Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Dimension: px
Commencer à balayer dès la page:

Download "Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015"

Transcription

1 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle. E réalité, l hyothèse étudiée évoue ue structure ayat tedace à aaraitre das les doées disoibles, alors ue l hyothèse ulle ous dit ue si cette structure est résete c est seulemet le fruit du ur hasard de l échatilloage. Les tests de radomisatio sot articulièremet utiles lorsue l o a à comarer des échatillos e vérifiat as la ormalité de leurs distributios et/ou u ils sot etits. Test de ermutatio Comaraiso de 2 distributios. H0: D1 = D2 ; H1: D1 D2 Les tests de radomisatio sot ue maière de décider si l hyothèse ulle est accetable e de telles situatios. Ue statistiue S est choisie our évaluer das uelle mesure les doées résetet la structure e uestio. L estimatio s de S obteue à artir des doées est alors comarée avec la distributio de S obteue e réordoat au hasard (ermutatios) les doées. L idée est simlemet ue si l hyothèse ulle est vraie, alors toutes les combiaisos ossibles des doées sot éuirobables. Les doées observées sot alors seulemet l ue des réalisatios armi toutes celles égalemet ossibles et s est ue valeur tyiue de la distributio aléatoire de S. Si tel est as le cas (s est sigificativemet différete), l hyothèse H 0 est rejetée et H 1 cosidérée comme lus vraisemblable. Le iveau de sigificatio de s est simlemet la roortio (%) de valeurs trouvées das la distributio obteue ar ermutatio ui sot aussi extrêmes ou lus extrêmes ue cette valeur. Avec R, les foctios utiles our réaliser u test de ermutatio sot : 1) D <- samle (C, legth(c), relace = FALSE), où C est la cocatéatio des deux échatillos, (C <-c(a,b)), et «relace» est mis à FALSE, ce ui imose ue tous les élémets sot tirés sas remise. Le ombre de tirages différets est factorial(legth(c)). Soit u échatillo de taille 5, le ombre de tirage ossible est alors de 5! = 5x4x3x2=120. Si A cotiet 1 doées et B 2 doées, o costitue deux ouveaux échatillos de tailles resectives 1 et 2 à artir de D : 2) A.radom = D[1 : legth(a)] 3) B.radom = D[(legth(A) + 1) : legth(c)] 4) O calcule esuite la différece des moyees et o les stocke das u tableau : diff.radom[i] = mea(a.radom) - mea(b.radom) Les oératios 1 à 4 sot réétées 1000 fois au mois. Il reste maiteat à comarer ces différeces avec celle mesurées sur les doées iitiales : = sum(abs(diff.radom)>= abs(diff.observe))/1000, Ce ui est la -value.

2 2 La méthode des ermutatios est arfois utilisée e hylogéie moléculaire (Archie (1989 ; Faith et Crasto 1991) e l aliuat sur les coloes des séueces aligées. Le but est de réodre à la uestio s il existe ou o (H0) u lie hylogéétiue etre les séueces étudiées. Algorithme du bootstraig Le roblème est de coaitre les aramètres d ue statistiue : esérace, moyee, écart-tye, voire des itervalles de cofiace à artir d u etit échatillo sas iformatio comlémetaire autre ue celles disoibles à artir de l échatillo. O utilise ue techiue de ré-échatilloage. Soit u échatillo x costitué de observatios (X1, X2, X) et u aramètre (médiae, moyee ) à estimer. Toutefois la distributio F des observatios est icoue. O a doc à estimer =T(F), où T est ue foctioelle. Pour la moyee :T F = xdf(x) et la variace : T F = (x μ) 2 df(x) O e fait aucue hyothèse sur F ui est icoue. Pour cette raiso o effectuera u bootstra o aramétriue ui cosiste simlemet e u ré-échatilloage avec remise das l échatillo iitial. Soit u échatillo de 5 élémets, le ombre de tirages ossibles avec remise est alors de 5 5 =3125. Par exemle, si l o disose de valeurs iitiales, o tirera valeurs armi ces valeurs avec remise arès chacu des tirages. E coséuece, l ue des valeurs de l échatillo iitial eut être tirée lusieurs fois et certaies valeurs de celui-ci être absetes de ce ouvel échatillo. O disose doc maiteat de deux échatillos : l iitial (issu d ue exérimetatio) et celui du bootstra. E réalité, 2 échatillos e sot as suffisats. O va réitérer cette oératio u grad ombre de fois our être assuré de la covergece des estimatios ue l o va faire à artir de l esemble des échatillos aisi costitués. Soit B ce ombre (grad : e gééral 1000 est coseillé). Algorithme our l estimatio de la variace de la loi (sa récisio) : Boucle : our b allat de 1 à B : o Tirer u échatillo bootstra: X1, X2,,X selo F et de taille. o Calculer la moyee emiriue à artir de l'échatillo bootstra : θ = 1 (X1 + X2 + + X) La variace de l'estimateur de l'esérace est arochée ar la variace emiriue de la oulatio bootstra des Bθ estimés, soit : s B 2 = 1 B B b=1 2 θ b θ avec θ = 1 B B b=1 θ b Pour le calcul d u itervalle de cofiace autour de la moyee des B échatillos, il suffira de calculer les ourcetiles à 2.5% et à 97.5% ui ous doeros les bores iférieures et suérieures de l itervalle autour de la moyee. Avec R l échatillo bootstra est obteu aisi : library(boot) B <- boot(data, foctio, R = 999, stye = "f") où «stye» idiue la ature du secod argumet de la foctio (i = idice, f = freuece, w = weight) ui calcule le aramètre cherché (moyee, écart-tye, médiae, etc ), so remier argumet état les doées. «R» idiue le ombre de rélicats du tirage.

3 3 Alicatios : 1). Voir le scrit R (UE10) : Bootstra (R) 2). Test de robustesse de recostructio des arbres hylogéétiues (Felsestei, 1985). Elle est idéedate de la méthode de costructio (distace géétiue (UPGMA ou Neighbor-Joiig), arcimoie, vraisemblace (ML) ) Iterrétatio des valeurs b de bootstra = robabilité ue la logueur de la brache soit > 0. La brache est réutée sigificative si b > 95% (mais cela déed des auteurs). Cette valeur e dit rie à roos de la logueur de la brache ui déed de la méthode de costructio de l arbre. Tirage aléatoire avec remise des coloes iitiales des séueces aligées. Doées iitiales Arès ré échatilloage Taxa CGAGTACT 1 AGATACTG 2 GTAGTACT 2 AGATACTT 3 ACAATACC 3 AAACACTC 4 ACAACACT 4 AAATACCC 5 GCGGCATT 5 AGATGTCC U total de 100 jeux (au mois), 100 arbres costruits dot : 90 résetet le clade (1,2) 95 résetet le clade (3,4) Proortio d arbres résetat ce œud = iveau de cofiace 5 Trout = truite, Loach = loche (oissos maris de divers geres), Xeous = Xéoe = «greouilles» troicales, Fiback whale = Rorual commu. TABLES DE CONTINGENCE a. Le tableau de cotigece est u tableau à double etrée où l o ote das chaue cellule le ombre d idividus ayat à la fois le caractère 1 (lige) et le caractère 2 (coloe). Chaue caractère eut avoir lusieurs modalités. Soit 2 caractères L et C, variat sur = = 3 modalités, le tableau se résetera aisi :

4 4 Caractères : L/C ( coloes) i. = ( liges).j =.j =.j = i. = i. = Effectifs margiaux L effectif total du tableau est alors: = De lus, chaue élémet du tableau eut être vu comme ue fréuece uisue : f ij =, avec bie etedu : f ij = 1 Les raorts des effectifs margiaux au total sot itéressats. Aisi caractère i et.j u u idividu ossède le caractère j. i. est la robabilité u u idividu ait le De lus sot des robabilités coditioelles : i. et.j u u idividu ait le caractère j sachat u il ossède le caractère i, otée : i. = (C j L i ), c'est-à-dire, das le remier cas, la robabilité c'est-à-dire, la robabilité u u idividu ait le caractère «Coloe j» sachat u il a le caractère «Lige i». O a idetiuemet : (L j C i ). Avec ue etite maiulatio algébriue o retrouve la formule de Bayes: L j C i = i. i..j = C j L i (L i ) (C j ) Pour tester l existece d ue relatio etre les distributios L et C ou si au cotraire la réartitio des valeurs se fait idéedammet de celles-ci, o défiira u modèle ul uis o cherchera esuite si la réartitio observée diffère sigificativemet de ce modèle ul. b. Etablissemet du modèle ul. O costruit doc ue ouvelle table e suosat ue chaue cellule est calculable à artir des effectifs margiaux, c est-à-dire : = i. j. c. Test du ² de Pearso (toutes tailles de tables) R : chis.test(data) Le test cosiste à calculer la distace etre les doées et les valeurs calculées récédemmet : ( ) 2 Par défiitio, cette somme de carrés de variables cetrées réduites suit ue distributio du ². O cofrote doc cette valeur à celle de la loi du ² our (-1)(-1) degrés de libertés.

5 5 Il existe toutefois des limites d alicatio du test du ². O doe souvet ue limite cocerat les effectifs théoriues : ( > 5) ( = 0), i, j. O a alors recourt au test suivat. d. Test G (toutes tailles de tables) G-test.R (scrit écrit ar Pete Hurd, 2001) Si les coditios récédetes e sot as réalisées, o adote alors la statistiue suivate comme distace : G = 2 log E réalité, l exressio de G est u calcul de différece de Log(vraisemblace 1 ) etre les deux modèles (ul et observatios) et celle-ci suit ue loi du ². E coséuece, o cofrote de ouveau cette valeur à celle de la loi du ² our (-1)(-1) degrés de libertés. e. Test exact de Fisher ( tables 2 X 2 seulemet!) R: Fisher.test(data) E résece de etits échatillos et ou de valeurs = 0, O aliuera le test de Fisher (dit «exact»), our tester l idéedace des distributios (mais o eut l aliuer uelue soit la taille de l échatillo). So exactitude viet du fait ue l o calcule exactemet les robabilités lutôt u e les aroximat (comme avec le test du ²) au moye de la loi hyergéométriue. Par exemle, si l o tire simultaémet boules (tirage sas remise) das ue ure coteat boules gagates et boules erdates (avec = 1 -, soit u ombre total de boules valat + = A). O comte alors le ombre de boules gagates extraites et o aelle X la variable aléatoire doat ce ombre. O tire boules. La robabilité d avoir tiré k boules gagates armi et (-k) armi les erdates est alors est alors : Das le cas simle d u tableau 2 2 tel ue : P X = k = k k A La robabilité P d avoir cette réartitio est alors : A/B B1 B2 Totaux A1 a b a+b A2 c d c+d Totaux a+c b+d P = a c a+b c+d = a+c a + b! c + d! a + c! b + d! a! b! c! d!! Le test cosiste alors à calculer our chacue des tables ossibles (ermutatios!), à artir des doées, aussi ou lus éloigées de l idéedace (modèle ul) uis de les ajouter ce ui doe la -value. U roblème ceedat : our des échatillos imortats, le ombre de ermutatios exlose, le calcul des factorielles aussi O a alors recours à des aroximatios, ce ui dimiue la fiabilité du test 1 O raelle ue la vraisemblace d u aramètre d ue loi de robabilité au vu des observatios (x 1, x 2,, x ) le ombre L(x 1, x 2,, x ) = f(xi; θ), où f est la loi de desité de robabilité de X : biomiale, oisso (voir le cours IV, à roos du glm).

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Formulaire de statistiques

Formulaire de statistiques Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 Formulaire de statistiques I. Statistiques descriptives : Moyee arithmétique : (populatio: m x = µ) (échatillo = x = M x ) 1 i

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Exercices sur l échantillonnage

Exercices sur l échantillonnage TS Exercices sur l échatilloage Pour les itervalles de luctuatio asymtotique au seuil 95 %, o utilisera la ormule : u0,05 ; u0,05 ou, évetuellemet,,96 ;,96. 8 La roortio de aissaces d eats rématurés est

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Les symboles Σ et Π. Le binôme de Newton

Les symboles Σ et Π. Le binôme de Newton Les symboles Σ et Π Le biôme de Newto Nous cosacros ici u log chaitre au symbole Σ et au symbole Π A terme, la maîtrise de ce symbole est ue cométece essetielle à acquérir et ous esos qu il faut y cosacrer

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Idice de Révisio Date de mise e applicatio B 01/09/2014 Cahier Techique 1 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, aveue du Recteur-Poicarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Théorie des ensembles et combinatoire

Théorie des ensembles et combinatoire Théorie des ensembles et combinatoire Valentin Vinoles 24 janvier 2012 Table des matières 1 Introduction 2 2 Théorie des ensembles 3 2.1 Définition............................................ 3 2.2 Aartenance

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

DESCRIPTION MULTIDIMENSIONNELLE DES DONNEES

DESCRIPTION MULTIDIMENSIONNELLE DES DONNEES SOMMAIRE SOMMAIRE... 1 LISTE DES TABLEAUX ET GRAPHIQUES.....3 DEDICACES......4 REMERCIEMENTS... 5 AVANT-PROPOS......6 RESUME... 7 ABSTRACT......7 PRESENTATION DE CHANAS ASSURANCES SA....8 INTRODUCTION....9

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

l équation ax n by n = 1

l équation ax n by n = 1 Uiversité Paris 7 Deis Diderot UFR de Mathématiques Mémoire de Master 2 Sous la directio de Marc Hidry U exemle d alicatio de techiques d aroximatio diohatiee : l équatio ax by = Lioel Poto lioel.oto@gmail.com

Plus en détail

Développement du modèle log-normal nonstationnaire et comparaison avec le modèle GEV non-stationnaire

Développement du modèle log-normal nonstationnaire et comparaison avec le modèle GEV non-stationnaire Hydrological Scieces Joural ISSN: 06-6667 (Prit) 150-3435 (Olie) Joural homepage: http://www.tadfolie.com/loi/thsj0 Développemet du modèle log-ormal ostatioaire et comparaiso avec le modèle GEV o-statioaire

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

CHAPITRE 22. Machines à sous

CHAPITRE 22. Machines à sous CHAPITRE 22 Machies à sous 22. Corrigé possible du texte 22.. Eocé du problème et défiitio du modèle statistique associé O étudie ici u modèle statistique avec observatios icomplètes : o dispose d observatios

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Arbres et dérivée d une fonction composée

Arbres et dérivée d une fonction composée Abes et déivée d ue foctio composée Nous allos voi ici commet l o peut epésete les déivées successives d ue foctio composée pa u esemble d abes fiis. f et g désigeot deux foctio idéfiimet déivables, et

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Probabilités et Statistique

Probabilités et Statistique Probabilités et Statistique Jea-Michel JOLION Départemet Géie Idustriel 3ème Aée Versio électroique : http://rfv.isa-lyo.fr/ jolio/stat/poly.html May 26, 2006 INSA Lyo - Bât. J. Vere - 69621 Villeurbae

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Statistique mathématique pour le Master 1 Cours de l ENS Cachan Bretagne. Benoît Cadre

Statistique mathématique pour le Master 1 Cours de l ENS Cachan Bretagne. Benoît Cadre Statistique mathématique pour le Master 1 Cours de l ENS Cacha Bretage Beoît Cadre 4 jui 2010 2 Table des matières 1 Modélisatio statistique 5 1.1 U exemple............................. 5 1.2 Pricipe fodametal

Plus en détail

Document ressource. Les états de surface

Document ressource. Les états de surface Lycée Vaucaso Tours Documet ressource Les états de surface PTSI Objectifs : Coaître les élémets caractéristiques d u état de surface, savoir lire les spécificatios ormalisées associées et coaître les moyes

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Des familles de deux enfants

Des familles de deux enfants Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

dénombrement, loi binomiale

dénombrement, loi binomiale dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 1

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 1 Licece iformatique - L Aée 0/0 Coceptio d algorithmes et applicatios (LI) COURS Résumé. Ce cours est ue iitiatio à quelques grads pricipes algorithmiques (Diviser pour Réger, Programmatio Dyamique, Algorithmes

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

Cryptographie et algorithmique

Cryptographie et algorithmique F.Gaudo 1 er ovembre 2010 Table des matières 1 Avat de commecer 2 2 Préformattage d'u texte pour aalyse 3 2.1 Élimiatio de la poctuatio et des espaces das u texte................. 3 2.2 Formatage du texte

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS INTRODUCTION De ombreuses situatios pratiques peuvet être modélisées à l aide de variables aléatoires qui sot régies par des lois spécifiques. Il importe doc d

Plus en détail

Analyse de structures de données et d algorithmes

Analyse de structures de données et d algorithmes Uiversité Paris 3 Istitut Galilée Master Math-Ifo Aalyse de structures de doées et d algorithmes Polycopié 2006-2007 Christia Lavault Table des matières Combiatoire et déombremet. Permutatios, arragemets

Plus en détail