Chapitre 3 : INFERENCE

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 3 : INFERENCE"

Transcription

1 Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE Introduction L échantillonnage aléatoire Estimation ponctuelle Distributions d échantillonnage Intervalles de probabilité L échantillonnage 1 / 41

2 Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE Introduction L échantillonnage aléatoire Estimation ponctuelle Distributions d échantillonnage Intervalles de probabilité L échantillonnage 2 / 41

3 Définitions En général, l inférence est définie comme une opération mentale qui consiste à tirer une conclusion d une série de propositions reconnues pour vraies. Ces conclusions sont tirées à partir de règles de base. L inférence statistique est définie comme le processus d utilisation des données d un échantillon pour estimer ou tester des hypothèses sur les caractéristiques numériques («paramètres») d une population. Une population (ou «population mère») est définie comme l ensemble de tous les éléments d intérêt dans une étude particulière. Un échantillon est défini comme un sous-ensemble de la population. L échantillonnage 3 / 41

4 Pourquoi prendre un échantillon? Le coût : recenser toute la population coûte trop cher et/ou prend trop de temps Recensement de la population 2010 : recensement traditionnel (questionnaire à tous les ménages) coûterait 200 millions ; proposition du Conseil fédéral (échantillonnage + recensement fondé sur les registres coûtera 124 millions [estimations faites en 2006]) Etant donné l impossibilité d examiner chaque être humain, toute étude empirique d hypothèses générales en sciences sociales doit être basée sur des échantillons, soit d individus soit de groupes d individus (ménages, firmes, industries, pays,...) L échantillonnage 4 / 41

5 Un exemple fictif : Statville Commune Statville : 2500 habitants adultes (= population) Syndic s intéresse à la distribution des revenus parmi ces habitants et à la participation des habitants à la dernière assemblée communale (ils étaient trop nombreux pour être comptés) Interroger tous les 2500 habitants serait trop cher Budget permet d interroger un échantillon de 30 habitants Paramètres de la population (inconnus par le syndic!) : o Revenu moyen (): francs o Ecart-type du revenu (): 4000 francs o Taux de participation à la dernière assemblée (p) : 60% Que devrait faire le syndic? L échantillonnage 5 / 41

6 Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE Introduction L échantillonnage aléatoire Estimation ponctuelle Distributions d échantillonnage Intervalles de probabilité L échantillonnage 6 / 41

7 L échantillonnage aléatoire simple Population de N éléments ; échantillon de n éléments Définition pour une population finie (N connu): tous les éléments de la population ont la même probabilité de faire partie de l échantillon Probabilité qu un élément de la population soit contenu dans l échantillon est n/n. Définition pour une population infinie (N inconnu): les éléments de l échantillon sont sélectionnés indépendamment de la même population Echantillonnage sans remise (chaque élément ne peut être sélectionné qu une fois) : o Nombre d échantillons possibles = C = N!/(n!(N-n)!) o Probabilité qu un échantillon particulier soit tiré = 1/C o Exemple Statville : C 2.75 * L échantillonnage 7 / 41

8 Comment obtenir un échantillon aléatoire simple? Critère : probabilité de sélection indépendante de toute caractéristique des éléments de la population Population finie : Tirage au sort Choix avec nombres aléatoires à partir d une liste des éléments [Excel :=ALEA() génère des nombres aléatoires entre 0 et 1] Population infinie (processus continu dans le temps) : Sélectionner selon une loi de Bernoulli [Excel : =SI(ALEA()>=P; oui ; non ) répond «oui» dans (1 P) pourcent de cas] Trouver astuce (exemple contrôle douanier : examiner chaque voiture arrivant après une voiture orange) L échantillonnage 8 / 41

9 Autres types d échantillon Echantillon aléatoire stratifié Critère : strates homogènes Difficulté de la pondération représentative des strates Statville : sélectionner aléatoirement des individus selon le niveau d éducation Échantillon aléatoire par grappes o Critère : grappes composées de façon hétérogène et donc représentative o Statville : sélectionner aléatoirement des ménages/quartiers Échantillonnage subjectif Critère : échantillon qui semble représentatif Statville : syndic choisit 30 individus qui lui semblent représentatifs de la population municipale Évidemment problématique (danger de biais de sélection)! L échantillonnage 9 / 41

10 Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE Introduction L échantillonnage aléatoire Estimation ponctuelle Distributions d échantillonnage Intervalles de probabilité L échantillonnage 10 / 41

11 Bases But : estimer la valeur d un paramètre de la population («estimation ponctuelle») Méthode : calculer la statistique d échantillon correspondante «Méthode des moments» : prendre moment de l échantillon comme estimateur du moment de la population Statistiques d échantillon : toute mesure de tendance centrale, de dispersion, etc. L échantillonnage 11 / 41

12 Exemple Statville (1) Échantillon aléatoire de 30 individus ind. revenu participation revenu participation Somme Moyenne Ecart type L échantillonnage 12 / 41

13 Exemple Statville (2) Revenu : moyenne de l échantillon revenu x i n 30 Revenu : écart type de l échantillon 2 ( revenui - x) s n-1 29 Participation : moyenne de l échantillon participation 19 p i 0.63 p 0.60 n 30 Les estimations ponctuelles ne correspondent pas exactement aux paramètres de la population que faire? L échantillonnage 13 / 41

14 Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE Introduction L échantillonnage aléatoire Estimation ponctuelle Distributions d échantillonnage Intervalles de probabilité L échantillonnage 14 / 41

15 Bases Idée de départ : répéter la sélection d un échantillon multiples fois et étudier comment se comportent les statistiques de l échantillon par rapport aux paramètres correspondants de la population En moyenne, la statistique de l échantillon a-t-elle tendance à être proche du paramètre «vrai» correspondant, ou y a-til une divergence systématique (c.à.d. un «biais»)? Distribution d échantillonnage = distribution de probabilité de toutes les valeurs possibles d une statistique de l échantillon Puisque la sélection d échantillons suit un processus aléatoire, les statistiques de l échantillon sont elles-aussi des variables aléatoires et suivent donc un distribution de probabilité L échantillonnage 15 / 41

16 Exemple Statville (1) Supposons (pour fixer les idées, pas parce-que ce serait réaliste ou intelligent) que le syndic ait les moyens de répéter l expérience initiale multiples fois, c.à.d. de resélectionner des échantillons aléatoires de taille 30 parmi les habitants de Statville. Pour chacun de ces échantillons, il calcule x, s et p. Ensuite il résume les valeurs de chacune de ces trois statistiques d échantillon p.ex. sous forme d un histogramme approximation empirique de la distribution d échantillonnage Excel : un histogramme peut être dessiné via les menusoutils Utilitaire d analyse (installer viamacro complémentaire) Histogramme (Représentation graphique) voir aussiutilitaire d analyse Génération de nombres aléatoires et Échantillonnage L échantillonnage 16 / 41

17 Exemple Statville (2) Valeurs de x, s et p obtenues à partir de 500 échantillons aléatoires simples de 30 habitants échantillon revenu: moyenne ( x ) revenu: écart type (s ) participation: moyenne ( ) moyenne écart type ( s x x,, s pp) p L échantillonnage 17 / 41

18 Exemple Statville (3) Distribution de fréquence de x obtenue à partir des 500 échantillons revenu: fréquence fréquence moyenne relative Total L échantillonnage 18 / 41

19 Exemple Statville (4) Histogramme de la fréquence relative des valeurs de x obtenues à partir des 500 échantillons Approximation empirique de la distribution d échantillonnage fréquence relative de x! L échantillonnage 19 / 41

20 L espérance La moyenne de la variable aléatoire x si le nombre d échantillons tend vers l infini («moyenne des moyennes») correspond à l espérance mathématique de x, E(x). Rappel : = moyenne de la population (le paramètre «vrai») On peut montrer que E(x) =. La moyenne d un échantillon aléatoire est un estimateur non-biaisé de la moyenne de la population. L échantillonnage 20 / 41

21 L erreur type Soit x l écart type de la distribution d échantillonnage de x, désormais dénommé «erreur type». On peut montrer que x n N n N 1 Pour une population infinie (N ), on a = ( n). N n N 1 L échantillonnage 21 / 41 = «facteur de correction pour une population finie» Règle pratique : ( n) est une approximation satisfaisante si la population est finie et nn N n Statville : nn = = N 1. x

22 La distribution d échantillonnage toute entière (1) Nous avons défini la moyenne et l écart type de la distribution d échantillonnage de la moyenne. Pouvons nous définir la distribution d échantillonnage toute entière? Oui! Résultat 1 : Si les données de la population suivent une distribution normale, la distribution d échantillonnage de x est normale elle aussi, quelle que soit la taille de l échantillon n. o Cas plutôt rare o Inspecter histogramme o On peut tester formellement l hypothèse selon laquelle un certain échantillon est tiré d une population qui suit une distribution normale (p.ex. test du Khi-deux, ch ) L échantillonnage 22 / 41

23 La distribution d échantillonnage toute entière (2) Résultat 2 : Si les données de la population ne sont pas distribuées selon une loi normale, on peut appliquer le théorème centrale limite : Pour des échantillons aléatoires simples, la distribution d échantillonnage de x peut être approchée par une distribution de probabilité normale, lorsque la taille de l échantillon devient importante. L échantillonnage 23 / 41

24 La distribution d échantillonnage toute entière (3) Formellement, avec un échantillon aléatoire simple : x x N (, x ), z (0,1) x N, où (, ) et x 0.5 x 1 x N x f x e, z z N (0,1) f z e 2. 2 x 2 Règle pratique approximative : le théorème centrale limite peut être invoqué pour des échantillons de taille n 30. L échantillonnage 24 / 41

25 Illustration du théorème centrale limite (1) L échantillonnage 25 / 41

26 Illustration du théorème centrale limite (2) L échantillonnage 26 / 41

27 Illustration du théorème centrale limite (3) L échantillonnage 27 / 41

28 Illustration du théorème centrale limite (4) L échantillonnage 28 / 41

29 Illustration du théorème centrale limite (5) L échantillonnage 29 / 41

30 Illustration du théorème centrale limite (6) L échantillonnage 30 / 41

31 Le cas de p Continuons à supposer qu on ait un échantillon aléatoire simple. L espérance mathématique de la variable aléatoire p (moyenne dans l échantillon de la mesure de proportion p) est donnée par : E(p) = p p est un estimateur non-biaisé de p L erreur type de p est donné par : p et, pour une population infinie, par : p p(1 p) N n n N 1 p(1 p). n ; La distribution d échantillonnage toute entière peut être approchée par une distribution de probabilité normale lorsque np 5 et n(1 p) 5 (règle pratique approximative ; basée sur la convergenence de la loi binomiale avec la loi normale). L échantillonnage 31 / 41

32 Exemple Statville : distribution d échantillonnage de la moyenne L échantillonnage 32 / 41

33 Exemple Statville : distribution d échantillonnage d une proportion L échantillonnage 33 / 41

34 Statistique 1e année bachelor, Exemple Statville : erreur type et taille de l échantillon L échantillonnage 34 / 41

35 Statistique 1e année bachelor, Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE Introduction L échantillonnage aléatoire Estimation ponctuelle Distributions d échantillonnage Intervalles de probabilité L échantillonnage 35 / 41

36 Statistique 1e année bachelor, Base Lorsqu on a un échantillon, il est hautement improbable que les statistiques de l échantillon ( x, p ) correspondent exactement aux paramètres de la population (, p) Que peut-on dire sur la probabilité que la valeur d une statistique particulière soit «proche» du paramètre de la population, ou «proche» signifie un écart maximum de M? Les distributions d échantillonnage contiennent la réponse! Statville : o Quelle est la probabilité que le revenu moyen de l échantillon, x, soit à 500 francs près du revenu moyen de la commune,? (M = 500) o Quelle est la probabilité que la proportion des participants de l échantillon, p, soit à 5 points de pourcentage près de la proportion totale, p? (M = 0.05) L échantillonnage 36 / 41

37 Statistique 1e année bachelor, Exemple Statville (1) Probabilité que le revenu moyen d un échantillon de taille 30 soit à 500 francs près du revenu moyen de la population? x Rappel : N (0,1) x x M n 30 : x n 30 (inconnu par le syndic!) P ( 500 x 500 n 30) P Z P Z L échantillonnage 37 / 41

38 Statistique 1e année bachelor, Exemple Statville (2) Moyenne : M 500, n 30 P ( 500 x 500 n 30) P ( 0.68 Z 0.68) 0.50 * * * voir la Table 1, p. 730, du manuel de Anderson et al., où F(z) P(0 < Z < z) L échantillonnage 38 / 41

39 Statistique 1e année bachelor, Exemple Statville (3) Moyenne : M 500, n 100 P ( 500 x 500 n 100) P ( 1.25 Z 1.25) 0.79 * * * voir la Table 1, p. 730, du manuel de Anderson et al., où F(z) P(0 < Z < z) L échantillonnage 39 / 41

40 Statistique 1e année bachelor, Exemple Statville (4) Proportion : M 0.05, n 30 P ( p 0.05 p p 0.05 n 30) ( 0.56 Z 0.56) 0.42 * * * voir la Table 1, p. 730, du manuel de Anderson et al., où F(z) P(0 < Z < z) L échantillonnage 40 / 41

41 Statistique 1e année bachelor, Exemple Statville (4) Grand problème : le syndic ne connaît pas Que faire pour juger de la fiabilité des estimations basées sur son échantillon? Attendre le chapitre prochain... L échantillonnage 41 / 41

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Aline Drapeau, Ph.D.

Aline Drapeau, Ph.D. (Communauté de pratique en épidémiologie psychosociale) Aspects méthodologiques de l échantillonnage Aline Drapeau, Ph.D. Pourquoi échantillonner? Objectifs de l étude visent une population cible spécifique

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

CONCEPTION ET TIRAGE DE L ÉCHANTILLON

CONCEPTION ET TIRAGE DE L ÉCHANTILLON CHAPITRE 4 CONCEPTION ET TIRAGE DE L ÉCHANTILLON Ce chapitre technique 1 s adresse principalement aux spécialistes de sondage, mais aussi au coordinateur et aux autres responsables techniques de l enquête.

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

ANNEXE A PLAN DE SONDAGE

ANNEXE A PLAN DE SONDAGE ANNEXE A PLAN DE SONDAGE ANNEXE A PLAN DE SONDAGE A.1 INTRODUCTION La Deuxième Enquête Démographique et de Santé au Cameroun (EDSC-II) a prévu un échantillon d environ 6 000 femmes âgées de 15 à 49 ans

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Endettement des jeunes adultes

Endettement des jeunes adultes Département fédéral de l'intérieur DFI Office fédéral de la statistique OFS 20 Situation économique et sociale de la population Neuchâtel, Août 2012 Endettement des jeunes adultes Analyses complémentaires

Plus en détail

Cahiers métho dologiques

Cahiers métho dologiques le gouvernement du grand-duché de luxembourg Inspection générale de la Sécurité sociale Cahiers métho dologiques Août 2013 Numéro 2 Christine Weisgerber MICROSIMULATION DES BÉNÉFICIAIRES ET PRESTATIONS

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête Fiche qualité relative à Santé et Itinéraire Professionnel 2010 (SIP) Nom Années de Périodicité Panel (suivi d échantillon) Services concepteurs Service réalisant Sujets principaux traités dans Carte d

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Questionnaire de vérification pour l implantation de la norme ISO 14001 dans une entreprise

Questionnaire de vérification pour l implantation de la norme ISO 14001 dans une entreprise Questionnaire de vérification pour l implantation de la norme ISO 14001 dans une entreprise Questionnaire de vérification pour l implantation de la norme ISO 14001 dans une entreprise La politique environnementale

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

MODÈLE CROP DE CALIBRATION DES PANELS WEB

MODÈLE CROP DE CALIBRATION DES PANELS WEB MODÈLE CROP DE CALIBRATION DES PANELS WEB 550, RUE SHERBROOKE OUEST MONTRÉAL (QUÉBEC) H3A 1B9 BUREAU 900 TOUR EST T 514 849-8086, POSTE 3064 WWW.CROP.CA Le Protocole CROP de calibration des panels en ligne

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES CORRIGÉ TYPE DE L EXAMEN

ECOLE DES HAUTES ETUDES COMMERCIALES CORRIGÉ TYPE DE L EXAMEN ECOLE DES HAUTES ETUDES COMMERCIALES Module : Marketing Fondamental Niveau : 1 ère Année Master Enseignant : KHERRI Abdenacer Date : 13/04/2015 Site web : www.mf-ehec.jimdo.com Durée : 1 heure 30 minutes

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Atelier 1 - Circuit économique et comptabilité nationale

Atelier 1 - Circuit économique et comptabilité nationale Atelier 1 - Circuit économique et comptabilité nationale Fabio Panzera, MA in Economics Université de Fribourg, 08.10.2010 Question 1 Les macroéconomistes étudient toutes les questions suivantes, à l exception

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

FOTO - L OMNIBUS MENSUEL DE CROP LE NOUVEAU CROP-EXPRESS

FOTO - L OMNIBUS MENSUEL DE CROP LE NOUVEAU CROP-EXPRESS FOTO - L OMNIBUS MENSUEL DE CROP LE NOUVEAU CROP-EXPRESS 550, RUE SHERBROOKE OUEST MONTRÉAL (QUÉBEC) H3A 1B9 BUREAU 900 TOUR EST T 514 849-8086, POSTE 3064 Réflexions méthodologiques Depuis des années,

Plus en détail

Sommaire. Rentabilité du retour d une franchise de baseball de la Ligue majeure de baseball à Montréal (les «Expos»)

Sommaire. Rentabilité du retour d une franchise de baseball de la Ligue majeure de baseball à Montréal (les «Expos») Sommaire Rentabilité du retour d une franchise de baseball de la Ligue majeure de baseball à Montréal (les «Expos») Novembre 2013 Table des matières 1. CONTEXTE ET OBJECTIFS... 3 2. MÉTHODES DE RECHERCHE...

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Choix sous incertitude

Choix sous incertitude 1/38 à l analyse microéconomique - Monitorat ENS (2014-2015) Janvier 2015 2/38 Plan du cours 1 2 3 4 5 3/38 Dans les chapitres précédents, hypothèse implicite de situations certaines et d information parfaite

Plus en détail

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

1. Les comptes de dépôt et d épargne

1. Les comptes de dépôt et d épargne 1. Les comptes de dépôt et d épargne 1.1 Les comptes de dépôt 1.1.1 Le taux de possession d un compte de dépôt Le premier constat est celui d un accès important aux comptes de dépôt, quelle que soit la

Plus en détail

Lignes directrices de 2004 pour des sondages sur la satisfaction des demandeurs dans le cadre de l assurance-automobile

Lignes directrices de 2004 pour des sondages sur la satisfaction des demandeurs dans le cadre de l assurance-automobile Financial Services Commission of Ontario Commission des services financiers de l Ontario Lignes directrices de 2004 pour des sondages sur la satisfaction des demandeurs dans le cadre de l assurance-automobile

Plus en détail

Enquête sur le financement des PME en Suisse. réalisée pour le Secrétariat d Etat à l économie (SECO)

Enquête sur le financement des PME en Suisse. réalisée pour le Secrétariat d Etat à l économie (SECO) Enquête sur le financement des PME en Suisse réalisée pour le Secrétariat d Etat à l économie (SECO) Mai 200 Table des matières 2 Page 1. Descriptif de la recherche 3 2. Profil et mode de financement des

Plus en détail

La pratique du coaching en France. Baromètre 2010

La pratique du coaching en France. Baromètre 2010 SFCoach : crée du lien entre le monde du travail et les professionnels de l accompagnement La pratique du coaching en France Baromètre 2010 Fondée en 1996 22, Bd Sébastopol 75004 Paris Association 1901

Plus en détail

Peut-on croire un sondage?

Peut-on croire un sondage? Peut-on croire un sondage? Après le «traumatisme» du premier tour de l élection présidentielle de 2002, sont parus le même jour dans le journal «le Monde» deux articles au ton assez différent. On peut

Plus en détail

Leçon 5. Systèmes de gestion à recomplétement périodique et stock de sécurité

Leçon 5. Systèmes de gestion à recomplétement périodique et stock de sécurité CANEGE Leçon 5 Systèmes de gestion à recomplétement périodique et stock Objectif : A l'issue de la leçon l'étudiant doit être capable : dans le cadre des calendriers d approvisionnement à recomplètement

Plus en détail

La représentativité d un échantillon et son test par le Khi-deux Testing the representativeness of a sample

La représentativité d un échantillon et son test par le Khi-deux Testing the representativeness of a sample Tutorials in Quantitative Methods for Psychology 212, Vol. 8(3), p. 173-181. La représentativité d un échantillon et son test par le Khi-deux Testing the representativeness of a sample Louis Laurencelle

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france

Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france Jean-Paul Guthmann, Pierre Chauvin, Yann Le Strat, Marion Soler,

Plus en détail

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé Plan de l intervention 1 2 3 Généralités sur le fonctionnement de l assurance

Plus en détail

LesFurets.com. Levée d embargo immédiate. Etude réalisée par. pour. Publiée le 13 octobre 2015

LesFurets.com. Levée d embargo immédiate. Etude réalisée par. pour. Publiée le 13 octobre 2015 LesFurets.com Etude réalisée par pour Publiée le 13 octobre 2015 Levée d embargo immédiate Méthodologie Recueil Enquête réalisée auprès d un échantillon de Français interrogés par Internet les 10 et 11

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Perception des Québécois à l égard d enjeux reliés aux changements climatiques. Rapport d étude Janvier 2012

Perception des Québécois à l égard d enjeux reliés aux changements climatiques. Rapport d étude Janvier 2012 Perception des Québécois à l égard d enjeux reliés aux changements climatiques Rapport d étude Janvier 2012 Dans le cadre de sa stratégie d action sur les changements climatiques, le Regroupement national

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Brock. Rapport supérieur

Brock. Rapport supérieur Simplification du processus de demande d aide financière dans les établissementss : Étude de cas à l Université Brock Rapport préparé par Higher Education Strategy Associates et Canadian Education Project

Plus en détail

Observer dans la durée les atteintes aux voitures

Observer dans la durée les atteintes aux voitures Observer dans la durée les atteintes aux voitures I. Une baisse continue À l échelle nationale 1, le seul indicateur qui permette de suivre l évolution des atteintes aux véhicules sur le long terme est

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail