chapitre 2 interférences non localisées entre deux ondes monochromatiques cohérentes

Dimension: px
Commencer à balayer dès la page:

Download "chapitre 2 interférences non localisées entre deux ondes monochromatiques cohérentes"

Transcription

1 nterférences non loclsées de deu ondes cohérentes chptre nterférences non loclsées entre deu ondes onochrotques cohérentes. epérence, condton d'nterférence, contrste. epérence des rors de Fresnel, et des fentes de Young rors de Fresnel source zone d'nterférence rors écrn spect de l zone centrle de l'écrn : on observe des frnges prllèles à l'rête du dèdre foré pr les rors; on constte que ces frnges sont observbles dns une lrge régon de l'espce, lorsqu'on déplce l'écrn; on prle d'nterférences non loclsées. l'optque géoétrque ne sufft plus pour nterpréter ce phénoène : on devrt vor spleent superposton des éclreents des fsceu provennt de chque ror. En ft, l y nterférence entre les ondes provennt des sources secondres cohérentes, forées des ges de l source pr chque ror (vor fgure pge suvnte. fentes (ou trous d'young rôle de l dffrcton : une ouverture de pette denson dffrcte l luère et joue le rôle d'une "source secondre" fente dffrctnte α ntensté luneuse onde plne pr eeple pour une fente de lrgeur éclrée pr des ryons prllèles, sur un écrn plcé très lon, l plus grnde prte de l'énerge luneuse se trouve concentrée dns une "tche de dffrcton" de lrgeur ngulre donnée pr snα / on rélse ns une fente source. ce phénoène n'est ps non plus eplqué pr l'optque géoétrque, et son nterprétton nécesste de prendre en copte l'spect ondultore de l luère : on ttent les ltes de l'optque géoétrque, lorsque l'pltude des ondes vre beucoup sur des dstnces de l'ordre de l longueur d'onde; c'est le cs pour le bord d'un écrn ou une pette ouverture. en éclrnt deu fentes fnes prllèles pr l êe source, on rélse à nouveu deu sources secondres cohérentes, et on observe encore des frnges prllèles, non loclsées, sur un écrn plcé perpendculreent à l'e des fentes (vor fgure pge suvnte. les ngles entre les ryons luneu et l'e des fentes étnt fbles, on se trouve u vosnge du centre de l tche de dffrcton, et on pourr générleent consdérer que l'pltude des ondes est sensbleent constnte u vosnge du centre. nous ne prendrons donc ps en copte l vrton d'pltude en foncton de l'ngle dns le clcul de l'ntensté luneuse pour les fentes de Young.

2 nterférences non loclsées de deu ondes cohérentes source epérence des rors de Fresnel H + l'ngle entre les deu sources secondres est : (O,O(O,OH+(OH,OH+(OH,O (OH,O+(OH,OH+(O,OH (OH,OH α H α c'est donc deu fos l'ngle entre les rors (O,O α α O et α O sources secondres rors epérence des fentes de Young F L L O F écrn éclreent (ntensté luneuse, déphsge,et dfférence de rche: ϕ ϕ ϕ ϕ cos²( π n

3 nterférences non loclsées de deu ondes cohérentes. condton d'nterférence : E r E r u nveu de l'écrn, les chps électrques sont sensbleent prllèles : on consdèrer les grndeurs vbrtores ssocées à chque onde : en un pont pprtennt à l'écrn : s cos( ωt + ϕ s cos( ωt + ϕ et les phses ϕ et ϕ dépendent des chens optques prcourus sources écrn l'pltude résultnte en est s s + s et l'ntensté luneuse (ou éclreent est : k < s² > s² ( cos( ωt + ϕ + cos( ωt + ϕ ² ( cos( ωt + ϕ² + ( cos( ωt + ϕ ² + cos( ωt + ϕ cos( ωt + ϕ ( cos( ωt + ϕ ² + ( cos( ω t + ϕ ² + cos[( ω + ω t + ( ϕ + ϕ ] + cos[( ω ω t + ( ϕ ] et < s² > + + < cos[( ω + ω t + ( ϕ + ϕ ] > + < cos[( ω ω t + ( ϕ ] > s ω et ω sont quelconques, < s² > + et l ne peut y vor d'nterférences ( cte s <s²> pourr dépendre de ϕ et ϕ s ω - ω on lors : k < s² > k( + + cos( ϕ (relton fondentle des nterférences à deu ondes on ne peut observer des nterférences que pour des ondes de êe fréquence, dont l dfférence de phse en un pont dépend du pont chos; on prle d'ondes cohérentes, en relton de phse.l'ntensté luneuse dépend de ϕ - ϕ. cec est obtenu dns le cs des rors de Fresnel, et des fentes de Young, en rélsnt deu sources secondres à prtr d'une êe source, pr dvson du front d'onde..3 vsblté des frnges; contrste. les frnges seront d'utnt plus vsbles, que l'ntensté le (frnges brllntes ser dfférente de l'ntensté nle (frnges sobres on défnt le contrste C (ou vsblté pr : C s cos( ϕ sot ϕ - ϕ [π] et k( + + n s cos( ϕ - sot ϕ - ϕ π[π] et n k( + ( + + ( + d'où C C + + ( ( + + le contrste dépendr des pltudes des ondes, et on pourr écrre : k( + + cos( ϕ k( + ( + cos( ϕ + n n ou ( + Ccos( ϕ ' eeple : s C et ( + cos( ϕ cos ²( s / C,8 s / C, les frnges sont de ons en ons vsbles. on chercher donc à rélser des sources secondres de êe pltude. ϕ 3

4 nterférences non loclsées de deu ondes cohérentes epresson de l'éclreent en foncton de l dfférence de rche; ordre d'nterférence.. dfférence de rche, ordre d'nterférence le clcul détllé de l dfférence des chens optques, encore ppelée dfférence de rche, donne pour deu trous sources dns un leu d'ndce n : L L n L L on peut ontrer que cette dfférence reste l êe s le pont se déplce perpendculreent u pln de l fgure; cec peret de ontrer qu'on obtendr le êe phénoène en utlsnt des fentes prllèles à l plce de trous. c'est l dfférence de rche géoétrque, que nous dstnguerons plus trd de l dfférence de rche ondultore, lorsque des déphsges dus à des réfleons vtreuses seront prs en copte. ce clcul reste vlble pour tout phénoènes d'nterférences à deu ondes. ordre d'nterférence p p ϕ L L ou encore π p n. clcul de l'éclreent replçons ϕ et ϕ dns l'epresson de l'éclreent obtenue plus hut : ϕ πn π cos ²( cos ²( prenons C ' ( + cos( ϕ cos²( π sot cos ²( spect du chp d'nterférences : frnge brllnte s p enter lors ϕ - ϕ ±π, ±4π, etc.. et est égl à un nobre enter de longueurs d'ondes frnge centrle pour p (ou lors ϕ - ϕ et frnge sobre s p de-enter lors ϕ - ϕ ±π, ±3π, etc.. et est égl à un nobre de-enter enter de longueurs d'ondes l dstnce entre deu frnges de êe nture est l'nterfrnge n - -,5 - -,5,5,5-4π -3π -π -π π π 3π 4π / / p ϕ - ϕ 4

5 nterférences non loclsées de deu ondes cohérentes 3. dspostfs prtculers 3. observton des frnges dns le pln focl d'une lentlle nce les chens optques (F et (F sont égu, de êe pour (F et (H (proprété des lentlles nces,vor ch l dfférence de rche s'écrt donc c: L - L (FH sn F π π sn cos ²( cos ²( s sn tn / f' F H f' π. cos ²( f ' 3. déplceent de l source dns le cs des fentes de Young à drote du pln des fentes : n L L de êe à guche, s l source vent en ': n' ' L' L ' ' et l dfférence de rche totle est : n L' + L (L' + L tot ( + n' ' O' ' ' L' L' ' n L L O l frnge centrle ( tot est donc déclée vers le hut de l quntté ' (' < c ( n '( ' n ( '' le systèe de frnge est déclé de nterfrngesvers le hut. ' 3.3 nterposton d'une le sur un des trjets en supposnt l'ncdence qus-norle L' L +e(n' - n n L L e n' d'où n ' L L' (L L + (L L' + e(n n' l frnge centrle s'obtent vec ' sot e(n n' le systèe de frnges se décle donc vers le hut de n e n' + ou ( n e n' n e ( (n' n n pplcton : en coptnt les frnges qu déflent, on déterne l'ndce n' nterfrnges s n' > n 5

6 nterférences non loclsées de deu ondes cohérentes 3.4 nterféroètre éclré pr une re double pr eeple l luère provennt d'une lpe à vpeur de sodu 589,n 589,6n chque re spectrle se coporte coe une source ncohérente vs à vs de l'utre (ps de relton de phse l fut donc ddtonner les ntenstés luneuses, et non les pltudes ( + cosπ ( + cosπσ en posnt σ ( nobre d'onde et c n ( + cosπ ( + cosπσ en posnt σ tot ( + cos πσ + + cos πσ ( + cos π( σ σ cos π( σ + σ π que l'on peut écrre ( + Ccos π( σ + σ ( + Ccos vec + on obtent le contrste C n cos π( σ σ cos π vec toujours et 3 5 les frnges sont broullées pérodqueent lorsque ±, ±, ±... etc... on obtent un nterférogre qu cette llure : pr eeple pour le doublet june du sodu : 589,n 589,6n 589,3n,6n le contrste (donc l vsblté des frnges s'nnule une preère fos pour -,89 4 pus pour 3-8,68 4 etc... le nobre de frnges entre deu broullges est donné pr 98 frnges on peut donc en dédure - en coptnt le nobre de frnges entre deu broullges 6

7 nterférences non loclsées de deu ondes cohérentes 3.5 nterféroètre éclré pr deu sources ponctuelles ncohérentes déclées de êe longueur d'onde l fut encore une fos ddtonner les ntenstés des systèes de frnges créées pr chque source. ces systèes de frnges seront déclés d'une dstnce qu est foncton des prètres du problèe, et pourront se renforcer (C ou se détrure (C on peut ns retrouver l dstnce ngulre entre les deu coposntes d'une étole double (vor T b ' ' O 3.6 réfleon sur un leu plus réfrngent; dfférence de rche ondultore n n rppel: coeffcents de refleon et de trnssson pour l'pltude : r t t n + n n + n on vot que pour une onde se réfléchssnt sur un leu d'ndce supéreur à celu du leu dns lequel elle se trouve, (pr eeple nterfce r-verre resp., et,5 l y un chngeent de sgne à l réfleon. Cel revent à jouter une dfférence de phse de π ou une dfférence de rche de /. r l nouvelle dfférence de rche est ppelée "dfférence de rche ondultore": dns le cs des rors de Fresnel, les deu ryons qu nterfèrent subssent une réfleon sur un ror donc ond géo + géo et cel n'ntervent ps dns le clcul pr contre pour certns nterféroètres (chelson pr eeple ond ond ser dfférente de géo géo n + 7

EXERCICES SUR LES PROPRIETES DES ONDES

EXERCICES SUR LES PROPRIETES DES ONDES EXERCICES SUR LES PROPRIETES DES ONDES EXERCICE 1 : Les ondes rdio Un élève consulte Internet pour récolter des informtions sur les ondes rdio. Il lit: «Lorsqu'une onde rencontre un obstcle de grnde dimension

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Rappels Mathématiques

Rappels Mathématiques Chptre I Rppels Mthémtques I. Générltés sur les grndeurs physques On dstngue deux types de grndeurs - grndeurs physques repérles - grndeurs physques mesurles. Grndeurs physques repérles Une grndeur physque

Plus en détail

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL Première Distnces de l Terre à l Lune et u Soleil Pge 1 TRAVAUX DIRIGES DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL -80 II ème siècle p J-C 153 1609 1666 1916 199 ARISTARQUE de Smos donne une mesure de

Plus en détail

Mécanique: chapitre 2. Forces; Moments

Mécanique: chapitre 2. Forces; Moments écnique: chpitre orces; oents INTRDUCTIN Toute ction écnique s'eerçnt sur un objet pour eet soit: de odiier son ouveent ou de le ettre en ouveent, de le intenir en équilibre, de le déorer. Toute ction

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

Filtrage en lumière cohérente

Filtrage en lumière cohérente Chpitre Filtrge en lumière cohérente. Diffrction de Frunhofer u foyer d une lentille convergente L diffrction de Frunhofer est séduisnte pr s cpcité à produire instntnément des trnsformées de Fourier bidimensionnelles.

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

1. Introduction : Contexte et Etat de l Art O. MALOBERTI 1, G. FRIEDRICH 1, K. EL-KADRI-BENKARA 1, L. CHARBONNIER 1, A. GIMENO 1

1. Introduction : Contexte et Etat de l Art O. MALOBERTI 1, G. FRIEDRICH 1, K. EL-KADRI-BENKARA 1, L. CHARBONNIER 1, A. GIMENO 1 Électrotechnque du Futur 14&15 décebre 211, Belfort Anlyse Therque 3D d un Alternteur à Grffes : Modélston, Sulton et Identfcton Expérentle de l convecton lbre du odèle en rége therque étbl. O. MALOBERTI

Plus en détail

RIRE PROVENCE ALPES COTE D'AZUR

RIRE PROVENCE ALPES COTE D'AZUR Mnstère de l'industre, des Postes et Télécounctons et du Coerce extéreur DIRECTION RÉGIONALE DE L'ENVIRONNEMENT PROVENCE-ALPES-CÛTE D'AZUR RIRE PROVENCE ALPES COTE D'AZUR > II MARTCRAU : Actulston du odèle

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema «À l utomne 97 le présdent Non nnoncé que le tu d ugmentton de l nflton dmnué C étt l premère fos qu un présdent en eercce utlst l dérvée terce pour ssurer s réélecton» Hugo Ross, mtémtcen, à propos d

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Cours 6 : Tableaux de contingences et tests du χ 2

Cours 6 : Tableaux de contingences et tests du χ 2 PSY 14 Technques d nlyses en psychologe Cours 6 : Tbleux de contngences et tests du χ Tble des mtères Secton 1. Attrbut moyen vs. réprtton d'ttrbuts... Secton. Test non prmétrque sur les fréquences....1.

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

T.P. Le redressement commandé : le pont mixte.

T.P. Le redressement commandé : le pont mixte. I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton

Plus en détail

TABLE DES MATIERES NOMENCLATURE... 5 1 L ENERGIE SOLAIRE... 7. 1.1 Introduction... 7 1.1.1 Le contexte... 7 1.1.2 Aperçu de la ressource...

TABLE DES MATIERES NOMENCLATURE... 5 1 L ENERGIE SOLAIRE... 7. 1.1 Introduction... 7 1.1.1 Le contexte... 7 1.1.2 Aperçu de la ressource... Yves JANNO Mrs 0 ABLE DES MAIERES NOMENCLAURE... 5 L ENERGIE SOLAIRE... 7. Introducton... 7.. Le contexte... 7.. Aerçu de l ressource... 7. Asects géométrques... 8.. Mouvements de l erre... 8.. Mouvement

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

La méthode CALPHAD : principe, outils et possibilités

La méthode CALPHAD : principe, outils et possibilités Déprtement CPS Equpe 6 Surfce et Interfce : Réctvté Chmque des Mtéru L méthode CALPHAD : prncpe, outls et possbltés Ncols DAVID Jen-Mrc FIORANI Mchel VILASI Insttut Jen Lmour UMR 798 Unversté de Lorrne

Plus en détail

UE 41c : Mécanique du Solide

UE 41c : Mécanique du Solide UE 4c : écnqu du Sold DEUG Scncs d l tèr è nné Nots d cours Exrccs Sujts d xn PFrty Lbortor d Crstllogrph t odélston ds térux nérux t Bologqus UPESA CNS N 7036 - Unvrsté Hnr Poncré, Nncy Fculté ds Scncs,

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Chapitre 2 : Les déterminants des taux d'intérêt

Chapitre 2 : Les déterminants des taux d'intérêt Chptre 2 : Les détermnnts des tux d'ntérêt I. Dstncton entre tux nomnux et tux réels : l relton de Fsher II. Les détermnnts des tux courts : l poltque monétre et les nterdépendnces nterntonles III. Les

Plus en détail

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2 Chpitre 7: Bndes d énergie On ne fer ps le modèle de Kronig-Penney: p. 165-7,171- ppel Gz d électrons libres: Modèle le plus simple pour un métl Électrons libres dns une boîte de LLL On résout l éqution

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

INTRODUCTION GENERALE

INTRODUCTION GENERALE Chpitre 1 L'ETAT CRISTALLIN 1 INTRODUCTION GENERALE Les propriétés des mtériux (des solides entre utres) sont définies pr l'rrngement tomique, l microstructure et l nture des liisons chimiques. L'étude

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

AMETRA TRAVAIL SUR ECRAN DE VISUALISATION. Santé au travail. Guide destiné aux personnels exposés

AMETRA TRAVAIL SUR ECRAN DE VISUALISATION. Santé au travail. Guide destiné aux personnels exposés AMETRA Snté u trvil TRAVAIL SUR ECRAN DE VISUALISATION Guide destiné ux personnels exposés IMPLANTATION GÉNÉRALE Norme NF X 35-109 Les limites cceptbles du port mnuel de chrges pr une personne : Le slrié,

Plus en détail

ANNEXE 3. QUELQUES FONCTIONS DE LA THEORIE DU CONSOMMATEUR...1

ANNEXE 3. QUELQUES FONCTIONS DE LA THEORIE DU CONSOMMATEUR...1 ANNEXE 3. QELQES FONCTIONS DE LA THEOIE D CONSOMMATE.... PESENTATION.... APPLICATION DANS LE CAS DE LA FONCTION D'TILITE COBB-DOGLAS... 7 3. L'EQATION DE SLTSKY... 9 3.. Comenston de Hcks... 0 3.. Comenston

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE

TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE TARIFICATION, PROVISIONNEMENT ET PILOTAGE D UN PORTEFEUILLE DÉPENDANCE Mre-Pscle Deléglse, Chrstn Hess, Sébsten Nouet To cte ths verson: Mre-Pscle Deléglse, Chrstn Hess, Sébsten Nouet. TARIFICATION, PROVISION-

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Cet article est disponible en ligne à l adresse : http://www.cairn.info/article.php?id_revue=reco&id_numpublie=reco_594&id_article=reco_594_0843

Cet article est disponible en ligne à l adresse : http://www.cairn.info/article.php?id_revue=reco&id_numpublie=reco_594&id_article=reco_594_0843 Cet rtcle est dsponble en lgne à l dresse : http://www.crn.nfo/rtcle.php?id_revuereco&id_numubliereco_594&id_articlereco_594_0843 Les prdoxes de Lucs et Romer pr hlppe DARREAU et Frnços IGALLE resses de

Plus en détail

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm N 529 Assemlges ngulires de plns de trvil de cuisine d'une lrgeur de 60 cm A Description Le grit de frisge APS 900 et une défonceuse Festool, p. ex. l défonceuse OF 1400, permettent de réliser rpidement

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

LE SEUL CHAUFFE-EAU THERMODYNAMIQUE MURAL À VENTOUSE CONCENTRIQUE. Améliorez la PERFORMANCE ÉNERGÉTIQUE de votre logement

LE SEUL CHAUFFE-EAU THERMODYNAMIQUE MURAL À VENTOUSE CONCENTRIQUE. Améliorez la PERFORMANCE ÉNERGÉTIQUE de votre logement L'nnovton certfée depus 1892 Xros IR LE SEUL CHUFFE-EU THERMODYNMIQUE MURL À VENTOUSE CONCENTRIQUE L révoluton du cuffe-eu! FLUIDE ÉCO 6 BREVETS Tecnoloe protéée EXCLUSIF! Bénéfcez d un CRÉDIT D IMPÔT

Plus en détail

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)?

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)? IN 02 6 mrs 2009 Rttrpge NOM : Prénom : ucun document n est utorisé. ce QCM outit à une note sur 42 points. L note finle sur 20 ser otenue simplement en divisnt l note sur 42 pr 2. Il suffit donc de donner

Plus en détail

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance.

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance. Moblté des espèces en soluton I_ Les dfférents modes de transport En soluton, les molécules peuvent se déplacer selon tros modes dfférents : onvecton, la matère est déplacée par contrante mécanque (agtaton)

Plus en détail

Portes coupe feu EI 2 30 pour tout type de construction

Portes coupe feu EI 2 30 pour tout type de construction L nouvelle génértion de portes coupe feu élégntes Portes coupe feu EI 30 pour tout type de construction L nouvelle génértion de portes métlliques NovoPort Premio devient l référence dns l protection incendie

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 2 SOMMAIRE A/ PRÉSENTATION Rélistion de conduits utoportnts pré-isolés à prtir de pnneux de l gmme Fi-Air. A/ PRÉSENTATION

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

CEM : ETUDE DES DIFFERENTS MODES DE COUPLAGE

CEM : ETUDE DES DIFFERENTS MODES DE COUPLAGE ECOE SUPEIEUE e PASTUGIE TP CEM CEM : ETUDE DES DIFFEENTS MODES DE COUPAGE I ) Introuction DES PETUBATIONS EECTOMAGNETIQUES e but e ce TP consiste à mettre en évience les ifférents moes e couplge es perturbtions

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A

GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A Une conception prticulièrement innovnte pour une cnlistion de moyenne puissnce. L enveloppe en luminium plus légère est pte à résister ux environnements

Plus en détail

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Recherche des prmètres de préréglge en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Appliction et utilistion des préréglges : Les données de

Plus en détail

Enquête sur les services de télécommunications

Enquête sur les services de télécommunications Enquête sur les servces de télécouncatons Vu l'avs favorable du Consel Natonal de l'inforaton Statstque, cette enquête, reconnue d'ntérêt général et de qualté statstque, est oblgatore. Vsa n 200222EC du

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Stabilisation en lacet d'un micro-robot aérien par la vision

Stabilisation en lacet d'un micro-robot aérien par la vision Stilistion en lcet d'un micro-root érien pr l vision Mots Clé : Vision ctive, cpteur optique, microlyge, micro-drones, fixtion, poursuite Résumé Ce trvil trite de l conception et de l rélistion d'un cpteur

Plus en détail

Annexe No 2. Croquis. Relatif au chiffre 2: CONSTRUCTIONS. Figure 2.1-2.3 Bâtiments, petites constructions et annexes

Annexe No 2. Croquis. Relatif au chiffre 2: CONSTRUCTIONS. Figure 2.1-2.3 Bâtiments, petites constructions et annexes Annexe No 2 Croquis Reltif u chiffre 2: CONSTRUCTIONS nnexe su rfces utiles secondires uniquement, ux dimensions limi tées longueur de l'nn exe, resp. de l petite construction bâtiment petiteconstruction

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant.

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant. Annexe A MESSAGE TYPE 8. COMMENTAIRES DES DEFINITIONS DE L ANNEXE NOTIONS ET METHODES DE MESURE 1. TERRAIN DE RÉFÉRENCE 1.1 Terrin de référence Le terrin de référence équivut u terrin nturel. S il ne peut

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

DM2-2014_CORRIGE. «Marquage Laser»

DM2-2014_CORRIGE. «Marquage Laser» C Grin / DM-4_crrigedc (ver: 9//5) pge /6 DM-4_CRRIGE Présenttin du système : «Mrquge Lser» Sur les lignes de frictin, n utilise de plus en plus fréquemment des dispsitifs de mrquge pur identifier les

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z Nomres complexes Module et conjugué d'un nomre complexe Définition - Propriétés Un nomre complexe z s'écrit de fçon unique sous l forme + i ; IR, IR On dit que + i est l forme lgérique du nomre complexe

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Déroulement de l épreuve de mathématiques

Déroulement de l épreuve de mathématiques Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou

Plus en détail

Présentation de l unité de fabrication étudiée

Présentation de l unité de fabrication étudiée A AI-6N Présentaton de l unté de fabrcaton étudée Cette socété natonale fabrque des gâteaux en grande quantté. Il y a dfférentes sortes de gâteaux : ronds, carrés, rectangulares En sorte de four, après

Plus en détail

Problème I : Microscope à force atomique

Problème I : Microscope à force atomique Problèe I : Microscope à force atoique Ces dernières années, de nouvelles techniques dites de "icroscopies à chap proche" se sont développées pour étudier les surfaces. Pari ces techniques, le icroscope

Plus en détail

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes . Intégrtion (suite) e qui suit comporte trois prties : l première correspond à peu près à ce qui été trité lors du dernier cours, certins exemples du cours et d utres clculs sont présentés dns l deuxième,

Plus en détail

IFT 615 : Devoir 4 Travail individuel

IFT 615 : Devoir 4 Travail individuel IFT 615 : Devoir 4 Trvil individuel Remise : 1 vril 01, 16h0 (u plus trd) 1. [ points] Dns le cours, nous vons vu différents types de problèmes d intelligence rtificielle insi que plusieurs solutions possibles

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Etude par simulation de l effet d isolation thermique d une pièce d un habitat dans la région de Ghardaïa

Etude par simulation de l effet d isolation thermique d une pièce d un habitat dans la région de Ghardaïa Revue des Eneres Renouvelbles Vol. 0 N 2 (2007 28 292 Etude pr smulton de l effet d solton thermque d une pèce d un hbtt dns l réon de Ghrdï.M.A. Bekkouche, T. Benouz 2 et A. Cheknne 3 Unté de Recherche

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

Calibration absolue par la mesure du faisceau direct

Calibration absolue par la mesure du faisceau direct DNPA Clibrtion 16-01-04 1 Clibrtion bsolue pr l mesure du fisceu direct 1- Introduction Les différentes méthodes permettnt de fire des mesures bsolues en diffusion de neutrons ux petits ngles (DNPA) sont

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Guide d'utilisation Easy Interactive Tools Ver. 2

Guide d'utilisation Easy Interactive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail