Corrigé de l examen partiel H2001

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé de l examen partiel H2001"

Transcription

1 Problème no. 1 (2 points) a) Corrigé de l examen partiel H21 mpèremètre 6 V 1 V I 42 kw inductive S 6 kv P 42 kw Q La puissance réactive dans la charge est: Q S 2 P kvr La résistance de la charge: R P 42 Ω I Q La réactance de la charge: X Ω I L impédance est: (4.2 j4.28) Ω Une résistance R est connectée en parallèle avec l impédance. L ampèremètre indique 1. 6 V mpèremètre V I I s I R R I inductive S 6 kv P 42 kw S 9 kv P R Q 42.8 kvr 1 I 1 I R I s La puissance active totale est: P T S 2 Q kw Donc, le wattmètre indiquera 79.1 kw. La puissance dans la résistance R est égale à: P R P T P ( )kW 37.1 kw La résistance R est égale à: R 9.69 Ω 371 P R page 1

2 b) i 1 (t) i 2 (t) t ms i 1 ( moy) i 1 ( eff) t 3 d t 2 3 d i 2 ( moy) t 1 d t ms i 2 ( eff) t 22 d page 2

3 Problème no. 2 Source triphasée équilibrée I 24 V N B C kw B C triphasée équilibrée (inductive) / a) Le wattmètre indique: V C I cos où est l angle entre I et V C. On déduit: arc cos V C I V CN 188 arccos ± π 6 V N π lors: Donc, deux cas sont possibles: θ 2 I 41.7 et 18.3 V BN V C Cas où 41.7 Le facteur de puissance de la charge est: fp cos cos( 41.7 ).7 La puisssance active totale dans la charge: P 3 V B I cos kw La puisssance réactive totale dans la charge: Q 3 V B I sin kvr Cas où 18.3 Le facteur de puissance de la charge est: fp cos cos( 18.3 ).9 La puisssance active totale dans la charge: P 3 V B I cos kw La puisssance réactive totale dans la charge: Q 3 V B I sin kvr page 3

4 b) Un banc de trois condensateurs identiques (en ) est connecté en parallèle avec la charge pour augmenter le facteur de puissance à 1.. V CN Si le facteur de puissance global de la charge est augmenté à 1., le déphasage entre V N et I sera égal à et l angle sera égal à 3º. Le wattmètre indiquera: V C I cos( 3 ).866 V C I I V N θ 2 V BN V C Cas où 41.7 La nouvelle valeur du courant I est: I P V B Le wattmètre indiquera:.866 V C I kw Cas où 18.3 La nouvelle valeur du courant I est: I P V B Le wattmètre indiquera:.866 V C I kw page 4

5 Problème no. 3 (2 points) Source triphasée équilibrée 24 V I Ω P B B no. 1 1 Ω B N N C I no.2 P 2 C C Ω déséquilibrée La tension V N de la source est prise comme référence de phase: a) On convertit la charge Y en : B B C C 2 B 16 Ω C V N B B C C 2 BC 16 Ω B B C C 2 C 8 Ω 1 Les courants de triangle: B V B B C BC V C C Les courants de ligne: I ( 1 3 ) ( 3 1 ) C ( 1 9 ) ( 1 3 ) C ( 3 1 ) ( 1 9 ) Le wattmètre no. 1 indique: V C I cos où est le déphasage entre V C et I. Donc: I V C cos( 9 ) 3986 W Le wattmètre no. 2 indique: cosθ 2 où θ 2 est le déphasage entre et. Donc: θ ( 9 ).3 P cos(.3 ) 2187 W La somme ( P 2 ) représente la puissance active totale délivrée à la charge. page

6 b) On relie les deux neutres avec un fil conducteur. Source triphasée équilibrée 24 V I P1 B no. 1 B 1 Ω N N P2 C I no.2 C C Ω Ω déséquilibrée I N On a dans ce cas trois circuits monophasés indépendants. Les courants de lignes sont calculés: I V N V BN B V CN C Le courant du neutre est: I N I ( ) ( ) ( ) Le wattmètre no. 1 indique: V C I cos où est le déphasage entre V C et I. Donc: 3 3 I V C cos( 3 ) 7983 W Le wattmètre no. 2 indique: cosθ 2 où θ 2 est le déphasage entre et. Donc: θ 2 12 ( 9 ) 3 P cos( 3 ) W Dans ce cas, la somme ( P 2 ) ne représente pas la puissance active totale délivrée à la charge. page 6

7 Problème no. 4 Diamètre 3.2 cm Diamètre cm Parcours moyen du flux magnétique Diamètre 4.1 cm Longueur cm N 1 8 tours N 2 2 tours Section.9 cm x 1. cm 1.3 cm 2 a) Suivant les hypothèses, le couplage entre les deux bobines est parfait La réluctance du noyau magnétique: R t/wb µ π N L inductance propre de la bobine no. 1: L 1 H ou 1.2 mh R N L inductance propre de la bobine no. 2: L 2 H ou.948 mh R O L inductance mutuelle des deux bobines: M N 1 N H ou 3.8 mh R b) Une source de tension sinusoïdale de valeur efficace 1 V et de fréquence khz est connectée à la bobine no. 1. On trace le circuit équivalent du système: jx jx 2 1 I 2 jx 1 jω(l 1 M) j37.1 Ω V 1 V2 jωm j Ω Source C 1 V / khz jx 2 jω(l 2 M) j89.38 Ω Le courant dans la bobine 1 est: V 1 1 ( jx 1 ) ( jxm) ( j37.1) ( j119.17) La valeur efficace du courant est donc.298. La tension V 2 est calculée par la loi du diviseur de tension: V 2 j V V jx j j37.1 La valeur efficace de la tension V 2 est donc 2 V. page 7

8 c) Une résistance de 2 Ω est connectée à la bobine no. 2. On trace le circuit équivalent du système: jx jx 2 1 I 2 Source C 1 V / khz V 1 V2 R 2 Ω jx 1 jω(l 1 M) j37.1 Ω jωm j Ω jx 2 jω(l 2 M) j89.38 Ω Le courant dans la bobine 1 est: V ( jx 1 ) ( jxm ( jx2 R) ) ( j37.1) ( j ( j ) ) La valeur efficace du courant est donc Le courant I 2 est calculé par la loi du diviseur de courant: I 2 jx m ( jx 2 R) I j j ( j ) La tension V 2 est égale à: V 2 RI V La valeur efficace de la tension V 2 est donc 2 V. page 8

3.5 LE TRANSFORMATEUR

3.5 LE TRANSFORMATEUR Exercices 1. Une impédance de charge est alimentée par une source de tension sinusoïdale de 220 V (valeur efficace) et soutire une puissance active de 2 kw sous un courant d amplitude I = 11 A. Déterminer

Plus en détail

Système triphasé équilibré

Système triphasé équilibré Système triphasé équilibré Une ligne triphasée comporte conducteurs appelés "phases" (,, ou A,B,C ou R,S,T) et éventuellement un conducteur de référence appelé "neutre«(n). On distingue deux types de tensions:

Plus en détail

ÉLÉMENTS D ÉLECTROTECHNIQUE ET D ÉLECTRONIQUE ELE 1403 Examen de mi-terme Hiver 2013 CORRIGÉ

ÉLÉMENTS D ÉLECTROTECHNIQUE ET D ÉLECTRONIQUE ELE 1403 Examen de mi-terme Hiver 2013 CORRIGÉ ÉÉMNT D ÉTROTHNU T D ÉTRONU 403 xamen de mi-terme Hiver 203 Problème (4 points) ORRGÉ Une source à courant continu alimente le circuit suivant. a tension de la source s = 70 V, R = 5 Ω, R = 4 Ω, R 2 =

Plus en détail

Réseaux monophasé et triphasé

Réseaux monophasé et triphasé CHAPITRE 1 Réseaux monophasé et triphasé Gérard-André CAPOLINO Réseaux mono. & tri. 1 Circuits monophasés RAPPEL Composants des circuits monophasés: Sources de tension ou de courant Impédances (résistances,

Plus en détail

CORRIGÉ DES EXERCICES DU CHAPITRE 4 Partie 2

CORRIGÉ DES EXERCICES DU CHAPITRE 4 Partie 2 GEL15216 Électrotechnique 1 CORRIGÉ DES EXERCICES DU CHAPITRE 4 Partie 2 4.14 triphasée 11 kv / 440 V 300 kva A 1 A 2 300 kva fp = 0.8 AR B 1 B 2 C 1 C 2 Courant nominal au primaire: ( nom) ( 300kVA) 3

Plus en détail

Système triphasé équilibré

Système triphasé équilibré Système triphasé équilibré Une ligne triphasée comporte 3 conducteurs appelés "phases" (1,2,3 ou A,B,C ou R,S,T) et éventuellement un conducteur de référence appelé "neutre«(n). On distingue deux types

Plus en détail

Systèmes triphasés. u ba (t) = v b (t) v a (t) = u ab (t) u cb (t) = v c (t) v b (t) = u bc (t) u ac (t) = v a (t) v c (t) = u ca (t)

Systèmes triphasés. u ba (t) = v b (t) v a (t) = u ab (t) u cb (t) = v c (t) v b (t) = u bc (t) u ac (t) = v a (t) v c (t) = u ca (t) Systèmes triphasés I. Alimentation triphasée 1. Présentation On considère une alimentation triphasée équilibrée disposant de quatre bornes : trois phases repérées par les lettres a, b et c et un neutre

Plus en détail

N Anonymat :.. Question Note Barême Question Note Barême III III III III III III III-2-4 5

N Anonymat :.. Question Note Barême Question Note Barême III III III III III III III-2-4 5 UNIVERSITE PAUL SABATIER MARDI 22 JANVIER 2008 L2 EEA-MI UE3 : 2L33EA1E3 EXAMEN ECRIT FINAL Durée : 1h30 CONVERSION DE L'ENERGIE ELECTRIQUE: Aucun document écrit n'est autorisé Le téléphone portable est

Plus en détail

Présentation du cours

Présentation du cours Présentation du cours Schéma simplifié du réseau Français SOURCE G TE TA TA TA 400 kv 90 kv 0 kv 400 V / 0 V ou 5 kv ou 6 kv 0 kv / 0 kv / 4 kv EDF - PRODUCTON RTE - Réseau de Transport de l électricité

Plus en détail

Note 20. ***** Les exercices I & II sont indépendants ***** N Anonymat :..

Note 20. ***** Les exercices I & II sont indépendants ***** N Anonymat :.. UNIVERSITE PAUL SABATIER MARDI 5 JANVIER 2009 L2 EEA-MI UE3 : 2L33EA1E3 EXAMEN ECRIT FINAL Durée : 1h30 CONVERSION DE L'ENERGIE ELECTRIQUE: Aucun document écrit n'est autorisé Le téléphone portable est

Plus en détail

EXERCICE 2. Déterminer le courant de ligne et de phase et les puissance actives, réactive et apparente

EXERCICE 2. Déterminer le courant de ligne et de phase et les puissance actives, réactive et apparente EXERCICE 2 On a monté en triangle, trois charges identiques résistance de 25 Ω, inductance de 0.15 H et capacité de 120 µf en série sur un réseau triphasé de tension entre lignes de 400V - 50 Hz Déterminer

Plus en détail

Tension aux bornes d un dipôle Courant par phase. Courant en ligne. P1 (pour un dipôle) Commenter les résultats.

Tension aux bornes d un dipôle Courant par phase. Courant en ligne. P1 (pour un dipôle) Commenter les résultats. triphase_td 1/5 Exercice 1 Dessiner une ligne triphasée et placer les tensions simples et les tensions composées. Quels sont les symboles utilisés pour les courants en ligne et les courants par phase?

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Place Cormontaigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fax : 03 87 31 85 36 Sciences Appliquées. Savoir-faire expérimentaux. Référentiel : S5 Sciences Appliquées.

Plus en détail

Chap 1: Distribution de l énergie électrique M 2.2: ENERGIE ELECTRIQUE 2

Chap 1: Distribution de l énergie électrique M 2.2: ENERGIE ELECTRIQUE 2 I.Le réseau de distribution 50Hz De 1kV à 33kV De 33kV à 800 kv De 1kV à 33kV HTA >1kV Page 1 / 11 II.Distribution triphasées équilibrées II.1. Avantage - Les machines triphasées ont des puissances de

Plus en détail

CHARGE TRIPHASÉE CONNECTÉE AU RÉSEAU

CHARGE TRIPHASÉE CONNECTÉE AU RÉSEAU CHAGE TIPHASÉE CONNECTÉE AU ÉSEAU COMPENSATION DE LA PUISSANCE ÉACTIVE 1. OBJECTIF Il s agit d étudier les puissances ainsi que les variations temporelles des grandeurs électriques d une charge triphasée

Plus en détail

ALIMENTER ( 1ASERA BEFRA Marrakech) SI Les réseaux triphasés PAGE: 1 / 7

ALIMENTER ( 1ASERA BEFRA Marrakech) SI Les réseaux triphasés PAGE: 1 / 7 SI Les réseaux triphasés PAGE: 1 / 7 I) DEFINITIONS. 1) Système triphasé. Trois tensions ou trois courants sinusoïdaux, de même fréquence, forment un système triphasé de tensions ou de courants si elles

Plus en détail

Transformateurs monophasés Correction des exercices III, IV et V

Transformateurs monophasés Correction des exercices III, IV et V Exercice III Les essais suivants ont été réalisés sur un transformateur monophasé dont le schéma équivalent est représenté ci contre. Essai à vide : valeurs efficaces des tensions primaire secondaire :

Plus en détail

Epreuve de modélisation BTS 1 Electrotechnique

Epreuve de modélisation BTS 1 Electrotechnique Epreuve de modélisation BTS 1 Electrotechnique Les quatre parties sont indépendantes, il est conseillé de bien gérer le temps consacré à chaque problème. La qualité de la rédaction sera comptabilisée dans

Plus en détail

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE *********

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE ********* I.U.T. Formation Initiale D.U.T. GENIE ELECTRIQUE & INFORMATIQUE INDUSTRIELLE Enseignant responsable : B. DELPORTE Documents interdits Calculatrice autorisée Travail demandé : ELECTROTECHNIQUE Deuxième

Plus en détail

COURANT ALTERNATIF SINUSOÏDAL TRIPHASE

COURANT ALTERNATIF SINUSOÏDAL TRIPHASE PIFFRET JBS COURANT ALTERNATIF SINUSOÏDAL TRIPHASE COURS 6 T CAP E Elec Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques ( U, V, I, J, P, Q, S, cos ϕ ) en régime

Plus en détail

Les circuits RLC série

Les circuits RLC série Lorsqu'un circuit électrique est alimenté par un régime alternatif sinusoïdal, les récepteurs peuvent être de n'importe quel type. Tous les récepteurs peuvent représenter un couplage mixte, composé de

Plus en détail

Moteur synchrone à pôles lisses non saturé

Moteur synchrone à pôles lisses non saturé Moteur synchrone à pôles lisses non saturé Suite CHAPITRE I DOCUMENT COMPOSÉ À PARTIR DU COURS DU PR.VIAROUGE GEL-3001 Automne 2018 1 I. Rappel GEL-3001 Automne 2018 2 Génération du couple électromagnétique

Plus en détail

CORRIGÉ DES EXERCICES DU CHAPITRE 4 Partie 1

CORRIGÉ DES EXERCICES DU CHAPITRE 4 Partie 1 GEL1516 Électrotechnique 1 CORRIGÉ DES EXERCICES DU CHAPITRE 4 Partie 1 4.1 a) Circuit équivalent du transformateur référé au primaire: R 1 X 1 X I R 1 I 0.75 Ω 1 Ω 1 Ω 0.75 Ω 33.3 kω 5 kω b) Circuit équivalent

Plus en détail

Compléments d électricité appliquée. Séance 1: Généralités

Compléments d électricité appliquée. Séance 1: Généralités Compléments d électricité appliquée éance 1: Généralités xercice 1 : Les signaux périodiques. oit le signal suivant : 100 V(V) 5 10 15 20 t(ms) On vous demande de déterminer : a) la période b) la fréquence

Plus en détail

Chapitre 2 Transformateurs et Redresseurs à diodes

Chapitre 2 Transformateurs et Redresseurs à diodes Chapitre Transformateurs et Redresseurs à diodes Frédéric Gillon - Iteem Sommaire La conversion d énergie Équations Physiques de la conversion d énergie magnétique Le Transformateur Monophasé Le Transformateur

Plus en détail

Figure 1. II. Tensions simples : a. Allures : Figure 2. a. Equations : 3 b. Fresnel : On déduit des équations horaires les vecteurs suivants : V V 1

Figure 1. II. Tensions simples : a. Allures : Figure 2. a. Equations : 3 b. Fresnel : On déduit des équations horaires les vecteurs suivants : V V 1 I. Introduction : On appelle «tensions ou courants triphasés» un ensemble de tensions ou de courants de même fréquence, ayant même amplitude et présentant entre eux des différences de phases de π. Figure

Plus en détail

Exercices chapitre 10 Page Les récepteurs (moteurs, radiateurs), possèdent une plaquette signalétique (carte d'identité).

Exercices chapitre 10 Page Les récepteurs (moteurs, radiateurs), possèdent une plaquette signalétique (carte d'identité). 10.9 Documentaire Exercices chapitre 10 Page 10-1 Les récepteurs (moteurs, radiateurs), possèdent une plaquette signalétique (carte d'identité). Le type de couplage est noté. Exemple : 230 V /400 V / cos

Plus en détail

Systèmes triphasés équilibrés

Systèmes triphasés équilibrés 1. Présentation 1.1 Avantages par rapport au monophasé Les machines triphasées ont des puissances de plus de 50% supérieures aux machines monophasées de même masse et donc leurs prix sont moins élevés

Plus en détail

Introduction. Définition. Les tensions simples & composées

Introduction. Définition. Les tensions simples & composées Introduction Les réseaux triphasés sont très répandus dans le monde industriel en raison de leurs nombreuses propriétés favorables à la production, au transport et à l utilisation des grandeurs électriques.

Plus en détail

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone Julien Seigneurbieux Conversion d énergie Présentation Générale Semestre 1 Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone 1 Rappels d électrocinétique

Plus en détail

TRIPHASE. Définitions de base Grandeurs triphasées. Un système de grandeurs triphasées peut se mettre sous la forme :

TRIPHASE. Définitions de base Grandeurs triphasées. Un système de grandeurs triphasées peut se mettre sous la forme : Achamel.info Cours pratiques en ligne TRIPHASE Le triphasé est un système de trois tensions sinusoïdales de même fréquence et généralement de même amplitude qui sont déphasées entre elles (de 120 ou 2π/3

Plus en détail

EXERCICES CHAPITRE 3

EXERCICES CHAPITRE 3 EXECICE CHAPIE 3 Exercice 1 Définir un système symétrique de tensions triasé d ordre 2 et en déduire le système inverse correspondant. Exercice 2 On considère un réseau triasé dont la valeur efficace de

Plus en détail

Université paul Sabatier. L2 EEA MECA GC : Energie Electrique

Université paul Sabatier. L2 EEA MECA GC : Energie Electrique Université paul Sabatier L2 EEA MECA GC : Energie Electrique Aide mémoire régime sinusoïdal Représentation des grandeurs sinusoïdales Une grandeur sinusoïdale est caractérisée par sa valeur efficace, sa

Plus en détail

3. Comportement d'une bobine idéale sur une tension sinusoïdale

3. Comportement d'une bobine idéale sur une tension sinusoïdale 3. Comparaison: tension continue et tension sinusoïdale sur une bobine presque idéale montage: valeurs mesurées: tension continue: tension sinusoïdale: 7,5V 3A 7,5V 3A 2,5Ω EFF, EFF, X X 5V 8,8mA EFF,

Plus en détail

QCM 1 de Physique (STI)

QCM 1 de Physique (STI) QCM 1 de Physique (STI) Question 1 Une bobine est parcourue par un courant de 1 A. Sans noyau ferromagnétique, l intensité de l induction magnétique est de 4 mt, avec le noyau ferromagnétique elle est

Plus en détail

Circuits triphasés 1

Circuits triphasés 1 Circuits triphasés 1 Création d'un système de tensions triphasées N2 e3 e2 N1 Soit 3 bobines fixes de N spires (N1=N2=N3=N) (stator) et un aimant (rotor) entraîné àla vitesse ω. En canalisant le flux par

Plus en détail

Chapitre 1. Les Circuits Triphasés 01-1

Chapitre 1. Les Circuits Triphasés 01-1 Chapitre 1 Les Circuits Triphasés 01-1 Généralités : Le transport de l énergie électrique Les premiers réseaux électriques ont été construits vers 1870, après l invention de la dynamo de Gramme. Les réseaux

Plus en détail

26,5 mh L2 5Ω C1 C2 60 Hz C3=884 µf R1 R2. La puissance mesurée dans chacun des condensateurs C1 et C2 est de 120kvar à 600V.

26,5 mh L2 5Ω C1 C2 60 Hz C3=884 µf R1 R2. La puissance mesurée dans chacun des condensateurs C1 et C2 est de 120kvar à 600V. Exercice 1 (DEV1A00) Is I 3 Zl 10 + j15 A I 1 I 2 L1 I 4 I 5 26,5 mh L2 5Ω 600 0 0 C1 C2 60 Hz C3=884 µf R1 R2 5 Ω 2 Ω B La puissance mesurée dans chacun des condensateurs C1 et C2 est de 120kvar à 600V.

Plus en détail

CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif. 1. Mesure de la puissance en courant continu

CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif. 1. Mesure de la puissance en courant continu CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif 1. Mesure de la puissance en courant continu 1.1 Mesure indirecte «méthode voltampère métrique» La puissance fournie à un récepteur

Plus en détail

Les circuits RL et RC série

Les circuits RL et RC série Dans la pratique, on rencontre souvent des circuits composés que d'un élément réactif et d'une résistance. Par exemple, les moteurs, composés d'enroulements réalisés avec du fil de cuivre, peuvent être

Plus en détail

1. Problème, 6 points

1. Problème, 6 points ELE3400 INTRA 25 Octobre 2016 Documentation permise : 2 feuilles de formules recto-verso (format lettre, i.e. 8.5 x 11) Calculatrices programmables permises. Les ordinateurs ne sont pas permis. Aucun accès

Plus en détail

BEP ET Leçon 26 Les puissances en triphasé Page 1/6

BEP ET Leçon 26 Les puissances en triphasé Page 1/6 BEP ET Leçon 26 Les puissances en triphasé Page 1/6 1. LE MONTAGE EN ETOLE EQLBRE N V Dans un montage en étoile nous constatons pour chaque branche de l étoile que : La tension aux bornes du récepteur

Plus en détail

Les transformateurs monophasés

Les transformateurs monophasés monophasés Un transformateur électrique est une machine électrique qui permet de de modifier les valeurs de tension et d'intensité du courant délivrées par une source d'énergie électrique alternative,

Plus en détail

GELE2112 Chapitre 7 : Analyse sinusoïdale

GELE2112 Chapitre 7 : Analyse sinusoïdale GELE2112 Chapitre 7 : Analyse sinusoïdale Gabriel Cormier, Ph.D. Université de Moncton Hiver 2009 Gabriel Cormier (UdeM) GELE2112 Chapitre 7 Hiver 2009 1 / 82 Introduction Contenu Ce chapitre présente

Plus en détail

Nom:... Prénom:. Classe:.. CIN. Salle:.. Date INSTITUT SUPERIEUR DES ÉTUDES TECHNOLOGIQUES DE BIZERTE DÉPARTEMENT GENIE ÉLECTRIQUE EXAMEN

Nom:... Prénom:. Classe:.. CIN. Salle:.. Date INSTITUT SUPERIEUR DES ÉTUDES TECHNOLOGIQUES DE BIZERTE DÉPARTEMENT GENIE ÉLECTRIQUE EXAMEN INSTITUT SUPERIEUR DES ÉTUDES TECHNOLOGIQUES DE BIZERTE DÉPARTEMENT GENIE ÉLECTRIQUE Circuits Electriques EXAMEN Classes : GE1 Enseignants : R.L. FILALI, A.MHAMDI, D. CHOUABI, W. BOUALLEGUE Documents autorisés

Plus en détail

TRAVAUX PRATIQUES : ELECTRONIQUE INDUSTRIELLE PONTS MONOPHASE ET TRIPHASE A DIODES : ETUDE ET SIMULATION A L AIDE DE MATLAB ET MATLAB/SIMPOWER

TRAVAUX PRATIQUES : ELECTRONIQUE INDUSTRIELLE PONTS MONOPHASE ET TRIPHASE A DIODES : ETUDE ET SIMULATION A L AIDE DE MATLAB ET MATLAB/SIMPOWER UNIVERSITE SAINT-JOSEPH DE BEYROUTH FACULTE D INGENIERIE - E.S.I.B. DEPARTEMENT ELECTRICITE ET MECANIQUE GENIE ELECTRIQUE EI - 0 TRAVAUX PRATIQUES : ELECTRONIQUE INDUSTRIELLE PONTS MONOPHASE ET TRIPHASE

Plus en détail

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction MACHINES à INDUCTION Gérard-André CAPOLINO 1 Généralités La machine à induction est utilisée en moteur ou en générateur Toutefois, l utilisation en moteur est plus fréquente. C est le moteur le plus utilisé

Plus en détail

Chapitre 2 : Le régime alternatif (AC)

Chapitre 2 : Le régime alternatif (AC) Chapitre 2 : Le régime alternatif (AC) 1 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 4. Puissance en régime AC 5. Récapitulatif 2 1 Plan du chapitre 1. Grandeur alternative 2. Le régime

Plus en détail

Université A. I^IRA de Déportement de

Université A. I^IRA de Déportement de Université A. I^IRA de Déportement de Béjoi'o-Fcculté Technologie - de lo Technologie Ztmt annêe (02 heures) Exercice 0l: (08 points) Soit le récepteur présenté ci-contre. Il est alimenté sous la tension

Plus en détail

Le courant alternatif

Le courant alternatif Le courant alternatif Exercices d'application : 1 la fréquence d un courant alternatif est de 40 Hz. Calculer ses période et pulsation 2 un courant d appel téléphonique à une fréquence de 25 Hz et une

Plus en détail

3. Puissance alternative et systèmes triphasés

3. Puissance alternative et systèmes triphasés Master 1 Mécatronique J Diouri. Puissance alternative et systèmes triphasés Doc. Electrabel Puissance en alternatif Puissance instantanée [ I cos( ω t) ][ U cos( ω + )] p( t) = ui = t ϕ c c Valeur moyenne

Plus en détail

6GEI700 : Transport et Exploitation d Énergie Électrique TP 1 : Puissances active et réactive

6GEI700 : Transport et Exploitation d Énergie Électrique TP 1 : Puissances active et réactive GEI700 Automne 0 GEI700 : Transport et Exploitation d Énergie Électrique TP : Puissances active et réactive But. Pour interpréter la signification d une puissance positive, négative, réactive et active..

Plus en détail

Corrigé. I = j = /-70.52º V

Corrigé. I = j = /-70.52º V orrigé Problème no. (0 points (6 points. mpèremètre Wttmètre Z I V V Vs V 40 V = 50 µf = 50 Ω X = j 7.684 Ω Le fcteur de puissnce de (Z Z est égl à: fp = P/S = 6000/(40x5 =.0 Donc, le circuit est en résonnce.

Plus en détail

1 GEL Chapitre 14 : associations de dipôles en régime sinusoïdal - résonance

1 GEL Chapitre 14 : associations de dipôles en régime sinusoïdal - résonance 4.. 'objectif de l'étude de dipôles passifs en régime sinusoïdal montage utilisé pour étudier un dipôle résistif, capacitif ou inductif G.B.F. i(t) eff A v(t) r = Ω i(t) dipôle eff voie de l oscilloscope

Plus en détail

Note 20. ***** Les exercices I, II & III sont indépendants ***** N Anonymat :..

Note 20. ***** Les exercices I, II & III sont indépendants ***** N Anonymat :.. UNIVERSITE PAUL SABATIER LUNDI 4 JANVIER 2010 L2 EEA-MI UE3 : 2L33EA1E3 EXAMEN ECRIT FINAL Durée : 1h30 CONVERSION DE L'ENERGIE ELECTRIQUE: Aucun document écrit n'est autorisé Le téléphone portable est

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

COURANT ALTERNATIF SINUSOÏDAL TRIPHASE

COURANT ALTERNATIF SINUSOÏDAL TRIPHASE PIFFRET JBS COURANT ALTERNATIF SINUSOÏDAL TRIPHASE COURS 6 T CAP E Elec Objectif terminal : Connaître, définir et savoir déterminer les grandeurs caractéristiques ( U, V, I, J, P, Q, S, cos ϕ ) en régime

Plus en détail

Transformateurs monophasés

Transformateurs monophasés CHAPITRE 2 Transformateurs monophasés Gérard-André CAPOLINO Transformateur 1PH 1 Analyse du circuit magnétique Le circuit magnétique est constitué d un noyau en fer feuilleté et d enroulements. Le courant

Plus en détail

CH19 : Le transformateur monophasé réel

CH19 : Le transformateur monophasé réel BTS électrotechnique 1 ère année - Sciences physiques appliquées CH19 : Le transformateur monophasé réel Dimensionnement des transformateurs Problématique : Dans la grande majorité des cas, un transformateur

Plus en détail

Puissance réactive et filtres

Puissance réactive et filtres Puissance réactive et filtres 2005-04-22 GEL-22230 - Jean Tessier - BBA 1 Pourquoi de la compensation réactive? Modifier l écoulement de puissance réactive dans un réseau, i.e. produire localement de la

Plus en détail

AL Les sources d énergie Cours AL-1 forme énergie électrique. Cours AL 1 TSI1 TSI2. Alimenter : Energie électrique

AL Les sources d énergie Cours AL-1 forme énergie électrique. Cours AL 1 TSI1 TSI2. Alimenter : Energie électrique Cours 1- Problématique : Cours AL 1 TSI1 TSI2 Alimenter : Energie électrique L ensemble des systèmes industriels nécessite une ou plusieurs sources d énergie. Chacune de ces sources possèdent des caractéristiques

Plus en détail

CH14 : Le moteur synchrone

CH14 : Le moteur synchrone BTS électrotechnique 2 ème année - Sciences physiques appliquées CH14 : Le moteur synchrone Compensation de l énergie réactive Enjeu : Problématique : On souhaite utiliser un moteur synchrone en compensateur

Plus en détail

AL Les sources d énergie Cours AL-1 forme énergie électrique Les formes de l énergie électrique

AL Les sources d énergie Cours AL-1 forme énergie électrique Les formes de l énergie électrique Les formes de l énergie électrique Compétences attendues: RESOUDRE : - Construire graphiquement les lois de l électricité à partir des vecteurs de Fresnel - Déterminer les courants et les tensions dans

Plus en détail

Tirage 4-mai-98. Volume 3

Tirage 4-mai-98. Volume 3 Tirage 4-mai-98 Volume 3 Système triphasé Page 1 10 SYSTEME TRIPHASE Le système triphasé fut présenté pour la première fois en 1893. Le système triphasé offre plusieurs avantages : C'est le système triphasé

Plus en détail

CH25 : modèle équivalent de l alternateur synchrone à pôles lisses

CH25 : modèle équivalent de l alternateur synchrone à pôles lisses BTS électrotechnique 1 ère année - Sciences physiques appliquées CH25 : modèle équivalent de l alternateur synchrone à pôles lisses Production d énergie électrique Problématique : Enjeu : Comme pour le

Plus en détail

Analyse sinusoïdale. Chapitre Source sinusoïdale

Analyse sinusoïdale. Chapitre Source sinusoïdale Chapitre 7 Analyse sinusoïdale Jusqu à présent, on a seulement analysé des circuits ayant des sources constantes (DC). Ce chapitre présente l analyse de circuits ayant des sources variables (AC). On s

Plus en détail

I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation.

I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation. I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation. Tension d alimentation Adapter la tension Pertes Tension

Plus en détail

N Anonymat :.. Question Note Barême Question Note Barême III-1 1 III-2 2,5 III-1 0,5 III-2 2. Note 20

N Anonymat :.. Question Note Barême Question Note Barême III-1 1 III-2 2,5 III-1 0,5 III-2 2. Note 20 UNIVERSITE PAUL SABATIER LUNDI 5 JANVIER 2011 L2 EEA-MI UE3 : 2L33EA1E3 EXAMEN ECRIT FINAL Durée : 1h30 CONVERSION DE L'ENERGIE ELECTRIQUE: Aucun document écrit n'est autorisé Le téléphone portable est

Plus en détail

Couplage des générateurs triphasés. Création d une tension induite. Bobine traversée par un champ magnétique ~ Équivalent à. Flux magnétique variable

Couplage des générateurs triphasés. Création d une tension induite. Bobine traversée par un champ magnétique ~ Équivalent à. Flux magnétique variable CHAPITRE III : Les systèmes triphasés Couplage des générateurs triphasés Bobine traversée par un champ magnétique ~ Flux magnétique variable Équivalent à J E Création d une tension induite Tension induite

Plus en détail

BEP ET Leçon 18 Groupement de récepteurs Page 1/8

BEP ET Leçon 18 Groupement de récepteurs Page 1/8 BEP ET Leçon 18 Groupement de récepteurs Page 1/8 1. GOPEMENT DE ESSTANE 1.1 ESSTANES EN SEE Avec n : nombre de résistances. équ = 1 + + 3 +. + n as particulier : n résistances de même valeur : équ = n.

Plus en détail

Chap 2 : SYSTEMES TRIPHASES EQUILIBRES

Chap 2 : SYSTEMES TRIPHASES EQUILIBRES Chap 2 : SYSTEMES TRIPHASES EQUILIBRES Pour des raisons, la production et le transport de l énergie électrique se font en triphasé. I. Réseau triphasé Générateur : générateurs fournissant un système équilibré

Plus en détail

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE I TENSIONS ET INTENSITES ALTERNATIVES INSTANTANEES 1 Sinusoïde et vecteur de FRESNEL 2 Période, fréquence et pulsation 3 Tension maximum -Tension efficace

Plus en détail

Génie électrique TD Source d'énergie

Génie électrique TD Source d'énergie Exercice 1 (difficulté *) On considère le circuit suivant : A i(t) C On donne : u(t) u L (t) L R=200 Ω D u R (t) R B M 1. Indiquer les branchements de l oscilloscope pour visualiser u(t) en voie1 et u

Plus en détail

Corrigé du devoir n 4

Corrigé du devoir n 4 Corrigé du devoir n 4 Il est très fortement conseillé de lire l'ensemble de l'énoncé avant de commencer. Le sujet est divisé en trois parties indépendantes et porte sur l'étude d'un variateur de vitesse

Plus en détail

V e. S e. relative ε r sachant que C = ε 0 ε r

V e. S e. relative ε r sachant que C = ε 0 ε r G. Pinson : Physique Appliquée Couant alternatif ACA-TD / ---------------- ACA-- Soit un circuit RL série, avec R = 0 Ω ; L = 70 mh. Calculer les tensions V R (tension aux bornes de R), V L (tension aux

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

Terminale STI génie électrotechnique Chapitre 8 Le triphasé. v 1 v. v Observation à l'oscilloscope. π 2π

Terminale STI génie électrotechnique Chapitre 8 Le triphasé. v 1 v. v Observation à l'oscilloscope. π 2π Le triphasé Étude du système. Présentation Économiquement, le triphasé est plus intéressant que le monophasé : le transport de l énergie électrique et les machines tournantes sont plus rentables en triphasé.

Plus en détail

CAP PRO E ELECTROTHECHNIQUE : LE COURANT ALTERNATIF

CAP PRO E ELECTROTHECHNIQUE : LE COURANT ALTERNATIF EECOHECHNQE : E COAN AENAF sa lettre de désignation F hertz son unité Hz seconde s adian/seconde volt d/s V ampère A ohm Xs ohm Xc ohm Z ohm Henry H C farrad F P watt W Q var var S Volt.ampère VA P j watt

Plus en détail

Cours d électrotechnique

Cours d électrotechnique Cours d électrotechnique LES MACHINES A COURANT ALTERNATIF MACHINE STATIQUE A COURANT ALTERNATIF PARTIE N : LE TRANSFORMATEUR PARFAIT TABLE DES MATIERES 1. Définition d un transformateur parfait?.... La

Plus en détail

. LE TRANSFORMATEUR REEL

. LE TRANSFORMATEUR REEL Transfo réel - Cours - 1/19. LE TRANSFORMATEUR REEL. I Présentation Le transformateur est un convertisseur statique, alternatif / alternatif. Il est soit élévateur, soit abaisseur de tension ou de courant.

Plus en détail

Devoir Surveillé. Électricité Module P1

Devoir Surveillé. Électricité Module P1 Devoir Surveillé Électricité Module P Semestre Lundi mai Sans document Sans calculatrice Exercice Monophasé (8 points) Soit le circuit suivant, les appareils sont MS : W A c ~ Quelles sont les grandeurs

Plus en détail

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Sommaire Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Projet Éclairage d un entrepôt - Deuxième partie... 1 Cours Puissances et compensation en monophasé...

Plus en détail

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients.

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. Chapitre 40 1 Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. 2 Chapitre 40 Les machines synchrones 3

Plus en détail

4.1. L'objectif de l'étude de dipôles passifs en régime sinusoïdal montage utilisé pour étudier un dipôle résistif, capacitif ou inductif

4.1. L'objectif de l'étude de dipôles passifs en régime sinusoïdal montage utilisé pour étudier un dipôle résistif, capacitif ou inductif 4.. 'objectif de l'étude de dipôles passifs en régime sinusoïdal montage utilisé pour étudier un dipôle résistif, capacitif ou inductif G.B.F. i(t) eff A v(t) r = i(t) dipôle eff voie de l oscilloscope

Plus en détail

Exercices : bobines et inductances

Exercices : bobines et inductances Exercices : bobines et inductances Sauf indication contraire, les tensions et intensités sont sinusoïdales et leur fréquence égale à 50 Hz. I. Tension et intensité pour une inductance (orientée avec la

Plus en détail

LES SYSTEMES TRIPHASES

LES SYSTEMES TRIPHASES LES SYSTEMES TRIPHASES Résumé Partant des acquis résultant de l étude des circuits électriques linéaires en régime sinusoïdal (monophasé), le milieu industriel a recours à des ensembles comportant plusieurs

Plus en détail

ELEMENTS DE CORRECTION

ELEMENTS DE CORRECTION Elément de correction Machines électriques 1 ère session : JEUDI 7 mai 004. UNIERSITE BORDEAUX I ELEMENTS DE CORRECTION I.U.P. Génie des Systèmes Industriels Aéronautique U - Formation technologique Durée

Plus en détail

Théorème de Boucherot

Théorème de Boucherot Page 3 3.3-Propriétés de conservation de puissances Courants Monophasés Théorème de Boucherot Que les divers récepteurs d'un circuit soient groupés en série ou en parallèle La puissance active totale est

Plus en détail

Calculs de puissance. Chapitre Introduction

Calculs de puissance. Chapitre Introduction Chapitre 2 Calculs de puissance On explore ici les concepts de puissance qui seront la base pour la résolution de plusieurs types de problèmes. En fait, on verra qu il est souvent plus simple de résoudre

Plus en détail

A.3.a) Déterminer l'intensité efficace du courant en ligne appelé par le moteur.

A.3.a) Déterminer l'intensité efficace du courant en ligne appelé par le moteur. Ex n 1 Bacf1984 : Un moteur asynchrone triphasé possède sur sa plaque signalétique les indications suivantes : 220 V / 380 V 50 Hz P u = 6 kw 4 pôles On dispose du réseau 220 V / 380 V ; 50 Hz. A.1) Quel

Plus en détail

PREMIER BACHELIER EN INFORMATIQUE

PREMIER BACHELIER EN INFORMATIQUE Examen de Physique, juin 0 PREMIER BACHELIER EN INFORMATIQUE EXAMEN DE PHYSIQUE (PHYS-F-03) DEUXIEME PARTIE : EXERCICES Formulaire - accélération de la pesanteur g = 0 m/s - permittivité du vide ε 0 =

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

CHAPITRE IV LES PUISSANCES EN TRIPHASÉ

CHAPITRE IV LES PUISSANCES EN TRIPHASÉ CHAPITRE IV LES PUISSANCES EN TRIPHASÉ Nous avons déjà examiné au chapitre2 l intérêt d introduire les notions de puissances actives, réactives et apparentes dans un système monophasé. L approche par puissance

Plus en détail

Complément de cours d électrotechnique S2

Complément de cours d électrotechnique S2 CAU Philippe E1 ENSEIRB 2004 Complément de cours d électrotechnique S2 22 juillet 2004 Table des matières Avant-propos 2 1 Tensions et courants sinusoïdaux monophasés et triphasés 4 1.1 Notation..............................

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

Principes de la conversion d énergie

Principes de la conversion d énergie CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine:

Plus en détail

Détermination et utilisation du modèle d un transformateur monophasé

Détermination et utilisation du modèle d un transformateur monophasé NOM : prénom : Détermination et utilisation du modèle d un transformateur monophasé Grille d évaluation Les compétences à développer en sciences appliquées. Les compétences évaluées dans ce TP. C0 : Choisir

Plus en détail