Intégrales curvilignes.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Intégrales curvilignes."

Transcription

1 Chapitre 1 Intégrales curvilignes. 1.1 Généralités Courbes paramétrées dans le plan. Motivations, exemples. L exemple basique de courbe est la trajectoire décrite par un objet assimilée à un point matériel (son centre de gravité) qui se déplace au cours du temps t sur un plan. Courbes paramétrées et courbes géométriques. éfinition Soit un sous-ensemble de R 2. On appelle courbe paramétrée dans une application : t (t) = (x(t), y(t)) définie sur un intervalle [a, b] R et à valeurs dans. L image de c est à dire le sous-ensemble de défini par {(t), t [a, b]} est la courbe géométrique associée à, il s agit de la trajectoire décrite par le point (t). On identifie souvent l application à son image et on parle simplement de la courbe. Le point (a) est appelé l origine de et le point (b) est appelé l extrémité de. La courbe est dite fermée lorsque (a) = (b). Courbe inverse et juxtaposition. On appelle courbe inverse la courbe paramétrée : [a, b] R 2 définie par : (t) = (a + b t). (C est la courbe parcourrue en sens inverse). Soient 1 : [a, b] R 2 et 2 : [b, c] R 2 deux courbes paramétrées telles que 1 (b) = 2 (b). On appelle juxtaposition des courbes 1 et 2 la courbe paramétrée 1 2 : [a, c] R 2 définie par : ( t) = 1 (t) si t [a, b] et ( t) = 2 (t) si t [b, c]. (C est la courbe constituée des courbes 1 et 2 parcourrues l une après l autre). 1

2 2 CHAPITRE 1. INTÉGRALES CURVILIGNES. Exemples. Paramétrisation des droites et des segments. La droite (AB) a pour représentation paramétrique : { x(t) = t.x AB + x A y(t) = t.y AB + y A, t R. La segment [A, B] parcourru de A à B a pour représentation paramétrique : { x(t) = t.x AB + x A y(t) = t.y AB + y A, t [0, 1]. Cercles. Soit R un réel strictement positif fixé, l application : [0, 2π] R 2 définie par { x(t) = R. cos t y(t) = R. sin t est une paramétrisaton du cercle de centre (0, 0) et de rayon R. Vecteur tangent. ans la suite de ce chapitre, nous supposerons les courbes de classe C 1 (ou C 1 par morceaux, c est à dire juxtaposition d un nombre fini de courbes C 1 ). Proposition Le vecteur (t) = (x (t), y (t)) est le vecteur tangent à la courbe au point (t). Lorsque (t) décrit la trajectoire d un point matériel, le vecteur (t) est le vecteur vitesse. Nous verrons dans la suite comment déterminer la longueur d une courbe Champs de vecteurs. éfinitions. Soit un sous-ensemble de R 2. Un champ de vecteurs sur est une application F qui à un point (x, y) de fait correspondre un vecteur de R 2, autrement dit : F : { R 2 (x, y) F (x, y) = P (x, y) i + Q(x, y) j = (P (x, y), Q(x, y)) où P et Q sont des fonctions de 2 variables définies sur, appelées les composantes de F. Un champ de vecteurs F = P i + Q j sur est de classe C 1 sur si P et Q sont des fonctions C 1 sur.

3 1.2. INTÉGRALE UN CHAMP E VECTEURS LE LONG UN CHEMIN OU INTÉGRALE CURVILIGNE.3 Exemples. Le champ de gradient d une fonction f. Nous avons vu dans la première partie du cours qu à une fonction numérique f de deux variables (x, y) qui est de classe C 1 sur, on peut associer son champ de gradient. C est le champ de vecteur : { gradf : R 2 (x, y) gradf(x, y) = f (x, y) i + f y (x, y) j = ( f f (x, y), y (x, y)) Le champ de gradient de f est aussi noté : f ou f. Le champ radial. Le champ de vecteurs défini sur R 2 par : F (x, y) = x i + y j est appelé champ radial. 1.2 Intégrale d un champ de vecteurs le long d un chemin ou intégrale curviligne. Hypothèses : Soit F = (P, Q) = P i + Q j un champ de vecteurs défini et C 1 sur un sousensemble de R 2. Soit : [a, b], (t) = (x(t), y(t)) une courbe paramétrée de, C éfinitions. l intégrale (curviligne) de F le long de est par définition : = b a b F := < F ((t)), (t) > dt = a (P (x(t), y(t)).x (t) + Q(x(t), y(t)).y (t)) dt. où < F ((t)), (t) > représente le produit scalaire entre le vecteur F ((t)) et le vecteur vitesse (t). Remarque F est parfois notée F dl, pour bien préciser que l on intègre le long d un courbe. En physique, cette quantité s appelle aussi la circulation de F le long de ou encore le travail de F le long de Lorsque est fermée, F est notée F.

4 4 CHAPITRE 1. INTÉGRALES CURVILIGNES Notation différentielle. P dx + Qdy Elle se calcule en remplaçant : par b a, x par x(t) et y par y(t), dx par d(x(t)) = x (t)dt et dy par d(y(t)) = y (t)dt Exemple Calculer R j F d [0, 1] R 2 où F (x, y) = x i +y j et : t (x(t) = t, y(t) = 2t) Solution : R =. Calculer R j F d [0, 2π] R 2 où F (x, y) = y i + x j et : t (x(t) = cos t, y(t) = sin t) Solution : R = 2π Propriétés. Proposition Indépendance du paramétrage : 1 F ne dépend que de la courbe géométrique associée à et de son sens de parcours. 2. F = F F = 1 F + 2 F. 4. Longueur d une courbe : Lorsque F ((t)) = (t) (t) est le champs tangent unitaire à alors b F = x a 2 (t) + y 2 (t)dt = l() la longueur de. 1.3 Champs dérivant d un potentiel. Un champ de vecteurs F sur est dit conservatif ou dérivant d un potentiel s il est le gradient d une fonction numérique f définie sur. C est à dire s il existe une fonction f telle que F = f. ans ce cas, f est appelée une fonction potentiel de F Propriétés. Proposition Soient : [a, b] un chemin C 1 et f : R une fonction C gradf = f((b)) f((a)). Autrement dit, l intégrale ne dépend pas du chemin choisi pour aller de (a) à (b). 2. Si de plus est fermée, alors gradf = 0.

5 1.4. CHANGEMENT E VARIABLES ANS UNE INTÉGRALE CURVILGNE. 5 Proposition Réciproquement si F = 0, pour tout chemin fermé alors F dérive d un potentiel. Ce critère ne permet, en général pas de montrer qu un champ dérive d un potentiel. Il sert à montrer qu un champ F ne peut pas dériver d un potentiel : pour celà il suffit de trouver un chemin fermé 1 tel que 1 F 0. Proposition Si F sur. P y = Q = (P, Q) champ C 1 sur dérive d un potentiel alors Cette proposition résulte du théorème de Schwarz et sa réciproque n est vraie que sur des domaines d un type particulier : les domaines simplement connexes CNS sur les domaines simplement connexes. éfinitions. Un chemin fermé : [a, b] R 2 est dit simple si (t 1 ) (t 2 ) pour tout t 1 t 2 sauf lorsque {t 1, t 2 } = {a, b}. Autrement dit la courbe ne se recoupe pas. Un sous-ensemble de R 2 est dit simplement connexe si tout chemin fermé dans n entoure que des points de. Autrement dit, n a pas de trous. Exemples. Sont simplement connexes : R 2, les convexes : en particulier les disques et polygones convexes. CNS : Théorème de Poincaré Theorème F = (P, Q) champ C 1 sur simplement connexe dérive d un potentiel ssi P y = Q sur. Remarque : ce théorème permet de montrer qu un champ dérive d un potentiel, mais il n indique pas comment procéder pour déterminer sa (ses) fonction(s) potentiel(s). Exemple. Soit F = (3 + 2xy, x 2 3y 2 ) un champ sur R 2. Mobtrer que F dérive d un potentiel. Puis calculer sa (ses) fonction(s) potentiel(s). 1.4 Changement de variables dans une intégrale curvilgne. Soit Φ : { (u, v) (x = x(u, v), y = y(u, v)) un C 1 -difféomorphisme.

6 6 CHAPITRE 1. INTÉGRALES CURVILIGNES. Pour changer de variables dans P dx + Qdy On remplace : par φ 1 x par x(u, v) et y par y(u, v), dx par dx = udu + v dv dy par dy = y y udu + v dv. Exemple. Passage en polaires. 1.5 Formule de Green-Riemann. Liens avec les intégrales doubles. La formule de Green (ou de Green-Riemann) établit une relation entre F, où est une courbe fermée simple et une intégrale double f(x, y)dxdy, où est le domaine intérieur à. Ce théorème est à voir comme un analogue du théorème fondamental du calcul intégral pour les fonctions d une variable Formule de Green. Theorème Soient : 1. une courbe paramétrée C 1 par morceaux du plan R 2, fermée, simple et orientée dans le sens trigonométrique, 2. le domaine intérieur de (qui se trouve alors sur la gauche lorsqu on parcourt dans le sens trigonométrique), Alors 3. F = (P, Q) un champ de vecteurs C 1 (par morceaux) sur. P dx + Qdy = ( Q P y )dxdy Exemple Calculer en utilisant la formule de Green : H Γ x2 dx + xydy, où Γ est le bord du carré [0, 1] [0, 1] parcouru dans le sens trigonométrique. Solution : H Γ = Applications. Aire d un domaine. Aire() = dxdy = 1 2 ydx + xdy En effet, si on applique la formule de Green avec P (x, y) = y et Q(x, y) = x on trouve Q P = 1 et y = 1.

7 1.5. FORMULE E GREEN-RIEMANN. LIENS AVEC LES INTÉGRALES OUBLES.7 Exemple Calculer, en utilisant la formule de Green, l aire de l ellipse pleine (E) : x2 a 2 + y2 b 2 1. Solution : Le bord de (E) est paramétrisée par (t) = (x(t) = a cos t, y(t) = b sin t), t [0, 2π]. Ainsi, I Z 2π ydx + xdy = ( b sin t( a sin t) + a cos t(b cos t))dt =... = 2πab 0 Par conséquent, Aire (E) = πab Forme vectorielle des Théorèmes de Green et Poincaré. éfinition-notation. On note rot F = Q P y, le rotationnel dans le plan R2 d un champ F, C 1. Forme vectorielle du Théorème de Green. Theorème Soit un sous-ensemble de R 2 dont le bord est une courbe C + fermée simple C 1 par morceaux orientée dans le sens trigonométrique. Soit F un champ de vecteurs de classe C 1 (par morceaux) sur. Alors : F = rot F dxdy On peut aussi écrire une : Forme vectorielle du Théorème de Poincaré Theorème F = (P, Q) champ C 1 sur simplement connexe dérive d un potentiel ssi rot F = 0 sur Extension de la formule de Green. La formule de Green s étend aux domaines dont le bord est formé d un nombre fini de courbes fermées simples deux à deux disjointes : C i, i = 1,..., p. Les courbes C i sont orientées de sorte que le domaine se trouve toujours sur la gauche lorsqu on les parcourt suivant cette orientation. La formule de Green pour un champ de vecteurs F = (P, Q) C 1 (par morceaux) sur, s écrit : Theorème p F = C i i=1 ( Q P y )dxdy = rot F dxdy

Intégrales curvilignes et de surfaces

Intégrales curvilignes et de surfaces Intégrales curvilignes et de surfaces Fabrice Dodu FORMATION CONTINUE : DUT+3 DÉPARTEMENT DE MATHÉMATIQUES : INSA TOULOUSE 2-21 Version 1. Sommaire I Le cours 6 1 Intégrales curvilignes 8 1.1 Notions sur

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Formules intégrales. Chapitre Intégrales curvilignes Définition. On appelle intégrale curviligne de V le long de γ, l intégrale :

Formules intégrales. Chapitre Intégrales curvilignes Définition. On appelle intégrale curviligne de V le long de γ, l intégrale : Chapitre 6 Formules intégrales 6.1 Intégrales curvilignes Soit : t (t) = (x(t), y(t), z(t)) une courbe paramétrée régulière de l espace R 3 et V = (P(x, y, z), Q(x, y, z), R(x, y, z)) un champ de vecteurs.

Plus en détail

Formulaire de maths - Analyse dans R n

Formulaire de maths - Analyse dans R n Formulaire de maths - Analyse dans R n Nom Théorème ou formule Espaces vectoriels normés Norme sur E Application qui vérifie les propriétés de : séparation : homogénéité : inégalité triangulaire : Normes

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

A. CINEMATIQUE ET DYNAMIQUE

A. CINEMATIQUE ET DYNAMIQUE A. CINEMATIQUE ET DYNAMIQUE 1. Grandeurs cinématiques a. Rappels et définitions La cinématique étudie les mouvements sans se préoccuper de leurs causes (c est-à-dire des forces) Le mouvement est le changement

Plus en détail

Exo7. Formes différentielles

Exo7. Formes différentielles Exo7 Formes différentielles Fiche de A. Gammella-Mathieu (IUT de Mesures Physiques de Metz Université de Lorraine) Exercice 1 éterminer si les formes différentielles suivantes sont exactes et dans ce cas,

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 Outils Mathématiques 4 Intégrales de surfaces résumé 1 Surfaces paramétrées éfinition 1.1 Une surface paramétrée dans l espace, est la donnée de trois fonctions de classes

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

Chapitre 5 Les lois de la mécanique et ses outils

Chapitre 5 Les lois de la mécanique et ses outils DERNIÈRE IMPRESSION LE 1 er août 2013 à 12:49 Chapitre 5 Les lois de la écanique et ses outils Table des atières 1 Les référentiels et repères 2 2 Les grandeurs de l évolution 2 2.1 Le vecteur de position..........................

Plus en détail

EN - EXERCICES SUR LES INTEGRALES MULTIPLES

EN - EXERCICES SUR LES INTEGRALES MULTIPLES EN - EXERCICES SUR LES INTEGRALES MULTIPLES Eercice Calculer I f(, y) ddy dans les cas suivants a) est le triangle de sommets O, A(,), B(,) f(,y) ln( + y + ) b) est le parallélogramme limité par les droites

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2.

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2. COUBES PAAMÉTÉES 1 Propriétés géométriques des courbes paramétrées Soit n = 2 ou 3 et E n un espace ane associé à l'espace vectoriel n Soit une norme sur n Dénition 11 Une courbe paramétrée est une application

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre8 : Intégrale curviligne-théorème de Green-Riemann Équipe de Mathématiques Appliquées UTC Février 2006 suivant Chapitre VIII Intégrale curviligne VIII.1 Abscisse

Plus en détail

Tracé de lignes et de courbes planes

Tracé de lignes et de courbes planes Département d informatique Université de Toulon et du Var Plan 1 Introduction 2 Tracé de segments 3 Tracé de cercles 4 Tracé de courbes Définition Le processus de représentation d objets graphiques continus

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

IV. Espaces L p. + tx 1. (1 t)x 0

IV. Espaces L p. + tx 1. (1 t)x 0 cours 13, le lundi 7 mars 2011 IV. spaces L p IV.1. Convexité Quand deux points x 0, x 1 R sont donnés, on peut parcourir le segment [x 0, x 1 ] qui les joint en posant pour tout t [0, 1] x t = (1 t)x

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

Définition d une norme

Définition d une norme Définition d une norme Définition E est un K-ev. L application N : E R + est une norme sur E ssi 1. x E, N(x) = 0 x = 0. 2. k K, x E, N(k.x) = k N(x). 3. x, y E, N(x + y) N(x) + N(y) Notation N,. Propriété

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Faculté : ST TD de Maths 3 : Série 1. Départements : G.C et ELN. [ x. dy 5)

Faculté : ST TD de Maths 3 : Série 1. Départements : G.C et ELN. [ x. dy 5) Université A/MIRA de Béjaia Année : 5-6 Faculté : ST T de Maths : Série. épartements : G.C et ELN. Exercice :Intervertir l ordre d intégration dans les intégrales suivantes : y ) f(x, y)dy dx ) f(x, y)dy

Plus en détail

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3 Alexandre VIDAL Dernière modification : 11 janvier 2011 Table des matières I Généralités et rappels sur les fonctions 1 I.1 Définition....................................

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

Fonctions circulaires et applications réciproques

Fonctions circulaires et applications réciproques Chapitre II Fonctions circulaires et applications réciproques A Fonctions circulaires A Rappels de trigonométrie Radians et cercle trigonométrique Le radian est une unité de mesure d angle (orienté) définie

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Banque d'exercices pour l'épreuve orale de mathématiques de la lière MP des concours communs polytechniques

Banque d'exercices pour l'épreuve orale de mathématiques de la lière MP des concours communs polytechniques Banque d'exercices pour l'épreuve orale de mathématiques de la lière MP des concours communs polytechniques A cette épreuve, les élèves ont deux exercices à résoudre. Le premier, noté sur 8 points, porte

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

Outils Mathématiques 3

Outils Mathématiques 3 Université de Rennes1 Année 2010/2011 Outils Mthémtiques 3 Chpitre 4: Intégrtion curviligne résumé 1 Courbes prmétrées Définition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Euler 2D dans des domaines non réguliers

Euler 2D dans des domaines non réguliers Christophe Lacave Université de Paris Diderot (Paris VII), France partiellement en collaboration avec David Gérard-Varet (Paris VII) Math Horizon, Paris, 13 Décembre 2011 1 / 42 Plan de l exposé 1 Solution

Plus en détail

Exercice 3 (3 points) Soit f la fonction définie sur [ 3;6] par

Exercice 3 (3 points) Soit f la fonction définie sur [ 3;6] par Contrôle de mathématiques n o 6 Correction du sujet Exercice (Questions de cours, points) Compléter la propriété : Les points A, B et C sont alignés si et seulement si AB et AC sont colinéaires Compléter

Plus en détail

Mathématiques II. Session de rattrapage

Mathématiques II. Session de rattrapage NOM :... FIPA BTP Prénom :... Date :... Mathématiques II Session de rattrapage Thème: Opérateurs vectoriels, potentiels scalaires, circulations vectorielles, intégrales doubles Durée: 1H00 Outils autorisés:

Plus en détail

Préparation à l agrégation interne de mathématiques - Année 2014-2015 Préparation à l écrit - Samedi 13 décembre 2014

Préparation à l agrégation interne de mathématiques - Année 2014-2015 Préparation à l écrit - Samedi 13 décembre 2014 Préparation à l agrégation interne de mathématiques - Année 04-05 Préparation à l écrit - Samedi 3 décembre 04 Durée : 4 à 6 heures - Le sujet comporte 6 pages. Dans ce problème, on se propose de prouver

Plus en détail

PC* Espaces préhilbertiens réels

PC* Espaces préhilbertiens réels I. Espace préhilbertien réel................................... 3 I.1 Produit scalaire dans un espace vectoriel réel................... 3 I.2 Inégalités de Cauchy-Schwarz et de Minkowski..................

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 2 Quelques rappels de calcul différentiel, analyse convexe et extremum 5 2.1 Rappel calcul différentiel............................

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle Chapitre 01 : Intégrales généralisées Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle fermé borné de Dans ce chapitre, on va étudier le cas d

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Remerciements. Partie 1 Algèbre linéaire 1

Remerciements. Partie 1 Algèbre linéaire 1 Table des matières Préface Remerciements xix xxi Partie 1 Algèbre linéaire 1 1 Compléments d algèbre linéaire 3 I Rappels du cours de première année.......................... 3 I.1 Famille dans un espace

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur

Plus en détail

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé Intégration et probabilités NS Paris, 23-24 TD 5 Théorèmes de Fubini, calculs Corrigé xercices à préparer du TD 4 xercice. (Partiel 27 Soit (,,µ un espace mesuré et f : + une fonction mesurable.. On suppose

Plus en détail

Chapitre n 1 : CINEMATIQUE DE NEWTON

Chapitre n 1 : CINEMATIQUE DE NEWTON Physique - 6 ème année - Ecole Européenne Chapitre n 1 : CINEMATIQUE DE NEWTON La cinématique étudie la description du mouvement des mobiles sans en chercher les causes. Le but de la leçon est d'introduire

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Cours de Mathématiques. ISA BTP, 2 année

Cours de Mathématiques. ISA BTP, 2 année Cours de Mathématiques ISA BTP, 2 année 15 janvier 2013 2 Table des matières 1 Équations différentielles 7 Introduction...................................... 7 1.1 Équations différentielles linéaires........................

Plus en détail

2 Le champ électrostatique E

2 Le champ électrostatique E Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES

Plus en détail

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL Dans ce qui suit on adopte les notations suivantes : désigne une constante universelle h = π = 6,60 34 Joules par seconde est la constante

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 004 CA/PLP CONCOURS EXTERNE Section : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L'usage des calculatrices de poche est autorisé (conformément au directives

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Travaux pratiques V Modèles retardés pour une seule espèce Modèles discrets à plusieurs espèces

Travaux pratiques V Modèles retardés pour une seule espèce Modèles discrets à plusieurs espèces Biomodélisation 1 Département Licence K1BE6W14 Mathématiques Ph. Thieullen Biomodélisation TP machine V Travaux pratiques V Modèles retardés pour une seule espèce Modèles discrets à plusieurs espèces TP

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux

Plus en détail

Espaces vectoriels normés MP

Espaces vectoriels normés MP Espaces vectoriels normés MP 27 décembre 2012 Faites des dessins Table des matières 1 Espaces vectoriels normés 3 1.1 Normes, espaces normés................................. 3 1.2 Normes dans les espaces

Plus en détail

Calculs et Fonctions. Commandes Calculs et Fonctions

Calculs et Fonctions. Commandes Calculs et Fonctions Calculs et Fonctions Commandes Calculs et Fonctions Asymptote CercleOsculateur Coefficients Courbe CourbeImplicite Courbure Degré Dénominateur Dérivée ElémentsSimples Extremum Facteurs Fonction Intégrale

Plus en détail

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de Première S Chapitre 7 : Angles orientés. Trigonométrie. Année scolaire 01/013 I) Rappels de seconde : 1) Définition d'un cercle trigonométrique Un cercle trigonométrique est un cercle de rayon 1 sur lequel

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24)

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24) Espaces de Sobolev Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002 medp-sobolevtex (2001nov24) Sauf mention explicite du contraire, toutes les fonctions considérées seront à valeurs réelles

Plus en détail

Théorèmes d échange de limites

Théorèmes d échange de limites Théorèmes d échange de limites ) Convergence uniforme et limites Théorème de continuité our les suites de fonctions. Pour E et F deux esaces vectoriels normés, on considère une suite d alications f n :

Plus en détail

2.1 Nombre dérivé et fonction dérivée... 15 2.2 Les accroissements finis... 18 2.3 Application à l étude des fonctions... 18

2.1 Nombre dérivé et fonction dérivée... 15 2.2 Les accroissements finis... 18 2.3 Application à l étude des fonctions... 18 Calculus PCST Frédéric Le Roux et Thierry Ramond Mathématiques Université Paris Sud e-mail: frederic.leroux@ math.u-psud.fr et thierry.ramond@math.u-psud.fr version du 2 décembre 2005 Table des matières

Plus en détail

I. ÉTUDE DES FONCTIONS SIN ET COS

I. ÉTUDE DES FONCTIONS SIN ET COS I. ÉTUDE DES FONCTIONS SIN ET COS Les propriétés mises en évidence au thème précédent vont permettre d étudier les fonctions trigonométriques { { R R R R cos : et sin : x cosx) x sinx). On fixe un repère

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Une axiomatisation du plan euclidien

Une axiomatisation du plan euclidien Nicole opp Strasbourg, avril 2007 Une axiomatisation du plan euclidien Le but de ce texte est de montrer comment on peut axiomatiser le plan euclidien d une manière qui se rapproche, autant que faire se

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

LES ROTATIONS DE R 3 : VERSION MATRICIELLE

LES ROTATIONS DE R 3 : VERSION MATRICIELLE LES ROTATIONS DE R : VERSION MATRICIELLE. L espace R n Les structures dont R n est muni appartiennent à quatre niveaux : Structure vectorielle: Vecteur. Combinaison linéaire. Familles libres et liées.

Plus en détail

Exercices sur les équations différentielles :

Exercices sur les équations différentielles : Université de Rennes 200-20 Licence de mathématiques L2-ED Exercices sur les équations différentielles : Une mise en jambes Exercice. Parmi les espaces suivants, lesquels sont des espaces vectoriels sur

Plus en détail

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé LICENCE DE MATHÉMATIQUES FONDAMENTALES Calcul Différentiel et Équations Différentielles D. Azé Université Paul Sabatier Toulouse 2008 Table des matières 1 Généralités sur les espaces normés 3 1.1 Espaces

Plus en détail

Techniques fondamentales de calcul

Techniques fondamentales de calcul Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................

Plus en détail

Champs de vecteurs. Chap 46. 1 Champs de vecteurs de R 2. 1.2 Champ de gradient

Champs de vecteurs. Chap 46. 1 Champs de vecteurs de R 2. 1.2 Champ de gradient Champs de vecteurs Chap 46 1 Champs de vecteurs de R 2 1.1 Définition Définition. Soit une partie de R 2. On appelle champ de vecteur défini sur une application V : Ñ R 2 : @px, yq P, V px, yq pp px, yq,

Plus en détail

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie http://perso.wanadoo.fr/gilles.costantini/agreg.htm Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005 Légende : En italique : leçons dont le libellé a changé ou évolué par rapport

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Ensembles-Applications

Ensembles-Applications Ensembles-Applications Exercice 1 : Soient A = {1,2,3} et B = {0,1,2,3}. Décrire les ensembles A B, A B et A B. Allez à : Correction exercice 1 : Exercice 2 : Soient A = [1,3] et B = [2,4]. Déterminer

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 204/205 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle Chapitre 3 FORMULATION VARIATIONNELLE DES PROBLÈMES ELLIPTIQUES Exercice 3.. Si f est une fonction continue sur [, ], montrer que l équation différentielle { d 2 u = f pour < x < dx 2 (3.) u() = u() =.

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

4. Géométrie analytique du plan

4. Géométrie analytique du plan GÉOMÉTRIE ANALYTIQUE DU PLAN 35 4. Géométrie analytique du plan 4.1. Un peu d'histoire René Descartes (La Haye en Touraine, 31/3/1596 - Stockholm, 11/2/1650) La géométrie analytique est une approche de

Plus en détail

Écoulements potentiels

Écoulements potentiels Chapitre 2 Écoulements potentiels O. Thual, 26 juin 21 Sommaire 1 Perte de charge...................... 3 1.1 Équation de Bernoulli................. 3 1.2 Charge moyenne.................... 4 1.3 Loi de

Plus en détail

Du Calcul d Aire... ...Au Calcul Intégral

Du Calcul d Aire... ...Au Calcul Intégral Du Calcul d Aire......Au Calcul Intégral Objectifs Définir proprement l aire d une surface plane, au moins pour les domaines usuels (limités par des courbes simples) et fournir un moyen de la calculer.

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105 U N I V E R S I T E de C A E N Institut de Biologie Fondamentale et Appliquée M A T H E M A T I Q U E S pour SV 05 0 - Présentation - Bibliographie. - Trigonométrie - Fonctions réciproques - Nombres complees

Plus en détail

Espaces vectoriel normés

Espaces vectoriel normés Espaces vectoriel normés 1) Normes a) Dé nition : K R ou C. Une norme sur un K-ev E est une application E! R x 7! kxk véri ant : i) 8 x 2 E; kxk 0 et kxk 0, x 0 (vecteur nul). ii) 8 x 2 E; 8 2 K kxk jj

Plus en détail