TP d informatique n 11 Intégration numérique d ODE

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "TP d informatique n 11 Intégration numérique d ODE"

Transcription

1 Inégraion numérique d ODE PCSI I Méhode d Euler La modélisaion d un grand nombre de problèmes ayan leur origine en géomérie, mécanique, physique, sciences de l ingénieur, chimie, biologie, économie ou démographie... condui à rechercher les soluions de sysèmes de la forme : { y () = f(y(),) équaion différenielle y( i ) = y 0 condiion iniiale On appelle problème de Cauchy la recherche des soluions d un el sysème. Le cours de mah donne des condiions suffisanes poran sur f pour que ce problème admee une seule soluion. Nous nous placerons dans la suie dans un cas où le problème adme bien une unique soluion sur l inervalle [ i, f ]. Pour rouver des valeurs approchées de y() à parir d une condiion iniiale y( i ) = y i, on peu employer une méhode rès simple la méhode d Euler. On décide de calculer les valeurs de y à des insans successifs n = i + nδ, séparés d une durée δ appelée pas de emps. Noons y n = y( n ). Pour obenir approximaivemen y n+1 à parir y n, on calcule d abord y ( n ) = f(y n,) puis on sui la angene à la courbe. Cela s exprime par un développemen de Taylor à l ordre 1 : y n+1 y n + δ y ( n ) y y n+1 y n Soi y n+1 y n + δ f(y n, n ) n n+1 À parir de y 0, cee relaion perme d obenir de proche en proche des valeurs approchées de y 1, y 2,... y n,... y N ec. II Les bases Exercice n 1 Uilisez la méhode d Euler pour racer une approximaion de la primiive 1 de la foncion x e x2 qui vau 1 en x = 5. On pourra se limier à l inervalle x [ 5,10] pour le racé. e 2 d v() x 2 x 1. À peu de chose près, cee foncion correspond à la foncion d erreur de Gauss : e 2 d π 0 1

2 Inegraion numérique d ODE Exercice n 2 Uilisez la méhode d Euler pour racer une soluion approximaive de l équaion différenielle suivane 2 : v () = v() v() 10 ; v(0) = 5 On pourra se limier à l inervalle x [0,5] pour le racé. Exercice n 3 En réuilisan e modifian légèremen vos codes précédens, racer une soluion approximaive de l équaion différenielle suivane 3 (où ω es une consane que l on pourra faire varier) : du() + u() = cos(ω) ; u(0) = 0 d [ ] On pourra superposer sur la même figure la soluion exace : u() = 1 1+ω 2 cos(ω arcan(ω)) e 1+ω 2 III Pour le second ordre 1. Résoluion d un sysème du premier ordre Une méhode fréquene es de se ramener à un sysème d équaion du premier ordre : On se propose de résoudre ainsi l équaion différenielle suivane, correspondan à un oscillaeur de Van der Pol en régime libre 4 : d 2 x() d 2 ǫω 0 ( 1 x 2 () ) () d + ω 2 0 x() = 0 Inroduire la variable v() = () e présener les équaions sous la forme ci dessous à gauche. d On en dédui le schéma d inégraion ci-dessous à droie. { () d dv() d = f 1 (x,v,) = f 2 (x,v,) { x( + d) x() + f1 (x(),v(),) d v( + d) v() + f 2 (x(),v(),) d Exercice n 4 Inégrer ce sysème avec les condiions iniiales suivanes : x(0) = 0,5, v(0) = 0 pour les paramères ω 0 = 5 e ǫ = 2 e avec au moins 1000 poins enre = 0 e = 10 (mais meez des paramères dans les équaions pour pouvoir faire varier les valeurs). Tracer ensuie sur un même graphique x() e v() e dans une aure fenêre le porrai de phase de l oscillaeur (courbe paramérique avec en abscisse x() e en ordonnée v()). Teser pour plusieurs valeurs de epsi e de x(0) (en pariculier «rès pei» ou «rès grand» ) x(), v() v() x() 2. Il s agi de l équaion différenielle d une bille jeée dans l air vers le hau avec des froemen quadraiques. 3. Il s agi ici de l équaion différenielle d un filre avec en enrée un signal sinusoïdal. En faisan varier ω, on pourra observer différens régimes. ( 4. Le erme ǫω 0 1 x 2 () ) () d es rès inéressan d un poin de vue de la physique : il crée une amplificaion lorsqu il es négaif, c es à dire si x es suffisammen faible, e une aénuaion si x es suffisammen élevé. On end vers un cycle limie dans le porrai de phase. PCSI Page 2/4

3 Inegraion numérique d ODE 2. Uilisaion d ODEINT La foncion odein de scipy nécessie elle aussi un sysème d équaion du premier ordre. Exercice n 5 Uilisez la foncion odein du module scipy.inegrae pour résoudre l équaion différenielle suivane correspondan au mouvemen d un pendule amori par des froemens fluides. θ + λ θ θ + ω 2 0 sin(θ) = 0 (ω 0 = 1 ; λ = 1 ; θ( = 0) = 3 ; θ( = 0) = 0) Dans un premier emps, on programmera la foncioneq(y,) qui renvoie une approximaion des dérivés des variables du sysème sous forme d une lise (comme dans le cours). Tracez ensuie l évoluion emporelle e la rajecoire de phase correspondane (dans deux figures séparées). On rappelle qu odein renvoie un ableau conenan les esimaions des différenes variables à chaque insan. 3. Méhode de Verle La méhode de Verle es fréquemmen uilisée en physique pour résoudre des équaions différenielles d ordre 2 (comme celles qui apparaissen en mécanique). Elle se base sur l approximaion suivane : y (x) y (x + 0,5) y (x 0,5) = y(x+) y(x) y(x) y(x ) = y(x + ) 2y(x) + y(x ) 2 Dans le cas d une équaion différenielle du ype y (x) = f(y(x),x), on en dédui le schéma d inégraion suivan : y(x + ) 2y(x) y(x ) + 2 f(y(x),x) Le premier pas de emps es raié à par puisque dans nore problème de Cauchy, nous disposons de y(x 0 ) e y (x 0 ). On uilise un développemen de Taylor à l ordre 2 : y(x 0 + ) = y(x 0 ) + y (x 0 ) y (x 0 ) 2 = y(x 0 ) + y (x 0 ) f(y(x 0),x 0 ) 2 1 iniialiser les variables ; 2 y[1] y[0] + y ; 3 (Le premier pas de emps es raié à par en uilisan un développemen de Taylor car on ne dispose pas encore de θ au pas de emps précéden); 4 pour i 1 à n 1 faire 5 y[i + 1] 2y[i] y[i 1] fin PCSI Page 3/4

4 Inegraion numérique d ODE Exercice n 6 Inégrer à l aide de cee méhode l équaion différenielle suivane enre -1 e 4 : y (x) y + y 3 = sin(x) ; y( 1) = 0 ; y ( 1) = 0 IV Un exemple de problème y y 6y = 0 Inégrez avec la méhode de vore choix l équaion différenielle suivane : y(0) = 1 y (0) = 2 soluion exace es la foncion e 2 don la Exercice n 7 Tracez la soluion exace ainsi que vore soluion approchée pour 0 2, que pensez vous de vore résoluion numérique? Réponse 5 ci-dessous. Exercice n 8 Tracez la soluion exace ainsi que vore soluion approchée pour 0 13, que pensez vous de vore résoluion numérique? Réponse 6 ci-dessous. Exercice n 9 Expliquez ce phénomène. Réponse 7 ci-dessous. V Pour la prochaine fois Exercice n 10 Expliquer le principe de la méhode d Euler e en déduire le schéma correspondan pour résoudre une équaion différenielle de la forme y = f(y,) (oui... encore! c es imporan). Exercice n 11 Résoudre l équaion différenielle y = 3y sur [0,10] avec la condiion iniiale y(0) = 1. Tracez la soluion avec un pas = 0.68 e comparez avec la soluion exace e 3. Exercice n 12 On se propose de résoudre la même équaion différenielle avec un schéma implicie, c es y( + d) y() y( + d) y() à dire que le schéma = 3y() es remplacé par = 3y(+d). En d d déduire le nouvel algorihme e racer la soluion avec le même pas. Commener. 5. Réponse : Si vous avez bien codé, cela doi se superposer assez bien. 6. Réponse : Si vous avez bien codé, la soluion numérique doi diverger alors que que la soluion exace end vers 0 7. Réponse : les soluions générales de l équaion homogènes son de la forme Ae 2 + Be 3. À cause des arrondi, le faceur B qui devrai êre nul avec nos condiions iniiales ne l es pas ou à fai. La soluion éan une exponenielle croissane, même si B es de l ordre de 2 52, la soluion fini par diverger rès rapidemen PCSI Page 4/4

5 Inegraion numérique d ODE Table des maières I Méhode d Euler II Les bases III Pour le second ordre 1. Résoluion d un sysème du premier ordre 2. Uilisaion d ODEINT 3. Méhode de Verle IV Un exemple de problème V Pour la prochaine fois PCSI Lycée Poincaré

On va pouvoir alors calculer la valeur de la fonction y à un instant t après : dy(t) La méthode d Euler

On va pouvoir alors calculer la valeur de la fonction y à un instant t après : dy(t) La méthode d Euler La méhode d Euler Inrocion : ce documen doi êre lu de façon acive ; il ne fau pas se conener de le lire en disan «Ah ouais, compris...». Il fau réécrire les calculs sur une feuille à par pour bien voir

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

DUT GEII - DUT 2 Alternance Travaux Pratiques d Électronique Séance n 3

DUT GEII - DUT 2 Alternance Travaux Pratiques d Électronique Séance n 3 DUT GEII - DUT 2 Alernance Travaux Praiques d Élecronique Séance n 3 Mercredi Décembre 203 Le bu du TP es de faire une synhèse des connaissances sur les circuis RC. Les compéences suivanes devron êre acquises

Plus en détail

Devoir de Mathématiques 3 : corrigé

Devoir de Mathématiques 3 : corrigé PCSI 4-5 Mahémaiques Lycée Berran de Born Devoir de Mahémaiques 3 : corrigé Exercice. Éude d une foncion en noaion puissance On considère la foncion f définie par f(x) = x x = e x ln(x) La foncion foncion

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

Montrer que la fonction

Montrer que la fonction Théorème de convergence dominée. Théorème d inégraion erme à erme. Théorème de coninuié des inégrales à paramère. Caracère k des foncions définies par une inégrale. Monrer que la foncion L : x cos() e

Plus en détail

Équations différentielles

Équations différentielles V. Équaions différenielles 1 Primiive d une foncion Définiion 1. On appelle primiive d une foncion f une soluion de l équaion différenielle y = f. Exercice 1. Déerminer une soluion de l équaion différenielle

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt Donner une primiive sur un ensemble à préciser de f : +. Corrigé : La foncion f es définie sur R, ainsi on va en déerminer une primiive sur ], [ ou sur ], + [. On a : + d + d uu + du Ceci en posan u, on

Plus en détail

25, avenue des Martyrs Grenoble. tél : fax :

25, avenue des Martyrs Grenoble. tél : fax : Mon nom : Mes coordonnées : Benjamin Canals CNRS Laboraoire Louis Néel 5, avenue des Maryrs 384 Grenoble él : 4 76 88 1 38 fa : 4 76 88 11 91 email : canals@grenoble.cnrs.fr Plan du cours : Vibraions I.

Plus en détail

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1 Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. 1. Equaions différenielles linéaires du 1 er ordre 1.1 Présenaion Résoudre une équaion

Plus en détail

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1 Lycée Thiers CORRECTION FX 6 E D abord, les réponses : A = ; B = 3 D = ; C = 3 9 e 8 ; E = e ; F = ln e + G = e ; H = π ; I = J = π + 3 8 ; K = 3π 8 ; L = + e π M = ln ; N = π ; P = π 8 ln 4 Q = e + ln

Plus en détail

Pondichéry mai Partie A

Pondichéry mai Partie A Exercice 6 poins Les paries A e B peuven êre raiées de façon indépendane. Dans une usine, un four cui des céramiques à la empéraure de 000 C. À la fin de la cuisson, il es éein e il refroidi. On s inéresse

Plus en détail

Correction de l exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Correction de l exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Correcion de l exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» Quesion : calculer numériquemen la duraion e la convexié de l obligaion de coure maurié e de l obligaion de longue

Plus en détail

4 LA MÉTHODE D EULER. Sommaire. Ce chapitre est accessible en ligne à l adresse :

4 LA MÉTHODE D EULER. Sommaire. Ce chapitre est accessible en ligne à l adresse : 4 LA MÉTHODE D EULER Sommaire 4.1 Généraliés........................................ 31 4.1.1 L approche numérique.................................. 31 4.1.2 Travail préliminaire...................................

Plus en détail

D.M : Résolution des équations différentielles Méthode d'euler

D.M : Résolution des équations différentielles Méthode d'euler D.M : Résoluion des équaions différenielles Méhode d'uler I - La méhode d'uler : les bases mahémaiques - définiion du nombre dérivée en un poin Soi y = f(x la foncion considérée (supposée coninue e dérivable

Plus en détail

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100 Exercice Dans chacune des siuaions suivanes, déerminer la valeur de.. Le chiffre des venes d un magazine a augmené de % puis diminué de %. Globalemen il a augmené de 6%. D après l énoncé, on a :,6 = +%

Plus en détail

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7).

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7). Corrigé du TD n 4 Eercice. Nous allons calculer à chaque fois une primiive. Connaissan une primiive, les primiives son les foncions égales à la primiive calculée à une consane près (la consigne éan de

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it)

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it) Lycée du Parc PCSI 84 15-16 Devoir surveillé corrigé Eercice 1 1 En uilisan les formules d Euler, on linéarise 4 (cos ( : ( e 4 (cos i e i 4 ( e i + e i ( = i = 1 ( e 4i 6 4e i + 6 4e i + e 4i ( e i +

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Lycée Hoche Versailles Automatique Asservissement 3

Lycée Hoche Versailles Automatique Asservissement 3 Auomaique Asservissemen Idenificaions emporelles Lycée Hoche Versailles Auomaique Asservissemen Philippe Bourzac Auomaique Asservissemen Idenificaions emporelles ASSERVISSEMENT IDENTIFICATIONS TEMPORELLES.

Plus en détail

Deuxième problème : Électrocinétique

Deuxième problème : Électrocinétique MP Physique-chimie. Devoir surveillé DS n - : corrigé Deuxième problème : Élecrocinéique A - égime sinusoïdal permanen xpression de l ampliude complexe de la ension u ( ) : // Z Nous obenons u par division

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Le dipôle RC série (2) Décharge du condensateur Influence des grandeurs caractéristiques des composants (Correction) i +

Le dipôle RC série (2) Décharge du condensateur Influence des grandeurs caractéristiques des composants (Correction) i + Le dipôle R série (2) Décharge du condensaeur Influence des grandeurs caracérisiques des composans (orrecion) ircui d éude On consiue le circui élecrique suivan. e circui perme de suivre la charge (posiion

Plus en détail

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de

dt Transformation de l équation différentielle en utilisant les théorèmes des dérivées successives en fonction de Transformée de Lalace : résoluion d équaions différenielles linéaires Méhode Résoluion de l équaions différenielles du remier ordre : T ds ( ) + s( ) = Ke( ). d Transformaion de l équaion différenielle

Plus en détail

Contrôle du ballant sur une grue

Contrôle du ballant sur une grue Conrôle du ballan sur une grue es conduceurs de grue doiven acuellemen gérer le déplacemen d une charge e maîriser les balancemens indésirables de celle-ci Divers équipemeniers de grues on déposé des breves

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Série n 2 : Résolution numériques des EDO.

Série n 2 : Résolution numériques des EDO. Universié Claude Bernard, Lyon I Licence Sciences & Tecnologies 43, boulevard 11 novembre 1918 Spécialié Maémaiques 696 Villeurbanne cedex, France Opion: MAO 007-008 Série n : Résoluion numériques des

Plus en détail

TD 3 - Modélisation et comportement des systèmes linéaires continus et invariants asservis(c2-2)

TD 3 - Modélisation et comportement des systèmes linéaires continus et invariants asservis(c2-2) LYCÉE LA MARTINIÈRE MONPLAISIR LYON SCIENCES INDUSTRIELLES POUR L INGÉNIEUR CLASSE PRÉPARATOIRE M.P.S.I. ANNÉE 017-018 C : MODÉLISATION DES SYSTÈMES ASSERVIS TD 3 - Modélisaion e comporemen des sysèmes

Plus en détail

CI-2 : MODÉLISER ET SIMULER LES SYS-

CI-2 : MODÉLISER ET SIMULER LES SYS- CI-2 : MODÉLISER ET SIMULER LES SYS- TÈMES LINÉAIRES CONTINUS INVARIANTS. CI-2-2 MODÉLISER LES SIGNAUX ET LES FONCTIONS DE TRANSFERT. PASSER DU DOMAINE TEMPOREL AU DOMAINE SYMBOLIQUE DE LAPLACE ET INVERSEMENT.

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire :

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire : LOGARITHME NEPERIEN 1. Exercices préliminaires : 11. Méhode approximaive pour déerminer une aire : On veu déerminer l aire siuée sous la courbe délimiée par la courbe, l axe des x, les 2 vericales passan

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n'es pas nécessairemen le graphe d'une foncion ; c'es pourquoi on parle de courbe paramérée e non pas

Plus en détail

PEUT-ON NEGLIGER L ACTION DE L AIR LORS DU LANCER D UN BALLON DE BASKET?

PEUT-ON NEGLIGER L ACTION DE L AIR LORS DU LANCER D UN BALLON DE BASKET? L acion d Euler... C es qui ce ype, Un enraineur de NBA??? Terminale S TP de physique PEUT-ON NEGLIGER L ACTION DE L AIR LORS DU LANCER D UN BALLON DE BASKET? Bu : - Uiliser le logiciel avimeca e un ableur

Plus en détail

SCIENCES PHYSIQUES PR: RIDHA BEN YAHMED

SCIENCES PHYSIQUES PR: RIDHA BEN YAHMED Durée 2h 25-10-2016 4PémeP Sc expr1,2 SCIENCES PHYSIQUES 0BDEVOIR DE CONTROLE N 1 PR: RIDHA BEN YAHMED NB : Chaque résula doi êre souligné. La claré, la précision de l explicaion renren en compe dans la

Plus en détail

Résolution numérique d'une équation différentielle ordinaire du premier ordre. Interprétation géométrique et résolution graphique

Résolution numérique d'une équation différentielle ordinaire du premier ordre. Interprétation géométrique et résolution graphique 12 1-2_EQ-DIFFERENTIELLES.nb 1.2 Résoluion numérique d'une équaion différenielle ordinaire du premier ordre Inerpréaion géomérique e résoluion graphique Dans le 1.1, nous avons considéré une équaion différenielle

Plus en détail

MAT265 Équations différentielles Transformées de Laplace : résumé

MAT265 Équations différentielles Transformées de Laplace : résumé MAT65 Équaions différenielles Transformées de Laplace : résumé 1. La able de ransformées de Laplace : exemples d uilisaion michel.beaudin@esml.ca mars 19 Même si l on se limie aux É.D. à coefficiens consans,

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

UE LM336 Année Feuille de TD 4

UE LM336 Année Feuille de TD 4 Universié Pierre & Marie Curie Licence de Mahémaiques L3 UE LM336 Année 2013 14 Feuille de TD 4 Exercice 1 Reprendre l exercice 2 de la feuille 1 de manière rigoureuse Concrèemen, pour chacune des équaions

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

L équation de Schrödinger dépendante du temps

L équation de Schrödinger dépendante du temps Universié Pierre e Marie Curie, Paris VI Licence de physique ENS Cachan PHYTEM PHYSIQUE NUMÉRIQUE TD 10 L équaion de Schrödinger dépendane du emps La résoluion de l équaion de Schrödinger indépendane du

Plus en détail

6MÉTHODESDERUNGE-KUTTA

6MÉTHODESDERUNGE-KUTTA 6MÉTHODESDERUNGE-KUTTA Les echniques de Runge-Kua son des schémas numériques à un pas qui permeen de résoudre les équaions di érenielles ordinaires. Elles fon paries des méhodes les plus populaires de

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par :

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par : TS, devoir maison Avril Eercice, Anilles-Guyane, sepembre Soi f la foncion définie sur ; par f () = f () = f () = (ln ) ln( ), pour ; où ln désigne la foncion logarihme népérien. On noe C sa courbe représenaive

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

Equations différentielles du second ordre

Equations différentielles du second ordre Equaions différenielles du second ordre Nous allons aborder dans ce fichier la noion d équaions différenielles du second ordre e monrer commen les résoudre dans les cas rès pariculiers mais combien uiles

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0.

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0. EXERCICES SUR LES ÉQUATIONS DIFFÉRENTIELLES Exercice 1 Au cours de la raversée d'un milieu ransparen, l'énergie lumineuse es d'une par absorbée par le milieu, d'aure par diffusée (effe Compon). La variaion

Plus en détail

FICHE TD 1 Corrigé de l exercice 2

FICHE TD 1 Corrigé de l exercice 2 Universié Lyon PCSI L Année 3/4 Mahémaiques 4 Prinemps 4 I = FICHE TD Corrigé de l exercice Disribuions e d. La foncion e es coninue sur (l inervalle fermé en [, [, donc il fau éudier l inégrabilié vers

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

Cours électronique. Chapitre 2: Dipôles en. Abdenour Lounis 1

Cours électronique. Chapitre 2: Dipôles en. Abdenour Lounis 1 Cours élecronique Chapire : Dipôles en régimes ransioires Abdenour Lounis 1 I- Rappels Relaions Couran-ension pour les dipôle passifs usuels: Resisance : Loi d Ohm U()=R. I() Inducances : U()= L.(dI/d)

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

M4. Les oscillateurs mécaniques

M4. Les oscillateurs mécaniques NO : Prénom : 4. Les oscillaeurs mécaniques Un sysème mécanique peu occuper une même posiion à inervalles de emps réguliers : sa rajecoire es alors périodique. Exemples : - roaion d une planèe auour du

Plus en détail

Pendules couplés. θ 2. Université Pierre et Marie Curie, Paris VI. PHYSIQUE NUMÉRIQUE Devoir sur table du 15 novembre 2007

Pendules couplés. θ 2. Université Pierre et Marie Curie, Paris VI. PHYSIQUE NUMÉRIQUE Devoir sur table du 15 novembre 2007 Universié Pierre e Marie Curie, Paris VI Licence de physique NS Cachan Physique fondamenale, PHYTM PHYSIQU NUMÉRIQU Devoir sur able du 15 novembre 27 Pules couplés Durée de l épreuve : 2h Les éléphones

Plus en détail

2 Méthode d Euler. Principe général. Application aux équations différentielles. 0 i < N, f f(t. 0 i < N, t i = a+idt.

2 Méthode d Euler. Principe général. Application aux équations différentielles. 0 i < N, f f(t. 0 i < N, t i = a+idt. 2 Méhode d Euler I Principe général 1 Considérons une foncion f définie sur un segmen [a, b] 11 On représene la foncion f par un échanillon de ses valeurs : Y = [ f( 0,, f( N 1 ] calculées sur une subdivision

Plus en détail

5. 1 Définition Propriétés

5. 1 Définition Propriétés 5 Inégraion 5.1 Définiion Propriéés 5.2 Procédés de calcul d inégrales a Reconnaîre une dérivée b Inégrer par paries c Changer de variables d Inégrer des fracions raionnelles 5. 1 Définiion Propriéés Définiion:

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures Corrigé Exercice 1 BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Série S Candidas ayan suivi l enseignemen de spécialié Durée de l épreuve : 4 heures Coefficien : 9 SPÉCIALITÉ Ce suje compore 6 pages

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

Résolution numérique de problèmes de contrôle optimal via la condition nécessaire, application au problème de transfert d orbite à faible poussée

Résolution numérique de problèmes de contrôle optimal via la condition nécessaire, application au problème de transfert d orbite à faible poussée Résoluion numérique de problèmes de conrôle opimal via la condiion nécessaire, applicaion au problème de ransfer d orbie à faible poussée Présenaion TIPE 23: conrôle opimal 4 janvier 23 Lycée Ferma Toulouse

Plus en détail

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé Mines d Albi,Alès,Douai,Nanes - Toues filières - Corrigé Cee correcion a éé rédigée par Frédéric Bayar. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésiez pas à écrire à : mahweb@free.fr

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

Où μ et ν sont respectivement les viscosité dynamique et cinématique du fluide et ρ sa masse volumique. On peut adimensionner cette équation : .

Où μ et ν sont respectivement les viscosité dynamique et cinématique du fluide et ρ sa masse volumique. On peut adimensionner cette équation : . Licence de Phsique e Applicaions L3S5 Premier problème de Sokes Cours Année 9- Daniel Soluions eaces des équaions de Navier-Sokes er problème de Sokes : diffusion de quanié de mouvemen On considère le

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Techniques ahémaiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Exercice 1 1.a Rappel sur les coniques Les coniques inerviennen dans un nombre d applicaions

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION REGIME TRANSITOIRE D ORDRE 1

REPONSE DES CIRCUITS A UN ECHELON DE TENSION REGIME TRANSITOIRE D ORDRE 1 CICUITS ELECTIQUES. DUPEAY Lycée F. BUISSON PTSI EPONSE DES CICUITS A UN ECHELON DE TENSION EGIME TANSITOIE D ODE 1 «Une panne d élecricié laisse l aveugle indifféren» Grégoire Lacroix Dans les circuis

Plus en détail

Intégrales fonctions des bornes

Intégrales fonctions des bornes [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Enoncés Inégrales foncions des bornes Eercice [ 987 ] [Correcion] Soi f : R R une foncion coninue. Jusier que les foncions g : R R suivanes son de classe

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique I Inroducion Lors du précéden TP, nous avons éudiée une éape de la numérisaion d un : l éape d échanillonnage. Il ne

Plus en détail

Macroéconomie - Croissance

Macroéconomie - Croissance Macroéconomie - Croissance Licence 3 Sepembre 208 Rappels sur les dérivées. Eude d une foncion Une foncion es : croissane lorsque sa dérivée es posiive ; décroissane lorsque sa dérivée es négaive ; consane

Plus en détail

Examen de janvier 2012

Examen de janvier 2012 Insiu Tunis-Dauphine Inégrale de Lebesgue e Probabiliés Examen de janvier 212 Deux heures. Sans documen, ni calcularice, ni éléphone, ec. Chaque quesion numéroée vau le même nombre de poins. Il es demandé

Plus en détail

BTS BLANC de : Mathématiques

BTS BLANC de : Mathématiques décembre 2008 MAI 2 Durée : 2 H Coefficien : 2 BTS BLANC de : Mahémaiques La qualié de la rédacion ainsi que la claré e la précision des raisonnemens enreron pour une par imporane dans l'appréciaion des

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Annexe A : PRINCIPAUX ALGORITHMES

Annexe A : PRINCIPAUX ALGORITHMES Annexe A : PRINCIPAUX ALGORIHMES Le bu de cee annexe es d'indiquer les principes des méhodes numériques uilisées lors des éudes saiques e dynamiques. Soi les algorihmes des méhodes : de Newon-Raphson,

Plus en détail

+ - Chapitre 6 : Etude du dipôle R C.

+ - Chapitre 6 : Etude du dipôle R C. Chapire 6 : Eude du dipôle R C. I. Le condensaeur. Connaîre la représenaion symbolique d'un condensaeur. En uilisan la convenion récepeur, savoir oriener un circui sur un schéma, représener les différenes

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

Fonctions de Bessel : comportement à l infini

Fonctions de Bessel : comportement à l infini Prépa. Agrég écri d Analyse, avril 23. Foncions de Bessel : comporemen à l infini 1. Éude au moyen de l équaion différenielle Voir Chaerji volume 3, secions 2.6 e 2.7. On suppose que n es un enier e que

Plus en détail

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017 Feuille Primiives e équaions diérenielles linéaires. ed Déerminer, pour les équaions diérenielles suivanes, les ensembles de soluions. y y = sin 3 y + y = e 3 y + y coan = sin 4 + y + y = + 5 y + y = sin

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

Chapitre 1.13 La dérivée en cinématique

Chapitre 1.13 La dérivée en cinématique Chapire 1.13 La dérivée en cinémaique La dérivée En mahémaique, on défini la dérivée d une foncion f ( ) el que d f ( ) f ( + ) f ( ) où '( ) f '( ) d lim 0 f correspond à la foncion qui évalue la pene

Plus en détail

EXERCICES. Appliquer ses connaissances. 13. a. L énergie totale est la somme de l énergie électrique du condensateur et de l énergie magnétique

EXERCICES. Appliquer ses connaissances. 13. a. L énergie totale est la somme de l énergie électrique du condensateur et de l énergie magnétique c. Après avoir refai un enregisremen pour verses valeurs croissanes de résisance, on observe que la spirale compore de moins en moins de ours : un our correspond visiblemen à une oscillaion e le nombre

Plus en détail

ANNEXE 1 NOTIONS SUR LA DISTRIBUTION DE DIRAC

ANNEXE 1 NOTIONS SUR LA DISTRIBUTION DE DIRAC ANNEXE NOTIONS SUR LA DISTRIBUTION DE DIRAC Inroducion. Les mahémaiques «classiques» analysen les relaions enre des foncions coninues e dérivables e se révèlen un ouil commode pour raier les sysèmes régis

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1 Eercice (Calculer les inégrales suivanes)..... 5. 6. 7. 8. e d = e d = e ] = = 5. = e e. ( + )d = d = ln ( )] = ln ( ) ln ( ) = ln(). ue u du = e u = e. e e + d = ln ( e + ) e (e + ) d = u (ln u) du =

Plus en détail

2 Somme ou différence de fonctions

2 Somme ou différence de fonctions Fiche ANA00 - Méhodes d inégraion Nous reprenons les principales méhodes classiques d inégraion. Les méhodes d inégraion numérique ne son pas raiées ici. Chaque cas es illusré par un ou plusieurs eemples.

Plus en détail

Par une droite : On recherche une droite y(x) = a.x + b telle que :

Par une droite : On recherche une droite y(x) = a.x + b telle que : hapire M4/4 : Oscillaeurs harmoniques e amoris Un oscillaeur linéaire es un sysème à un degré de liberé don le paramère vérifie une équaion différenielle linéaire à coefficiens consans. II.. OSSIILLLLATUR

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Un équipement est fiable s'il subit peu d'arrêts pour pannes. La notion de fiabilité s'applique : à du système réparable

Un équipement est fiable s'il subit peu d'arrêts pour pannes. La notion de fiabilité s'applique : à du système réparable Ce chapire es le premier, d une série de rois, consacré à ce que l on appelle en mainenance le concep «FMD» ; c es à dire, MAINTENABILITE e DISPONIBILITE. Les objecifs de ce chapire seron de déerminer

Plus en détail

Équations différentielles linéaires

Équations différentielles linéaires UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universiaire 207 208 Licence d économie Cours de M. Desgraupes MATHÉMATIQUES DES SYSTÈMES DYNAMIQUES Corrigé du TD Équaions différenielles

Plus en détail