Quantification et échantillonnage

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Quantification et échantillonnage"

Transcription

1 numérique à l et échntillonnge Signl physique (onde lumineuse, onde sonore) : vrition d une grndeur physique (éclirement, pression) en temps et/ou espce Sénce 4 et échntillonnge Contrintes de l représenttion informtique : le temps d un processeur est discret ; les mesures doivent être représentées pr un nombre fini de bits. Signl discret : une suite de 0-1. Frédéric Sur École des Mines de Nncy Lori Conversion Anlogique Numérique = échntillonnge + quntifiction Problème inverse : conversion N/A (DAC) Question : perte d informtion? 1/28 2/28 Exemple d échntillonnge Exemple de quntifiction Source : en.wikipedi.org exemple de quntifiction sur 2 bits. Remrque : l fréquence d échntillonnge doit être dptée u signl à numériser... Son qulité CD : 16 bits Niveux de gris dns une imge : 8 bits (mis thirty shdes of gry...) 3/28 4/28

2 Sénce 5 L quntifiction q 8 q 7 1 q q 5 q 4 q 3 q 2 q 1 q 8 q 7 q 6 q 5 q 4 q 3 q 2 quntifiction uniforme 4 q 1 quntifiction dptée 5/28 Niveux de quntifiction et niveux de reconstruction. 6/28 Bruit de quntifiction Sénce 5 Bruit de quntifiction : e = différence entre signl source et signl quntifié. 1 Modélistion dns le cs de l quntifiction uniforme : erreur de quntifiction uniformément distribuée sur [ δ q /2, δ q /2] Vr(e) = δq /2 δ q /2 x 2 dx = δ3 q 12 Remrque : dns le cs où on connît l distribution de probbilité du signl source, le quntifieur (dpttif) optiml est donné pr l lgorithme de Lloyd-Mx /28 8/28

3 Rppels du cours de mthémtiques 1A 1 S : fonctions C à décroissnce rpide ; 2 S : tempérées ; 3 L trnsformée de Fourier F définit une bijection bicontinue de S sur S et F 1 = F ; 4 = δ n (peigne de Dirc) ; 5 F(δ )(y) = e 2iπy ; 6 F( )(y) = e 2iπny ; 7 F ( T (x)e 2iπαx) = F(T )(y + α). Suite des rppels Soit f -périodique telle que pour x [0, [, f (x) = x/. D près le cours 1A, u sens des : f = 1 δ n. Or (décomposition en série de Fourier, converge dns L 2 ) : f (x) = i 1 2π n e2iπnx/. Donc : f (x) = 1 e 2iπnx/. 1 : δ n = 1 e 2iπnx/ (dns S ). 8 Si f C à croissnce lente et T S, F(f T ) = F(f ) F(T ). 2 : F( ) = 1 1/ (vec points 3 et 6). 9/28 10/28 Échntillonnge Signux à bnde limitée Échntillonnée de f (distrib. tempérée ssez régulière ) toutes les secondes représentée pr l distribution : f = f (n)δ n (= f ) cr f (n)δ n f (u sens des ) si 0. Définition - Signl à bnde limitée Soit f S t.q. F(f ) est à support compct [ λ c, λ c ]. (f n ps de fréquence supérieure à une fréquence limite λ c ) On dit que f est à bnde limitée. Motivtion : hypothèse pour l vlidité des clculs suivnts. Proposition - dmise (cf Gsquet-Witomski) Un signl à bnde limitée est C à croissnce lente. Question : Quels liens entre le spectre de f (i.e. F(f )) et le spectre de f? (et l TFD?) 11/28 12/28

4 Formule de Poisson Soit f S à bnde limitée. On cherche : F( f ) = F( f (n)δ n). 1 Pr linérité et continuité : F( f ) = f (n)f(δ n) Donc F( f ) = f (n)e 2iπny. 2 D utre prt : F( f ) = F(f ). Donc (rppel 8) F( f ) = F(f ) F( ) = F(f ) 1/. : F( f ) = F(f ) 1/ = f (n)e 2iπny Proposition - Formule de Poisson F( f )(y) = ( F(f ) y n ) = f (n)e 2iπny Conséquence de l formule de Poisson Soit f signl à bnde limitée, u ps de. Formule de Poisson : F( f )(y) = ( F(f ) y n ) : = Spectre de f périodique de période 1/. f (n)e 2iπny Spectre obtenu en fisnt l somme des trnsltés de F(f ) u ps n/. 13/28 14/28 Illustrtion Vers le théorème de Soit f un signl à bnde limitée t.q. 1/ 2λ c. Formule de Poisson : F( f )(λ) = F(f ) ( λ n ) = f (n)e 2iπnλ Source : Gsquet-Witomski. Définition - Fréquence de Nyquist 2λ c est l fréquence de Nyquist. Soit χ l indictrice du segment [ 1/2, 1/2] : F(f )(λ) = f (n)χ (λ)e 2iπnλ. 15/28 16/28

5 de f L 2 (R) signl à bnde limitée t.q. 1/ 2λ c. F(f )(λ) = f (n)χ (λ)e 2iπnλ. Considértions Donc : f (x) = f (n)f (χ (λ)e 2iπnλ) = f (n)f(χ )(x n) = f (n) sin π (x n) π (x n) (-Nyquist) Interpréttion : si on échntillonne un signl (à bnde limitée) à une fréquence supérieure u double de s plus grnde fréquence, lors on peut le reconstruire de mnière excte! Problème prtique : ps rélisble en prtique (décroissnce lente du sinus crdinl). Question : que se psse-t-il si le signl contient des fréquences supérieures à 1/2? f L 2 (R), supp(f(f )) [ λ c, λ c ], et 1 2λ c Alors f (x) = f (n) sin π (x n) π (x n) (dns L 2 ) 17/28 18/28 Recouvrement de spectre ou lising Remrque : reconstruction multipliction pr χ dns le domine de Fourier Si 1 < 2λ c... Phénomène de recouvrement / repliement de spectre dns les hutes fréquences, ou lising (lis = à un utre endroit), ou lisge. Reconstruction très perturbée (exemples en TP). Solution technologique : filtrge du signl nlogique vnt échntillonnge pour éliminer les fréquences > 1/2. Retour sur l Trnsformée de Fourier Discrète Signl f périodique, x n = f (n), (X n ) TFD de (x n ) (= intervlle d échntillonnge ; période N). Pr déf. : Comme : f = N 1 f (n)δ n = x n δ (n+kn). n=0 ( ) ( ) F δ (n+kn) = e 2iπny F δ kn = 1 N e 2iπny δ k/(n) = 1 N On : ) F ( f = 1 N N 1 e 2iπnk/N δ k/(n). x n e 2iπnk/N δ k/(n) = 1 X k δ N k/(n) n=0 19/28 20/28

6 Sénce 5 1 Numéristion Compct Disc Oreille humine sensible ux fréquences < Hz Donc, pour l numéristion du son : 1 filtrge psse-bs, coupure à Hz numéristion pr échntillonnge à Hz 44.1 khz Pourquoi 44.1 khz? (et ps 40 khz?) source : en.wikipedi.org/wiki/compct_disc 1 conversion numérique nlogique pr fonction à décroissnce plus rpide que le sinus crdinl, d où des fonctions de coupure moins rides que le créneu. (d utnt moins que CNA/DAC bon mrché) Donc fréq. échntillonnge > 40 khz. 2 initilement, enregistrement sur cssette vidéo. 6 échntillons pr ligne x 294 lignes (PAL) x 50 demi-imges/sec éch. pr seconde (stéréo) 21/28 22/28 Photogrphie numérique Cpteur ppreil photo numérique : Exemple d lising (réel) (1) Échntillonnge, donc lising sur les zones de l imge présentnt des détils de hute fréquence. nécessité de plcer un filtre psse-bs devnt le cpteur (ou une optique peu piquée )...ou course ux mégpixels : cpteur de résolution supérieure à l meilleure optique (limitée de toute fçon pr l diffrction). Compromis filtre psse-bs / lising. Cnon EOS 1Ds 23/28 24/28

7 Exemple d lising (réel) (2) Exemple d lising (réel) (3) Cnon EOS 5D cf Moiré defects.php Sigm SD10 (cpteur Foveon) defects.php 25/28 26/28 Sénce un signl à bnde limitée peut être représenté pr un signl discret sns perte d informtion s il est à une fréquence supérieure u double de s plus hute fréquence. sinon pprition d rtefcts dus à l lising / repliement de spectre. 4 27/28 28/28

Quantification et échantillonnage

Quantification et échantillonnage De l numérique à l De l et échntillonnge Signl physique (onde lumineuse, onde sonore) : vrition d une grndeur physique (éclirement, pression) en temps et/ou espce De l et échntillonnge Contrintes de l

Plus en détail

Initiation au. traitement du signal - Séance 5. F. Sur - ENSMN. 1 Théorie de l échantillonnage. Échantillonnage + quantification

Initiation au. traitement du signal - Séance 5. F. Sur - ENSMN. 1 Théorie de l échantillonnage. Échantillonnage + quantification Cours électif CET42 signl et pplictions Sénce 5: théorie de Frédéric Sur École des Mines de Nncy www.lori.fr/ sur/enseignement/signl/ Sénce 5 1 2 3 4 1/3 3/3 Exemple Exemple de Remrque : conversion Anlogique

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier.

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier. Chitre 3 : Résidus qudrtiques Dns ce chitre on v essyer d extrire des rcines crrés dns ZnZ. Dns le cors des nombres réels tous les nombres ositifs sont des crrés et les nombres négtifs ne le sont s, dns

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine ARBRES Arbre ordinire : A = (N,P) - N ensemble des nœuds - P reltion binire «prent de» - r N l rcine x N un seul chemin de r vers x r = y o P y P y... P y n = x 0 r n ps de prent x N - { r } x exctement

Plus en détail

Analyse de FOURIER +[ ( ) + ( )]

Analyse de FOURIER +[ ( ) + ( )] Analyse de FOURIER I. Analyse de Fourier : Décomposition harmonique : toute fonction périodique (son musical) peut être décomposé en une somme (infinie) de fonctions sinus et cosinus. Un signal est la

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

UV Traitement du signal. Cours n 3 : Synthèse des filtres numériques

UV Traitement du signal. Cours n 3 : Synthèse des filtres numériques UV Tritement du signl Cours n 3 : Synthèse des filtres numériques Filtre IF pr l méthode de l fenêtre ou rélistion recursive Filtre II pr une trnsformée ilinéire élistion du filtrge numérique Introduction

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

Programmation des éléments nis P1 en 1D

Programmation des éléments nis P1 en 1D Notes du cours d'équtions ux Dérivées Prtielles de l'isima, deuxième nnée http://wwwisimfr/leborgne Progrmmtion des éléments nis P1 en 1D Gilles Leborgne 8 mrs 2005 Tble des mtières 1 Le problème 2 11

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Manuel d instructions du KIT de mise à niveau I

Manuel d instructions du KIT de mise à niveau I Mnuel d instructions du KIT de mise à niveu I TABLE DES MATIÈRES AVANT DE COMMENCER... 2 NOUVELLES FONCTIONNALITÉS... 2 UTILISATION DE LA TABLETTE À STYLET... 3 À propos de l tblette à stylet... 3 Utilistion

Plus en détail

Introduction au Traitement Numérique du Signal

Introduction au Traitement Numérique du Signal Introduction au Traitement Numérique du Signal bjectifs : présenter sans développement calculatoire lourd (pas de TF, pas de TZ) on donne des résultats on illustre. n donne des exemples sous Matlab en

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Formation et Analyse d'images. La Vision Stéréoscopique

Formation et Analyse d'images. La Vision Stéréoscopique Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2007/2008 Sénce 11 21 décemre 2007 Pln de l Sénce : L Vision Stéréoscopique L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Apprentissage Par Projet de la Programmation avec Python Corrigé du TP5

Apprentissage Par Projet de la Programmation avec Python Corrigé du TP5 IGI-8 ESIEE Pris 5-6 Apprentissge Pr Projet de l Progrmmtion vec Python Corrigé du TP5 Jen-Clude GEORGES Listes, tuple et fichiers Les listes et les tuples sont des collections de données dont les données

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

LES FILTRES NUMERIQUES

LES FILTRES NUMERIQUES LES FILTRES UMERIQUES Ce sont des dispositis qui eectuent sur un signl d entrée numérique des opértions nlogues à un iltrge SIGAL UMERIQUE ET FILTRE UMERIQUE Un signl numérique est une suite de nombres

Plus en détail

Ieu de tête L. -tè. puis inverser les rôles. de la tête pour le renvoyer

Ieu de tête L. -tè. puis inverser les rôles. de la tête pour le renvoyer Ieu de tête L Échuffement 1. Se servir le bllon et le frpper de l tête vers un coéquipier. 2. Un coéquipier effectue un service pr en-dessous, frpper le bllon vers le coéquipier; 3 services puis inverser

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

1 Langages reconnaissables

1 Langages reconnaissables 8INF713 Informtique théorique Automne 2014 Exercices 1 Lngges reconnissles 1.1 Considérez les deux utomtes suivnts et répondez ux questions suivntes : q 3, q 3 q 4 () A 1 () A 2 Figure 1 () Quel est l

Plus en détail

FAQ sur l utilisation d Ecoline-solo

FAQ sur l utilisation d Ecoline-solo FAQ sur l utilistion d Ecoline-solo De quel mtériel i-je esoin pour compléter les informtions demndées dns Ecoline-solo? Pour remplir rpidement toutes les informtions demndées dns Ecoline-solo, vous devez,

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013

TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013 FACULTE De PHARMACIE TUTORAT UE3-a 2013-2014 Physique Séance n 2 Semaine du 23/09/2013 Optique 1 Pr Mariano-Goulart Séance préparée par Inès BOULGHALEGH, Hélène GUEBOURG DEMANEUF, Karim HACHEM, Jeff VAUTRIN

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2002/2003 Sénce 7 21 novmre 2002 Stéreo et l Géometrie Epipolire Pln de l Sénce: L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

Résumé du cours d analyse de Sup et Spé

Résumé du cours d analyse de Sup et Spé Résumé du cours d nlyse de Sup et Spé 1 Topologie 1.1 Normes, normes équivlentes Une norme sur le K-espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x) 0 (positivité) x E, (N(x) = 0 x

Plus en détail

Biostatistiques et statistiques appliquées aux sciences expérimentales

Biostatistiques et statistiques appliquées aux sciences expérimentales Biosttistiques et sttistiques liquées ux sciences exérimentles ANOVA à deux fcteurs Pscl Bessonneu, Christohe Llnne et Jérémie Mttout* Cogmster A4 2006-2007 * jeremiemttout@yhoo.fr. 1/16 Progrmme de l

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

SPONSORING SUPPORTS DE COMMUNICATION LE MARQUE-PAGE GRANDEUR NATURE

SPONSORING SUPPORTS DE COMMUNICATION LE MARQUE-PAGE GRANDEUR NATURE SUPPORTS DE COMMUNICATION SPONSORING Dns s démrche de prtenrit, l ssocition Grndeur Nture dispose d offre de sponsoring. Au-delà de l intérêt personnel que vous pouvez voir pour l culture ou certines ctions

Plus en détail

APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE)

APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE) 5 APPLICATIONS SUR LES ANALYSES ASSOCIÉES AUX CHAPITRES 12 ET 13 (TESTS DE COMPARAISON ET D INDÉPENDANCE) Exercice 1 : test de comparaison de proportions (voir chapitre 12) Une entreprise souhaite lancer

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ ICNA - SESSION 9 ÉPREUVE OPTIONNEE DE PHYSIQUE CORRIGÉ Diffusion thermique dns un câble électrique.. puissnce volumique dissipée pr effet Joule dns le conducteur est donnée pr P. Je J J.E e γ I e vecteur

Plus en détail

Une marque de commerce enregistrée utilisée sous licence par Groupe restaurants Imvescor Inc.

Une marque de commerce enregistrée utilisée sous licence par Groupe restaurants Imvescor Inc. Normes grphiques Pour récupérer les logos officiels et utres documents pertinents, prière de vous référer u site sécurisé destiné ux frnchisés, www.mikes.c/extrnetmikes. Renseignements Dnielle Myrnd Déprtement

Plus en détail

Probabilités. Céline Lacaux. 23 mars 2015. École des Mines de Nancy IECL. Notations/Hypothèses Rappels

Probabilités. Céline Lacaux. 23 mars 2015. École des Mines de Nancy IECL. Notations/Hypothèses Rappels Probabilités 3., Céline Lacaux École des Mines de Nancy IECL 23 mars 2015 1 / 25 Plan 1 Notations/Hypothèses 2 3 4 Définition Moments Existence d une densité? 2 / 25 Notations/Hypothèses (Ω,F,P) espace

Plus en détail

Master MIMSE - Année 1. Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 1. Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 1 Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson 2 Hypothèses du modèle de Wilson Un seul produit ex. multiproduit Horizon de temps infini horizon

Plus en détail

= L.a DVD 2.D et l = L.a BR. l DVD 2.D. .l BR. = 4,8 3,0 405 = 6,5 102 nm. 1 = 3,5.10 4 m 1 ; = 2,0.10 2 rad) 2.D L BR = L DVD. l BR 2.D.

= L.a DVD 2.D et l = L.a BR. l DVD 2.D. .l BR. = 4,8 3,0 405 = 6,5 102 nm. 1 = 3,5.10 4 m 1 ; = 2,0.10 2 rad) 2.D L BR = L DVD. l BR 2.D. Corretion exerie. Évolution des idées sur l lumière.. es ondes méniques néessitent un milieu mtériel (solide, liquide ou gz) pour se propger tndis que les ondes lumineuses peuvent se propger en l bsene

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Théorie des langages Automates finis

Théorie des langages Automates finis Théorie des lngges Automtes finis Elise Bonzon http://we.mi.prisdescrtes.fr/ onzon/ elise.onzon@prisdescrtes.fr 1 / 51 Automtes finis Introduction Formlistion Représenttion et exemples Automtes complets

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

TD3 Caractéristiques dynamiques d un capteur

TD3 Caractéristiques dynamiques d un capteur TD3 Caractéristiques dynamiques d un capteur 3.1- Caractérisations temporelles 3.1.1- Introduction : réponse d une sonde de température Pt100 Un four est a une température θ F =100 C supérieure à la température

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

Eléments de correction des exercices de BTS

Eléments de correction des exercices de BTS Eléments de correction des exercices de BTS 1 Echantillonnage Maurice Charbit Exercice 1 Comme 300 > F e /2 = 250, il y a du repliement et le signal reconstruit contient 3 raies : 50, 100 et 200 Exercice

Plus en détail

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2 Chpitre 7: Bndes d énergie On ne fer ps le modèle de Kronig-Penney: p. 165-7,171- ppel Gz d électrons libres: Modèle le plus simple pour un métl Électrons libres dns une boîte de LLL On résout l éqution

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 91192 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

Manuscrit reçu le 6 janvier 2004

Manuscrit reçu le 6 janvier 2004 Modélistion et intégrtion de connissnces métier pour l identifiction de défuts pr règles linguistiques floues Expert knowledge s modeling nd expert knowledge s integrtion for defect identifiction by fuzzy

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

LA CHAINE D INFORMATION :La fonction ACQUERIR

LA CHAINE D INFORMATION :La fonction ACQUERIR Livret des compétences essentielles de seconde II Fiche N 3- Niveu d cquisition exigé : «je sis en prler» LA CHAINE D INFORMATION :L fonction ACQUERIR L fonction ACQUERIR est chrgée de mettre en forme

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Développement d un Code de Calcul Permettant l Optimisation des Systèmes de Chauffage de Planchers ou Sols à l Aide de Tubes Enterrés 1.

Développement d un Code de Calcul Permettant l Optimisation des Systèmes de Chauffage de Planchers ou Sols à l Aide de Tubes Enterrés 1. Rev Ener Ren : Journées de Thermique (001) 85-90 éveloppement d un Code de Clcul Permettnt l Optimistion des Systèmes de Chuffe de Plnchers ou Sols à l Aide de Tubes Enterrés O Guerri 1, A Hrhd et K Bouhdef

Plus en détail

Examen ProTIS - QCM. Durée : 1h. Sans documents - Calculatrice non autorisée Réponses sur les feuilles d énoncé - 1 remise-copie.

Examen ProTIS - QCM. Durée : 1h. Sans documents - Calculatrice non autorisée Réponses sur les feuilles d énoncé - 1 remise-copie. Cycle Ingénieur - 2 ème nnée 2014/2015 Exmen ProTIS - QCM Durée : 1h. Sns documents - Clcultrice non utorisée sur les feuilles d énoncé - 1 remise-copie. mercredi 11 février 2015, 9h00-10h00 Pour chcune

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Dynamique des lasers. Lasers en impulsion

Dynamique des lasers. Lasers en impulsion Dynamique des lasers. Lasers en impulsion A. Evolutions couplées atomesphotons Rappel: gain laser en régime stationnaire Equations couplées atomes-rayonnement Facteur * Elimination adiabatique de l inversion

Plus en détail

Normes graphiques. Dans les règles de l art

Normes graphiques. Dans les règles de l art Normes grphiques Dns les règles de l rt Dns e hier des normes grphiques se trouvent toutes les règles indispensbles à l reprodution des éléments d identifition de l mrque TrukPro. Ces éléments donnent

Plus en détail

StyleView Scanner Shelf

StyleView Scanner Shelf StyleView Scnner Shelf User's Guide Poids mx. : 2 ls ( kg) Chriot SV et unité frontle Option - Chriots LCD Option 2 - Chriots pour ordinteurs portles 3 Option 3 - Ril du mur 6 Option 4 - Arrière du chriot

Plus en détail

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION 6.1 STRUTURES PLES FOREES DE POUTRES RELTIOS ETRE HRGES ET ELEETS DE REDUTIO Les vritions des éléments de réduction,,, lorsqu'on psse d'une section à l'utre, sont liées pr des reltions fondmentles que

Plus en détail

Le manuel d utilisation du jeu Rody & Mastico II

Le manuel d utilisation du jeu Rody & Mastico II Le mnuel d utilistion du jeu Rody & Mstico II Mnuel rélisé pr : Fredo_L Site web : http://www.lnkhor.net E-mil : fred@lnkhor.net Remrque : les erreurs du mnuel d origine ont volontirement étient reproduites

Plus en détail

DCG session 2011 UE8 Systèmes d information et de gestion Corrigé indicatif. 1. Expliquer les cardinalités des associations NECESSITER, SE DEROULER

DCG session 2011 UE8 Systèmes d information et de gestion Corrigé indicatif. 1. Expliquer les cardinalités des associations NECESSITER, SE DEROULER DCG session 2011 UE8 Systèmes d informtion et de gestion Corrigé indictif DOSSIER 1 : PREPARER ET FORMER LES ENTRAINEURS 1. Expliquer les crdinlités des ssocitions NECESSITER, SE DEROULER Intitulé de l'ssocition

Plus en détail

Plan du cours. Espaces métriques. Espaces vectoriels normés

Plan du cours. Espaces métriques. Espaces vectoriels normés L3 Maths, 1 er semestre 20112012 Espaces métriques Plan du cours On suppose connues les propriétés élémentaires des nombres réels et des espaces vectoriels et, uniquement pour les exemples, quelques propriétés

Plus en détail

Distributions de plusieurs variables

Distributions de plusieurs variables de plusieurs variables Mathématiques Générales B Université de Genève Sylvain Sardy 8 mai 2008 1. conjointes 1 Comment généraliser les fonctions de probabilité et de densité à plus d une variable aléatoire?

Plus en détail

Musique Assistée par Ordinateur

Musique Assistée par Ordinateur Musique Assistée par Ordinateur Chapitre 1: Le Son Numérique Comparatif analogique et numérique Bande Passante Analogique 20Hz - 70kHz Numérique Dépend de la fréquence d échantillonnage: Fe= 96kHz > 20Hz

Plus en détail

Plan. 1. Généralités. 2. Types d Images. 3. Numérisation. 4. Couleurs. 5. Introduction au traitement d Images. 6. Dégradations d une image

Plan. 1. Généralités. 2. Types d Images. 3. Numérisation. 4. Couleurs. 5. Introduction au traitement d Images. 6. Dégradations d une image Plan Licence Pro 1. Généralités 2. Types d Images 3. Numérisation Bases de traitement d images 4. Couleurs Alain Dieterlen 5. Introduction au traitement d Images 6. Dégradations d une image Groupe LAB.EL,

Plus en détail

Mesures à la limite quantique

Mesures à la limite quantique Mesures à la limite quantique ~ 3 ème ème cours ~ A. Heidmann Laboratoire Kastler Brossel Plan du troisième cours Mesures en continu, mesure de position Mesures en continu théorie de la photodétection

Plus en détail

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23 Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail