Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Dimension: px
Commencer à balayer dès la page:

Download "Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :"

Transcription

1 Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau de cofiace souhaité pour : ue proportio, das le cas d ue loi biomiale approximable par ue loi ormale; ue moyee, das le cas d ue loi ormale quad l écart type de la populatio est cou ou das le cas de grads échatillos Exploiter u itervalle de cofiace Détermier la taille écessaire d u échatillo pour estimer ue proportio ou ue moyee avec ue précisio doée 1 Échatilloage et fluctuatios Soit X ue variable aléatoire défiie sur ue populatio O suppose cous l espérace (la moyee) µ de X aisi que so écart-type σ O prélève u échatillo de taille das la populatio(c est-à-dire idividus) et o s itéresse à la moyee observée das cet échatillo : si la taille de l échatillo est petite, la moyee observée peut être très différete de celle de la populatio (cas d u échatillo atypique); si par cotre l échatillo est de taille raisoablemet grade, o peut s attedre à ce que la moyee observée «e soit pas trop éloigée» de celle de la populatio La remarque précédete est précisémet quatifiée par le théorème de la limite cetrée Théorème de la limite cetrée (admis) Soit X ue variable aléatoire quelcoque d espérace E(X) = µ et d écart-type σ(x) = σ O ote X la moyee observée das u échatillo de taille Si la taille de l échatillo est assez grade ( 30), alors : X suit approximativemet la loi ormale de moyee µ et d écart-type σ Exemple Les statistiques des otes obteues e mathématiques au BTS OL e Frace pour l aée 2014 sot : moyee atioale : µ = 10,37 écart-type : σ = 1,48 Ue classe de TS2OL comptait 35 élèves e 2013/2014 : quelle est la probabilité que la moyee de cette classe soit supérieure à 10? Répose Comme 30, la moyee X suit approximativemet ue loi ormale de paramètres µ = µ = 10,37 et σ = σ = 1, ,25 O e déduit avec la calculatrice que P ( X 10 ) = 0,93 TS2 Opticie Luetier 2014 / Lycée Fresel - Paris

2 Fréquece das u échatillo Das ue populatio, o étudie u caractère dot o coaît la proportio p O fixe u etier, et l o s itéresse à la variable aléatoire F qui à u échatillo de taille associe la fréquece du caractère étudié Si la taille de l échatillo est assez grade ( 30), alors : F suit approximativemet la loi ormale de moyee p et d écart-type Démostratio Le prélèvemet d u échatillo de taille reviet à effectuer épreuves de Beroulli, chacue d etre elles cosistat à prélever u idividu das la populatio et à appeler succès le fait qu il possède le caractère étudié (avec ue probabilité p) E admettat que les tirages sot idépedats (la populatio est suffisamet grade parrapportàlataille del échatillo), lavariable aléatoire X quicomptele ombredesuccèsdeces épreuves de Beroulli suit ue loi biomiale de paramètres et p L espérace et l écart-type de X valet : E(X) = p etσ(n) = Mais la fréquece F = X est aussi la moyee X du ombre de succès observée das l échatillo : comme 30 et d après le théorème de la limite cetrée, F suit approximativemet la loi ormale de paramètres µ = E(X) = p et σ = σ(x) = = Défiitio Das ue populatio, o étudie u caractère dot o coaît la proportio p O fixe u etier, et l o s itéresse à la variable aléatoire F qui à u échatillo de taille associe la fréquece du caractère étudié U itervalle de fluctuatio au seuil de 95% de F est doé par : [ ] IF = p 1,96 ; p+1,96 Cela sigifie que sur u grad ombre d expériece, la fréquece observée das u échatillo de taille appartiedra à cet itervalle das 95% des cas e moyee Démostratio O peut calculer que si ue variable aléatoire X suit la loi ormale de moyee µ et d écart-type σ, alors P(µ 1,96σ X µ+1,96σ) = 0,95 95% µ 1,96σ µ µ+1,96σ p(1 p) Come F suit approximativemet ue loi ormale de moyee µ = p et d écart-type σ =, o déduit de ce fait que ( ) P p 1,96 F p+1,96 = 0,95 TS2 Opticie Luetier 2014 / Lycée Fresel - Paris

3 2 Estimatio poctuelle L estimatio est le problème réciproque de l échatilloage : o e coaît pas l espérace (ou l écart-type ou la proportio) das la populatio, et l o cherche à l estimer à partir des valeurs observées sur u échatillo de taille O suppose que la populatio est suffisammet grade pour que le prélèvemet d u échatillo puisse être assimilé à u tirage avec remise Estimatio poctuelle d ue moyee O ote µ e et σ e la moyee et l écart-type observés das u échatillo de taille L estimatio poctuelle µ de la moyee µ de la populatio est : µ = µ e L estimatio poctuelle σ de l écart-type σ de la populatio est : σ = 1 σ e Remarque Le facteur 1 s appelle la correctio de biais Lorsque est grad ( 30), le facteur 1 est très voisi de 1 de sorte que l o peut estimer σ par σ e : si 30 : σ σ e Estimatio d ue proportio O ote p e la proportio observée das u échatillo de taille L estimatio poctuelle p de la proportio das la populatio est : p = p e pe (1 p e ) L estimatio poctuelle σ de l écart-type σ de la populatio est : σ =, si 30 Remarque Si < 30, il faut faire iterveir la correctio de biais et : σ = 3 Estimatio par u itervalle de cofiace pe (1 p e ) = 1 p e (1 p e ) 1 Défiitio U itervalle de cofiace de iveau de cofiace 95% est u itervalle qui cotiet la valeur icoue de la moyee ou de la proportio das la populatio avec ue probabilité (au mois) égale à 0,95 Estimatio d ue moyee Das ue populatio, o étudie ue variable aléatoire dot o coaît l écart-type σ mais dot la moyee µ est icoue O ote µ e la moyee observée sur u échatillo de taille σ état cou, u itervalle de cofiace de µ au iveau de cofiace 0,95 est doé par : [ IC = µ e 1,96 σ ; µ e +1,96 σ ] Cela sigifie que sur u grad ombre d expérieces, cet itervalle cotiedra effectivemet µ das 95% des cas e moyee TS2 Opticie Luetier 2014 / Lycée Fresel - Paris

4 Démostratio D après le théorèmede la limite cetrée,o sait que la moyee X observéedas u échatillo de taille suit approximativemet la loi ormale de moyee µ et d écart-type σ O a doc Mais ( P µ 1,96 σ X µ+1,96 σ ) = 0,95 µ 1,96 σ X µ+1,96 σ 1,96 σ X µ 1,96 σ 1,96 σ µ X 1,96 σ X 1,96 σ µ X+1,96 σ, doc ( P X 1,96 σ µ X+1,96 σ ) = 0,95 E remplaçat X par sa réalisatio µ e, o a bie : ( [ P X µ e 1,96 σ ; µ e +1,96 σ ]) = 0,95 Estimatio d ue proportio Das ue populatio, o étudie u caractère dot la proportio p est icoue O ote p e la proportio observée sur u échatillo de taille U itervalle de cofiace de p au iveau de cofiace 0,95 est doé par : [ ] pe (1 p e ) pe (1 p e ) IC = p e 1,96 ; p e +1,96 Cela sigifie que sur u grad ombre d expérieces, cet itervalle cotiedra effectivemet p das 95% des cas e moyee pe (1 p e ) O pourra reteir cette formule e otat que est l estimatio poctuelle σ de l écart-type Autre iveau de cofiace Si l o souhaite obteir u itervalle de cofiace avec u iveau de cofiace différet de 0,95, il suffit de remplacer das les formules précédetes le coefficiet 1,96 par : 1,645 pour u iveau de cofiace égal à 10%; 2,575 pour u iveau de cofiace égal à 1% Par exemple : σ état cou, u itervalle de cofiace de µ au iveau de cofiace 0,90 est doé par : [ IC = µ e 1,645 σ ; µ e +1,645 σ ] u itervalle de cofiace de p au iveau de cofiace 0,99 est doé par : [ ] pe (1 p IC = e ) pe (1 p e ) p e 2,575 ; p e +2,575 TS2 Opticie Luetier 2014 / Lycée Fresel - Paris

5 Exercices Exercice 1 (2014) U fabriquat de letilles souples, dites«hydrophiles», propose ue ouvelle géératio de letilles e silicoe d hydrogel Le fabriquat voudrait estimer la desité moyee icoue µ des letilles de sa productio auelle O désigepar D lavariable aléatoirequi, àtouteletille decetteproductio,associesadesitéo admetque D suitla loiormale demoyee µ et d écarttype σ = 0,07 O prélèveuéchatillo aléatoirede150 letilles das la productio auelle Cette productio est suffisammet importate pour que l o puisse assimiler ce prélèvemet à u tirage avec remise O désige par D la variable aléatoire qui, à tout échatillo de 150 letilles aisi prélevé, associe la desité moyee des letilles de cet échatillo O admet que D suit la loi ormale de moyee µ et d écart type σ 150 avec σ = 0,07 Pour l échatillo prélevé, o costate que la desité moyee des letilles est d = 1, Détermier u itervalle de cofiace cetré sur d de la moyee icoue µ au iveau de cofiace 95% Arrodir les bores de l itervalle à O cosidère la phrase suivate : «o est sûr que la moyee µ appartiet à l itervalle de cofiace obteu à la questio précédete» Est-ce vrai? Justifier Exercice 2 (2013) Ue etreprise fabrique des verres ophtalmiques à partir de verres semi-fiis Ce fabriquat effectue u sodage auprès de ses cliets opticies Il souhaite évaluer la proportio icoue p de cliets itéressés par u ouveau verre Pour cela, il iterroge au hasard u échatillo de 100 opticies parmi sa clietèle Cette clietèle est suffisammet importate pour cosidérer que cet échatillo résulte d u tirage avec remise Soit F la variable aléatoire qui à tout échatillo aisi prélevé, associe la fréquece, das cet échatillo, des opticies itéressés par ce ouveau verre O suppose que F suit la loi ormale de moyee p icoue et d écart type 100 Pour l échatillo prélevé, o costate que 70 opticies sot itéressés par le ouveau verre 1 Doer ue estimatio poctuelle f de la proportio icoue p 2 Détermier u itervalle de cofiace cetré sur f de la proportio p avec le coefficiet de cofiace 95% Arrodir les bores de l itervalle à Peut-o affirmer que p est compris das cet itervalle de cofiace? Pourquoi? Exercice 3 (2011) Ue etreprise fabrique et distribue u produit de cosommatio courate e grade quatité O s itéresse à la proportio icoue p de produits das le stock présetat ue erreur d étiquetage Pour cela, o prélève au hasard et avec remise 100 produits das le stock Soit F la variable aléatoire qui à tout échatillo aisi prélevé, associe la fréquece, das cet échatillo, des produits présetat ue erreur d étiquetage O suppose que F suit la loi ormale de moyee p icoue et d écart type 100 Pour l échatillo prélevé, o costate que 6 produits présetet ue erreur d étiquetage 1 Doer ue estimatio poctuelle f de la proportio icoue p 2 Détermier u itervalle de cofiace cetré sur f de la proportio p avec le coefficiet de cofiace 95% Arrodir les bores de l itervalle à 10 2 TS2 Opticie Luetier 2014 / Lycée Fresel - Paris

6 Exercice 4 (2008) Au cours d ue aée, le service ophtalmologie d u cetre hospitalier a examié 5000 patiets Pour chaque patiet, ue fiche a été remplie sur laquelle sot idiqués l âge de la persoe et le diagostic posé Parmi les pathologies recotrées chez les 5000 patiets figure l aiséïcoie (L aiséïcoie se défiit comme la perceptio d images différetes e taille et/ou e forme par les deux yeux fixat u même objet) O cosidère u échatillo de 60 fiches prélevées au hasard das le fichier des patiets Le ombre de fiches du fichier est assez importat pour qu o puisse assimiler ce tirage à u tirage avec remise O costate que 15 fiches de cet échatillo sigalet ue aiséïcoie 1 Doer ue estimatio poctuelle de la fréquece icoue p des fiches du fichier qui sigalet ue aiséïcoie 2 Soit F la variable aléatoire qui, à tout échatillo de 60 fiches prélevées au hasard et avec remise das le fichier, associe la fréquece des fiches qui sigalet ue aiséïcoie O admet que F suit la loi ormale de moyee p et d écart type, où p désige la fréquece icoue des fiches du fichier qui 60 sigalet ue aiséïcoie Détermier u itervalle de cofiace de la fréquece p au seuil de cofiace 95% Exercice 5 (2007) Ue etreprise orgaise ue equête de satisfactio auprès de ses cliets Soir Z la variable aléatoire qui à tout échatillo de fiches, prélevées au hasard et avec remise das le fichier de la clietèle, associe le pourcetage de cliets correspodats satisfaits par le produit O admet que Z suit la loi ormale de moyee p et d écart type où p est la proportio icoue de cliets satisfaits par le produit das l esemble de la clietèle U sodage auprès d u échatillo aléatoire de 100 cliets a motré que 85 d etre eux étaiet satisfaits 1 Doer ue estimatio poctuelle de p 2 Doer ue estimatio de p par u itervalle de cofiace avec le coefficiet de cofiace 95% Arrodir les bores à Peut-o affirmer que p est compris das cet itervalle de cofiace? Pourquoi? Exercice 6 (2003) Ue etreprise fabrique des faces de luettes e grade série O s itéresse à la logueur de faces de luettes produites pedat ue jourée et o ote µ la moyee, icoue, de ces logueurs Soit L lavariable aléatoirequi,àtoutéchatillo de64facesdeluettesprélevéesau hasardetavecremisedas la productio des faces de la jourée cosidérée, associe la moyee des logueurs des faces de cet échatillo σ O suppose que L suit la loi ormale de moyee µ et d écart type avec σ = 0,48 64 O mesure la logueur, exprimée e millimètres, de chacue des 64 faces d u échatillo prélevé au hasard et avec remise das la productio de la jourée des faces O costatequelavaleur approchéearrodie à10 3 dela moyeel deslogueursdesfaces decetéchatillo est l = 130,088 1 À partir des iformatios portat sur cet échatillo, doer ue estimatio poctuelle de la moyee µ 2 Détermier u itervalle de cofiace cetré e l de la moyee µ, avec le coefficiet de cofiace 95% 3 O cosidère l affirmatio suivate : «la moyee µ est obligatoiremet etre 129, 970 et 130, 206» Peut-o déduire de ce qui précède qu elle est vraie? O e demade pas de justificatio TS2 Opticie Luetier 2014 / Lycée Fresel - Paris

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites ANNALES BACCALAURÉAT 03 MATHÉMATIQUES TERMINALE S ANNALES 03 TERMINALE S Suites Foctios 9 3 Probabilités 4 Géométrie 9 8 5 Spécialité 34 6 Cocours 44 Suites - : Amérique du Nord 03, 5 poits, o spécialistes

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Questions Chapitre 2 L approche statistique de la réalité 1

Questions Chapitre 2 L approche statistique de la réalité 1 Questios Chapitre 2 L approche statistique de la réalité 1 Expliquer la otio de variable et défiir les différets types de variables Décrire les échelles de classificatio et trasformer les doées pour passer

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Idice de Révisio Date de mise e applicatio B 01/09/2014 Cahier Techique 1 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, aveue du Recteur-Poicarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Formulaire de statistiques

Formulaire de statistiques Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 Formulaire de statistiques I. Statistiques descriptives : Moyee arithmétique : (populatio: m x = µ) (échatillo = x = M x ) 1 i

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Probabilités exercices corrigés

Probabilités exercices corrigés Termiale S Probabilités Exercices corrigés Combiatoire avec démostratio Ragemets Calcul d évéemets Calcul d évéemets Calcul d évéemets 6 Dés pipés 7 Pièces d or 8 Agriculteur pas écolo 9 Boules Jeux 6

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC Kaize & Réalisé par : ELBARAKA Abdelkader Club idustrielle AIAC Itroducti o Itroductio: vidéo Kai ze coclusio 1 Itroducti o Kai ze La méthode du coclusio 2 Itroducti o Kai ze A- Les types d étiquettes

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

eduscol Ressources pour le lycée général et technologique

eduscol Ressources pour le lycée général et technologique eduscol Ressources pour le lycée gééral et techologique Ressources pour la classe de secode géérale et techologique Méthodes et pratiques scietifiques Thème sciece et prévetio des risques d'origie humaie

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée gééral et techologique Ressources pour la classe termiale géérale et techologique Probabilités et statistique Ces documets peuvet être utilisés et modifiés libremet das

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Comment les Canadiens classent-ils leur système de soins de santé?

Comment les Canadiens classent-ils leur système de soins de santé? Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Bio-Statistique. 1 ère partie. Discipline : Bio-statistique, Bio-mathématique et Sciences de l Information

Bio-Statistique. 1 ère partie. Discipline : Bio-statistique, Bio-mathématique et Sciences de l Information Bio-Statistique 1 ère partie Disciplie : Bio-statistique, Bio-mathématique et Scieces de l Iformatio OBJECTIFS PEDAGOGIQUES Réaliser l importace du problème de la variabilité ihérete au doées médicales,

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

L Évaluation d entreprise

L Évaluation d entreprise JOB : mp DIV : 10571 ch10 p. 1 folio : 303 --- 29/8/07 --- 15H31 [ L Évaluatio d etreprise q L évaluatio se pratique à de multiples occasios : cessio de l etreprise, émissio d actios ouvelles, fusio, itroductio

Plus en détail

APPLICATION DE LA STATISTIQUE AU TRAITEMENT DES DONNÉES AU LABORATOIRE D'ANALYSES ET EN FABRICATION

APPLICATION DE LA STATISTIQUE AU TRAITEMENT DES DONNÉES AU LABORATOIRE D'ANALYSES ET EN FABRICATION Philippe TRIBOULET (Lycée Niepce Chalo sur Saôe) 03/03/007 PPLICTION DE L STTISTIQUE U TRITEMENT DES DONNÉES U LBORTOIRE D'NLYSES ET EN FBRICTION I/ INTRODUCTION L'utilisatio de la statistique pour le

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS INTRODUCTION De ombreuses situatios pratiques peuvet être modélisées à l aide de variables aléatoires qui sot régies par des lois spécifiques. Il importe doc d

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Nathalie Va de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice Série d exercices SERIE D EXERCICES N : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Propagatio rectilige. Exercice. Das le cas

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

Cryptographie et algorithmique

Cryptographie et algorithmique F.Gaudo 1 er ovembre 2010 Table des matières 1 Avat de commecer 2 2 Préformattage d'u texte pour aalyse 3 2.1 Élimiatio de la poctuatio et des espaces das u texte................. 3 2.2 Formatage du texte

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

Teneur en mg/1. maximale. minimale 0,1. 4 Al. Mo 0,5. 50 Ba Ça 0,05 0,1 0,05 0,05 0,01 0,5 PRINCIPE

Teneur en mg/1. maximale. minimale 0,1. 4 Al. Mo 0,5. 50 Ba Ça 0,05 0,1 0,05 0,05 0,01 0,5 PRINCIPE CETAMA ANALYSE DE L 1 EAU- DOS AGE D'ELEMENTS PAR ABSORPTION ATOMIQUE N 47 OCTOBRE 1 97 OBJET ET DOMAINE D'APPLICATION Le préset documet a pour objet la descriptio schématique d'ue méthode de dosage des

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Bulletin officiel spécial n 8 du 13 octobre 2011

Bulletin officiel spécial n 8 du 13 octobre 2011 Aexe Programme de l eseigemet spécifique et de spécialité de mathématiques de la série écoomique et sociale et de l eseigemet de spécialité de mathématiques de la série littéraire L eseigemet des mathématiques

Plus en détail

Probabilités. Voir en bibliographie l ouvrage [1], pages 52 et 53.

Probabilités. Voir en bibliographie l ouvrage [1], pages 52 et 53. Probabilités «Pour compredre l actualité, ue formatio à la statistique est aujourd hui idispesable ; c est ue formatio qui développe des capacités d aalyse et de sythèse et exerce le regard critique. Le

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail