE ELECTRIQUE Le chauffage électrique direct ne devrait être utilisé que dans les locaux dont l isolation thermique est particulièrement efficace. En effet il faut savoir que

Plus en détail

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs 1. Bases 1.1. Fonctionnement du chauffe-eau à pompe à chaleur (CEPAC) Comme son nom l indique, un chauffe-eau pompe à chaleur

Plus en détail

Système d énergie solaire et de gain énergétique

Système d énergie solaire et de gain énergétique Système d énergie solaire et de gain énergétique Pour satisfaire vos besoins en eau chaude sanitaire, chauffage et chauffage de piscine, Enerfrance vous présente Néo[E]nergy : un système utilisant une

Plus en détail

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique : http://

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique : http:// 2.0. Ballon de stockage : Capacité : L Lien vers la documentation technique : http:// Retrouver les caractéristiques techniques complètes (performances énergétiques et niveau d isolation, recommandation

Plus en détail

Eau chaude Eau glacée

Eau chaude Eau glacée Chauffage de Grands Volumes Aérothermes Eau chaude Eau glacée AZN AZN-X Carrosserie Inox AZN Aérotherme EAU CHAUDE AZN AZN-X inox Avantages Caractéristiques Carrosserie laquée ou inox Installation en hauteur

Plus en détail

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000 Olio 1500, 2500, 3500, 4500, 7000 Chaudières et chaufferies fioul basse température 2 Chaudières et chaufferies fioul basse température Olio 1500 F. La qualité et la robustesse au meilleur prix. Les chaudières

Plus en détail

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? Découvrez la gamme Aquarea de Panasonic Pompe à chaleur Source Air CONÇUE POUR LES MAISONS Une pompe à chaleur Aquarea avec Source

Plus en détail

J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E

J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E De l estimation des besoins / critères et exemple Février 2012 Présentation : Jérôme DIOT Directeur Technique EGIS Centre Ouest 1 Sommaire Conception

Plus en détail

Variantes du cycle à compression de vapeur

Variantes du cycle à compression de vapeur Variantes du cycle à compression de vapeur Froid indirect : circuit à frigoporteur Cycle mono étagé et alimentation par regorgement Cycle bi-étagé en cascade Froid direct et froid indirect Froid direct

Plus en détail

Herrebout-Vermander N.V. S.A.

Herrebout-Vermander N.V. S.A. Pag. 1/5 Herrebout-Vermander N.V. S.A. Kuurne, mai 2002 rev. Janvier 2005 Le parquetteur est parti, et qu'est-ce qu'on fait maintenant Félicitations avec votre nouveau Le parquet est un revêtement de sol

Plus en détail

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003 CONFERENCE DES SERVICES CANTONAUX DE L'ENERGIE KONFERENZ KANTONALER ENERGIEFACHSTELLEN Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air 1. Contexte Une série d'aides

Plus en détail

Réduire sa consommation d énergie dans les entreprises industrielles

Réduire sa consommation d énergie dans les entreprises industrielles Martina Kost Réduire sa consommation d énergie dans les entreprises industrielles B4E 80 rue Voltaire BP 17 93121 La Courneuve cedex Joseph Irani www.b4e.fr Tél: 01.48.36.04.10 Fax: 01.48.36.08.65 Réduire

Plus en détail

RUBIS. Production d'eau chaude sanitaire instantanée semi-instantanée. www.magnumgs.fr

RUBIS. Production d'eau chaude sanitaire instantanée semi-instantanée. www.magnumgs.fr RUS Production d'eau chaude sanitaire instantanée semi-instantanée www.magnumgs.fr Producteurs d'eau chaude instantanés RUS Le système intégré de production d'eau chaude sanitaire instantané permet, à

Plus en détail

Aide à l'application Chauffage et production d'eau chaude sanitaire Edition décembre 2007

Aide à l'application Chauffage et production d'eau chaude sanitaire Edition décembre 2007 Aide à l'application Chauffage et production d'eau chaude sanitaire 1. But et objet Une série d'aides à l'application a été créée afin de faciliter la mise en œuvre des législations cantonales en matière

Plus en détail

1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT ARRÊTÉ

1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT ARRÊTÉ 1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT NOR : SOCU 00611881A ARRÊTÉ relatif au diagnostic de performance énergétique pour les bâtiments existants proposés à

Plus en détail

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre Bilan GES Entreprise Bilan d émissions de Gaz à effet de serre Conformément à l article 75 de la loi n 2010-788 du 12 Juillet 2010 portant engagement national pour l environnement (ENE) Restitution pour

Plus en détail

L ENERGIE CORRECTION

L ENERGIE CORRECTION Technologie Lis attentivement le document ressource mis à ta disposition et recopie les questions posées sur une feuille de cours (réponds au crayon) : 1. Quelles sont les deux catégories d énergie que

Plus en détail

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance. 9.5. PRODUCTION D EAU CHAUDE sanitaire Les équipements doivent être dimensionnés au plus juste en fonction du projet et une étude de faisabilité doit être réalisée pour les bâtiments collectifs d habitation

Plus en détail

Incitants relatifs à l installation de pompes à chaleur en Région wallonne

Incitants relatifs à l installation de pompes à chaleur en Région wallonne Incitants relatifs à l installation de pompes à chaleur en Région wallonne G. FALLON Energie Facteur 4 asbl - Chemin de Vieusart 175-1300 Wavre Tél: 010/23 70 00 - Site web: www.ef4.be email: ef4@ef4.be

Plus en détail

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES Collège Voltaire, 2014-2015 AIDE-MÉMOIRE LA THERMOCHIMIE http://dcpe.net/poii/sites/default/files/cours%20et%20ex/cours-ch2-thermo.pdf TABLE DES MATIERES 3.A. Introduction...2 3.B. Chaleur...3 3.C. Variation

Plus en détail

L ÉNERGIE C EST QUOI?

L ÉNERGIE C EST QUOI? L ÉNERGIE C EST QUOI? L énergie c est la vie! Pourquoi à chaque fois qu on fait quelque chose on dit qu on a besoin d énergie? Parce que l énergie est à l origine de tout! Rien ne peut se faire sans elle.

Plus en détail

Caractéristiques techniques INVERTER 9 SF INVERTER 9 HP INVERTER 12 SF INVERTER 12 HP

Caractéristiques techniques INVERTER 9 SF INVERTER 9 HP INVERTER 12 SF INVERTER 12 HP - CARACTERISTIQUES TECHNIQUES - UNICO INVERTER - Caractéristiques techniques INVERTER 9 SF INVERTER 9 HP INVERTER 12 SF INVERTER 12 HP Capacité de refroidissement (1) (min/moyen/max) kw 1.4/2.3/2.7 1.4/2.3/2.7

Plus en détail

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

ÉJECTEURS. CanmetÉNERGIE Juillet 2009 ÉJECTEURS CanmetÉNERGIE Juillet 2009 ÉJECTEURS 1 ÉJECTEURS INTRODUCTION Les éjecteurs sont activés par la chaleur perdue ou la chaleur provenant de sources renouvelables. Ils sont actionnés directement

Plus en détail

de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur

de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur Eau chaude et confort à votre portée! La meilleure façon de

Plus en détail

PERFORMANCES D UNE POMPE TURBOMOLECULAIRE

PERFORMANCES D UNE POMPE TURBOMOLECULAIRE EUROPEAN LABORATORY FOR NUCLEAR RESEARCH CERN - LHC DIVISION LHC-VAC/KW Vacuum Technical Note 00-09 May 2000 PERFORMANCES D UNE POMPE TURBOMOLECULAIRE K. Weiss Performances d une pompe turbomoléculaire

Plus en détail

2.7 Le bétonnage par temps chaud par temps froid

2.7 Le bétonnage par temps chaud par temps froid Chapitre Les bétons courants.7 Le bétonnage par temps chaud par temps froid.7.1 - Le bétonnage par temps chaud 3 Granulats Les conditions climatiques lors de la mise en œuvre ont une grande influence sur

Plus en détail

Alfa Laval échangeurs de chaleur spiralés. La solution à tous les besoins de transfert de chaleur

Alfa Laval échangeurs de chaleur spiralés. La solution à tous les besoins de transfert de chaleur Alfa Laval échangeurs de chaleur spiralés La solution à tous les besoins de transfert de chaleur L idée des échangeurs de chaleur spiralés n est pas nouvelle, mais Alfa Laval en a amélioré sa conception.

Plus en détail

EasiHeat Unité de production d'eau chaude

EasiHeat Unité de production d'eau chaude IM-S027-05 CH-BEf-02 3.7.1.140 EasiHeat Unité de production d'eau chaude 1. Sécurité 2. Général 3. Montage 4. Mise en route 5. Fonctionnement 6. Entretien MONTAGE et ENTRETIEN Modifications réservées EasiHeat

Plus en détail

Thermorégulateurs Easitemp 95 et 150 eau. La solution compacte & économique

Thermorégulateurs Easitemp 95 et 150 eau. La solution compacte & économique Thermorégulateurs Easitemp 95 et 150 eau La solution compacte & économique Thermorégulateurs Easitemp 95 et 150 Eau Easitemp définit un nouveau standard pour les thermorégulateurs. Un concept innovant,

Plus en détail

L efficience énergétique...

L efficience énergétique... ......Une technique intelligente de régulation au service Edgar Mayer Product Manager CentraLine c/o Honeywell GmbH 02 I 2009 Grâce aux techniques de régulation intelligentes d aujourd hui, il est possible

Plus en détail

Sécheurs par adsorption à régénération par chaleur

Sécheurs par adsorption à régénération par chaleur Sécheurs par adsorption à régénération par chaleur Des Systèmes Complets Innovants Pourquoi l air comprimé sec et propre est-il important? Dans la majorité des industries, l air comprimé est un fluide

Plus en détail

MARCHE PUBLIC RELATIF A L ENTRETIEN ET AU DEPANNAGE DES CHAUFFERIES DES BATIMENTS COMMUNAUX ET DES CHAUDIERES INDIVIDUELLES DES LOGEMENTS COMMUNAUX

MARCHE PUBLIC RELATIF A L ENTRETIEN ET AU DEPANNAGE DES CHAUFFERIES DES BATIMENTS COMMUNAUX ET DES CHAUDIERES INDIVIDUELLES DES LOGEMENTS COMMUNAUX DEPARTEMENT DE SAONE ET LOIRE VILLE DE SANVIGNES-LES-MINES MARCHE PUBLIC RELATIF A L ENTRETIEN ET AU DEPANNAGE DES CHAUFFERIES DES BATIMENTS COMMUNAUX ET DES CHAUDIERES INDIVIDUELLES DES LOGEMENTS COMMUNAUX

Plus en détail

T.I.P.E. Optimisation d un. moteur

T.I.P.E. Optimisation d un. moteur LEPLOMB Romain Année universitaire 2004-2005 LE ROI Gautier VERNIER Marine Groupe Sup B, C, D Professeur accompagnateur : M. Guerrier T.I.P.E Optimisation d un moteur 1 1. Présentation du fonctionnement

Plus en détail

Technique de pointe. Une autoconsommation efficace de l'électricité solaire

Technique de pointe. Une autoconsommation efficace de l'électricité solaire Technique de pointe Une autoconsommation efficace de l'électricité solaire Concernant les installations photovoltaïques destinées aux particuliers, jusqu à présent il n a pas été fait de distinction en

Plus en détail

C 248-02. Nias Dual. Chaudières murales à tirage forcé, foyer étanche et ballon eau chaude sanitaire. chaleur à vivre. Nord Africa

C 248-02. Nias Dual. Chaudières murales à tirage forcé, foyer étanche et ballon eau chaude sanitaire. chaleur à vivre. Nord Africa C 248-02 made in Italy Nias Dual Chaudières murales à tirage forcé, foyer étanche et ballon eau chaude sanitaire chaleur à vivre FR Nord Africa Chaudières murales à tirage forcé, foyer étanche et ballon

Plus en détail

Formation Bâtiment Durable :

Formation Bâtiment Durable : Formation Bâtiment Durable : Rénovation à haute performance énergétique: détails techniques Bruxelles Environnement LE SYSTÈME DE CHAUFFAGE ET LA PRODUCTION D EAU CHAUDE SANITAIRE François LECLERCQ et

Plus en détail

Mesures calorimétriques

Mesures calorimétriques TP N 11 Mesures calorimétriques - page 51 - - T.P. N 11 - Ce document rassemble plusieurs mesures qui vont faire l'objet de quatre séances de travaux pratiques. La quasi totalité de ces manipulations utilisent

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Edition janvier 2009

Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Edition janvier 2009 Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Contenu et but Cette aide à l application traite des exigences à respecter concernant la part maximale

Plus en détail

Equipement d un forage d eau potable

Equipement d un forage d eau potable Equipement d un d eau potable Mise en situation La Société des Sources de Soultzmatt est une Société d Economie Mixte (SEM) dont l activité est l extraction et l embouteillage d eau de source en vue de

Plus en détail

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre Bilan GES Entreprise Bilan d émissions de Gaz à effet de serre Conformément à l article 75 de la loi n 2010-788 du 12 Juillet 2010 portant engagement national pour l environnement (ENE) Restitution pour

Plus en détail

L offre DualSun pour l eau chaude et le chauffage (SSC)

L offre DualSun pour l eau chaude et le chauffage (SSC) L offre DualSun pour l eau chaude et le chauffage (SSC) SSC signifie : Système Solaire Combiné. Une installation SSC, est une installation solaire qui est raccordée au circuit de chauffage de la maison,

Plus en détail

Fiche d application. 7 octobre 2013 1.0

Fiche d application. 7 octobre 2013 1.0 MINISTÈRE DE L ÉGALITÉ DES TERRITOIRES ET DU LOGEMENT MINISTÈRE DE L ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE ET DE L ÉNERGIE Diagnostic de Performance Energétique Fiche d application Date Version 7 octobre

Plus en détail

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. confort = équilibre entre l'homme et l'ambiance

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. confort = équilibre entre l'homme et l'ambiance TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR Tâche T4.2 : Mise en service des installations Compétence C1.2 : Classer, interpréter, analyser Thème : S5 : Technologie des installations frigorifiques

Plus en détail

Chauffage à eau chaude sous pression

Chauffage à eau chaude sous pression Chauffage à eau chaude sous pression par René NARJOT Ingénieur de l École Centrale des Arts et Manufactures 1. Généralités... B 2 425-2 1.1 Domaine d utilisation de l eau chaude sous pression... 2 1.2

Plus en détail

Thermostate, Type KP. Fiche technique MAKING MODERN LIVING POSSIBLE

Thermostate, Type KP. Fiche technique MAKING MODERN LIVING POSSIBLE MAKING MODERN LIVING POSSIBLE Fiche technique Thermostate, Type KP Les thermostats de type KP sont des commutateurs électriques unipolaires dont le fonctionnement est lié à la température (SPDT). Un thermostat

Plus en détail

Page : 1 de 6 MAJ: 01.03.2010. 2-10_Chaudieresbuches_serie VX_FR_010310.odt. Gamme de chaudières VX avec régulation GEFIcontrol :

Page : 1 de 6 MAJ: 01.03.2010. 2-10_Chaudieresbuches_serie VX_FR_010310.odt. Gamme de chaudières VX avec régulation GEFIcontrol : Page : 1 de 6 Gamme de chaudières VX avec régulation GEFIcontrol : Référence article 058.01.250: VX18 Référence article 058.01.251: VX20 Référence article 058.01.252: VX30 Chaudière spéciale à gazéification

Plus en détail

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage I) Qu'est-ce qu'un savon et comment le fabrique-t-on? D'après épreuve BAC Liban 2005 Physique-Chimie dans la cuisine Chapitre 3 1/6 1- En vous

Plus en détail

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4) PHYSIQUE-CHIMIE 4 ème TRIMESTRE 1 PROGRAMME 2008 (v2.4) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Les Cours Pi e-mail : lescourspi@cours-pi.com site : http://www.cours-pi.com

Plus en détail

FICHE DE DONNEES DE SECURITE

FICHE DE DONNEES DE SECURITE PAGE 1/7 DATE DE MISE A JOUR : 16/11/2011 1/ - IDENTIFICATION DU PRODUIT ET DE LA SOCIETE Identification du produit : Gaines, films, housses, et/ou sacs transparents et colorés en polyéthylène. Famille

Plus en détail

VOTRE EAU CHAUDE ELECTRIQUE

VOTRE EAU CHAUDE ELECTRIQUE G U I D E VOTRE EAU CHAUDE ELECTRIQUE SICAE Une réduction d'impôts peut être obtenue (sous certaines conditions) lors du remplacement de votre chauffe-eau électrique. Renseignez-vous auprès du Centre des

Plus en détail

Prescriptions Techniques

Prescriptions Techniques Prescriptions Techniques Application du décret n 2004-555 du 15 juin 2004 relatif aux prescriptions techniques applicables aux Canalisations et Raccordements des installations de transport, de distribution

Plus en détail

SOLUTIONS TECHNOLOGIQUES D AVENIR

SOLUTIONS TECHNOLOGIQUES D AVENIR CPTF et CSC CYCLES COMBINES A GAZ (CCG) COGÉNÉRATION DÉVELOPPEMENT DES RENOUVELABLES SOLUTIONS DE STOCKAGE CPTF ET CSC Le parc thermique est un outil essentiel pour ajuster l offre et la demande, indispensable

Plus en détail

Comment réduire les émissions de CO 2? Les réponses de l'ifp

Comment réduire les émissions de CO 2? Les réponses de l'ifp Septembre 2005 Comment réduire les émissions de CO 2? Les réponses de l'ifp L'IFP inscrit les travaux sur la réduction des émissions de CO 2 au cœur de ses programmes de recherche. La stratégie de l'ifp

Plus en détail

Matériel de laboratoire

Matériel de laboratoire Matériel de laboratoire MATERIAUX UTILISE... 1 L'APPAREILLAGE DE LABORATOIRE... 1 a) Les récipients à réaction... 2 b) La verrerie Graduée... 2 MATERIEL DE FILTRATION... 6 FILTRATION SOUS VIDE AVEC UN

Plus en détail

Les Énergies Capter et Stocker le Carbone «C.C.S»

Les Énergies Capter et Stocker le Carbone «C.C.S» Les Énergies Capter et Stocker le Carbone «C.C.S» La lutte contre le changement climatique Initiative concertée au niveau mondial Pour limiter à 2 à 3 C l élévation moyenne de la température, il faudrait

Plus en détail

Présentation du 04 décembre 2014 CONFERENCE POLLUTEC

Présentation du 04 décembre 2014 CONFERENCE POLLUTEC Présentation du 04 décembre 2014 CONFERENCE POLLUTEC Retour d expérience : Exemples concrets de mises en oeuvre de solutions suite à des audits énergétiques dont celui d une Pompe A Chaleur Haute Température

Plus en détail

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.» Chapitre 5 / TP 1 : Contrôle qualité de l'eau de Dakin par dosage par étalonnage à l'aide d'un spectrophotomètre Objectif : Vous devez vérifier la concentration massique d'un désinfectant, l'eau de Dakin.

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

P7669 MACHINE A VAPEUR MINIATURE P7669R A mouvement alternatif P7669T Turbine

P7669 MACHINE A VAPEUR MINIATURE P7669R A mouvement alternatif P7669T Turbine P7669 MACHINE A VAPEUR MINIATURE P7669R A mouvement alternatif P7669T Turbine Caractéristiques Modèle de démonstration d un système à vapeur représentatif d un Système d Alimentation Industriel Appareil

Plus en détail

TRAVAUX DIRIGÉS D'ÉLECTRONIQUE DE PUISSANCE

TRAVAUX DIRIGÉS D'ÉLECTRONIQUE DE PUISSANCE TRAVAUX DIRIGÉS D'ÉLECTRONIQUE DE PUISSANCE COMPARAISON DE PROCESSUS DE CHAUFFAGE DE L'EAU, ÉTUDE DE LA TARIFICATION EDF : coût de l'élaboration quotidienne d'une tasse de café Objectifs du TD : vous faire

Plus en détail

1,2,3 SOLEIL EN AVANT PREMIERE

1,2,3 SOLEIL EN AVANT PREMIERE CONFERENCE DERBI 1,2,3 SOLEIL EN AVANT PREMIERE 1er SYSTEME SOLAIRE COMBINE La climatisation Le chauffage L eau chaude sanitaire HISTORIQUE Fin 2003 : Lancement du projet Début 2005 : 1er prototype opérationnel

Plus en détail

DOCUMENT RESSOURCE SONDES PRESENTATION

DOCUMENT RESSOURCE SONDES PRESENTATION Documentation technique DOCUMENT RESSOURCE SONDES PRESENTATION SEP du LPo N-J Cugnot 93 Neuilly/Marne LE CALCULATEUR Il est placé dans le boîtier à calculateurs, sur le passage de roue avant droit. Les

Plus en détail

Une introduction aux chauffe-eau solaires domestiques

Une introduction aux chauffe-eau solaires domestiques Une introduction aux chauffe-eau solaires domestiques Les objectifs d'apprentissage: Cet exposé vous informera au sujet de l utilisation de l énergie solaire afin de produire de l eau chaude domestique,

Plus en détail

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire Énergie Table des A. Énergie 1. 2. 3. La centrale Énergie Table des Pour ce chapitre du cours il vous faut à peu près 90 minutes. A la fin de ce chapitre, vous pouvez : -distinguer entre fission et fusion.

Plus en détail

Systèmes R-22 : à quels fluides frigorigènes les convertir? Serge FRANÇOIS*

Systèmes R-22 : à quels fluides frigorigènes les convertir? Serge FRANÇOIS* TE HNIQUE Systèmes R-22 : à quels fluides frigorigènes les convertir? Serge FRANÇOIS* Le R-22, fluide frigorigène de type HCFC, sera interdit dans les installations neuves dès 2010. Dans l'existant, les

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Soltherm Personnes morales

Soltherm Personnes morales Soltherm Personnes morales Annexe technique Valable pour les travaux faisant l objet d une facture finale datée au plus tôt le 1 er janvier 2015 ou dans des maisons unifamiliales/appartements dont la déclaration

Plus en détail

Automobile & Mécanique agricole. Sources CNIDEP, IBGE

Automobile & Mécanique agricole. Sources CNIDEP, IBGE Automobile & Mécanique agricole Sources CNIDEP, IBGE I. Etapes de la fabrication (ou du service) et procédés utilisés L essentiel de l activité d une carrosserie consiste à réparer puis à remettre en peinture

Plus en détail

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine «Capteur autonome eau chaude» Choix de la gamme ECOAUTONOME a retenu un capteur solaire

Plus en détail

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX T ale S Introduction : Une réaction nucléaire est Une réaction nucléaire provoquée est L'unité de masse atomique est une unité permettant de manipuler aisément

Plus en détail

Plans API pour Garnitures Mécaniques

Plans API pour Garnitures Mécaniques Plans API pour Garnitures Mécaniques Garnitures Simples plans 01, 02, 11, 13, 14, 21, 23, 31, 32, 41 Garnitures Duales plans 52, 53A, 53B, 53C, 54 Garnitures avec Quench plans 62, 65 Garnitures Gaz plans

Plus en détail

VERSION 2011. Ce document doit être complété et signé par l installateur agréé Soltherm ayant réalisé les travaux

VERSION 2011. Ce document doit être complété et signé par l installateur agréé Soltherm ayant réalisé les travaux VERSION 2011 Valable pour les travaux faisant l objet d une facture finale datée au plus tôt du 1 er janvier 2011. Ce document doit être complété et signé par l installateur agréé Soltherm ayant réalisé

Plus en détail

Synthèse et propriétés des savons.

Synthèse et propriétés des savons. Synthèse et propriétés des savons. Objectifs: Réaliser la synthèse d'un savon mise en évidence de quelques propriétés des savons. I Introduction: 1. Présentation des savons: a) Composition des savons.

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

Comment économiser de l électricité dans le bloc traite?

Comment économiser de l électricité dans le bloc traite? Comment économiser de l électricité dans le bloc traite? La consommation électrique du bloc traite représente 20 % en moyenne de la consommation énergétique totale d une exploitation laitière. Le tank

Plus en détail

Que nous enseigne la base de données PAE?

Que nous enseigne la base de données PAE? Que nous enseigne la base de données PAE? Séminaire auditeurs PAE 8 juin 2009 Nicolas Heijmans, ir Division Energie et Climat CSTC - Centre Scientifique et Technique de la Construction 00/00/2006 Contenu

Plus en détail

Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage. M. Prévost

Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage. M. Prévost Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage M. Prévost Version V2/ nov 2006 Structure du cours Partie 1 : Introduction Partie 2 : Mise en contact de Gaz et de

Plus en détail

Origine du courant électrique Constitution d un atome

Origine du courant électrique Constitution d un atome Origine du courant électrique Constitution d un atome Electron - Neutron ORIGINE DU COURANT Proton + ELECTRIQUE MATERIAUX CONDUCTEURS Électrons libres CORPS ISOLANTS ET CORPS CONDUCTEURS L électricité

Plus en détail

Theta Double service BFC, SGE, SGS pour 20/30/40 kw capacité de chauffe

Theta Double service BFC, SGE, SGS pour 20/30/40 kw capacité de chauffe heta Double service BFC, SGE, SGS pour 20/30/40 kw capacité de chauffe Un module pour la production de l ECS et du chauffage central Echangeur à plaques avec circulateur ECS primaire, une vanne trois voies,

Plus en détail

SCHEMATHEQUE 2004 Juin 2005

SCHEMATHEQUE 2004 Juin 2005 SCHEMATHEQUE 2004 Juin 2005 1 / 13 SOMMAIRE CLASSIFICATION DES APPAREILS 3 TUYAUTERIE 4 ACCESSOIRES ET ROBINETTERIE 5 APPAREILS DE SEPARATION 6 COLONNES ET REACTEURS 7 ECHANGEURS DE CHALEUR 8 MANUTENTION

Plus en détail

SCIENCES TECHNOLOGIES

SCIENCES TECHNOLOGIES R essources MICHEL WAUTELET SCIENCES TECHNOLOGIES et SOCIÉTÉ Questions et réponses pour illustrer les cours de sciences De Boeck Introduction générale 5 Sciences, technologies, société 1. Quels sont les

Plus en détail

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage Tc Le système solaire combiné (SSC) Domosol de ESE est basé sur le Dynasol 3X-C. Le Dynasol 3X-C est l interface entre les

Plus en détail

en Appartement Besoins, Choix du Système, Coûts...

en Appartement Besoins, Choix du Système, Coûts... Le Chauffage Individuel en Appartement Besoins, Choix du Système, Coûts... www.ale-lyon.org >> Quel est le meilleur système de chauffage chez moi? Il n y a pas de réponse unique, chaque logement et chaque

Plus en détail

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements 7 juin 2012 Francis Peters Bien qu il n y ait pas de nano particules dans les usines qui produisent les mélanges

Plus en détail

FICHE TECHNIQUE ENERGIE «Eau Chaude Sanitaire - ECS»

FICHE TECHNIQUE ENERGIE «Eau Chaude Sanitaire - ECS» FICHE TECHNIQUE ENERGIE «Eau Chaude Sanitaire - ECS» Sources : CNIDEP et ADEME A. ETAT DE L ART 1. Caractéristiques générales Que demande t-on à une production d eau chaude sanitaire? Fournir une eau en

Plus en détail