Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen"

Transcription

1 Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même pour le quatle ou le percetle o-paramétrque d u échatllo. La méthode classquemet employée pour calculer la probablté cumulée emprque d u pot au se d u échatllo cosste à classer les valeurs de l échatllo das l ordre crossat et à assocer à chacu la probablté / où est le ombre total de doées et le rag de chacue (das l échatllo classé). Cepedat, cette maère de procéder e codut pas à ue estmato symétrque des probabltés car la plus forte des doées admet la probablté alors que la plus fable admet la probablté / et o 0. La méthode de Haze permet de paller cet covéet. Elle est partculèremet utlsée pour les représetatos graphques de dstrbuto cumulée. Das cette approche, s est le rag de chaque doée das l échatllo classé de maère crossate et le ombre total de doées, la probablté cumulée emprque de chaque pot est défe par la formule suvate : p " a = + " 2 a avec gééralemet a = 0. 5 Cette méthode peut égalemet être utlsée pour estmer les quatles o-paramétrques d u échatllo. S x, avec à, sot les doées classées (das l ordre crossat) de l échatllo et p sot les probabltés cumulées précédemmet défes par la méthode de Haze, alors le quatle Q déf par P { x " Q } = (P=«probablté que») sera calculé de la maère suvate : $ Q # Q " Q ) ) ) = x = x = x + s ) & p ' ( x+ ' x )( ( p+ ') ( p ' p ) s ) % p + s p & ) < p + Il est clar que le quatle Q, quelle que sot la probablté reteue, est boré par la plus fable et la plus forte des valeurs de l échatllo. De ce fat, s est féreur à la probablté cumulée de la plus fable des valeurs ou au cotrare supéreur à celle de la plus forte des valeurs, alors l estmato du quatle Q est peu pertete. Ce problème se recotre lorsque le ombre de doées est fable, quelle que sot la méthode d estmato o-paramétrque chose ; seul l utlsato d ue approche paramétrque permet d y paller. Par alleurs, ous oteros qu l s agt là d ue estmato correspodat au meux (suvat le ombre de doées) à u veau de coface de 50 % (vor aexe 2 pour plus de précso). AFSSE Aalyse statstque des veaux de rsque et seuls de qualté mcrobologque - Eaux de bagade - Drectve 76/60/CEE Octobre p 09

2 p 0 - AFSSE Aalyse statstque - veaux de rsque et seuls de qualté mcrobologque - Eaux de bagade - Drectve 76/60/CEE Octobre 2004

3 Aexe 2. ombre mmal de doées écessare à l estmato d u percetle 95 % avec u veau de coface de 95 %, par ue approche o-paramétrque Sot C u paramètre doé, la cocetrato e Eschercha col [EC] des eaux d u ste de bagade au cours d ue aée ; sa dstrbuto statstque est supposée coue, mas o dspose de valeurs de ce paramètre. O s téresse au quatle Q du paramètre C ; celu-c est déf par { C " Q } = P avec = 0.95 par exemple (P = «probablté que»). O cherche alors ue estmato Qˆ " de Q correspodat à u veau de coface par exemple de = Autremet dt, o cherche Qˆ tel que P { Qˆ # Q }. Le paramètre correspod au pourcetage du " " " # quatle (ou percetle) de l o souhate calculer et correspod au veau de coface lé à l estmato de ce quatle. Preos pour estmateur de Q la plus forte valeur du paramètre C observée sur l échatllo de talle ( Qˆ " = max C ) et calculos le ombre mmal de doées à à partr duquel o a be u veau de coface de = Chaque valeur de l échatllo peut être cosdérée comme le résultat d u trage aléatore dépedat au se de la dstrbuto statstque du paramètre C, même s cette dstrbuto est coue. O dspose doc de varables aléatores C C,..., C dépedates et de même lo. Pour chaque trage (valeur), o a par défto P { " Q } = Du fat de l dépedace des trages, o a : P{ max C " Q } = P{ C " Q et C2 " Q et... et C " Q } = à or : P { max C $ Q } = # P{ max C " Q } d où : C à à, 2 sot : P P { max C # Q } = " à { Q ˆ " $ Q } = " = # Pour a = et = 0. 95, le ombre mmal de doées écessare est supéreur ou égale log( " $ ) à = 58.40, sot 59 doées. log # ( ) Pour a = et = 0. 95, le ombre mmal de doées écessare est de 29. O peut gééralser cette démarche avec la lo bomale pour des estmatos fodées sur la plus grade valeur, la 2, la k plus grade valeur, etc. O démotre alors AFSSE Aalyse statstque des veaux de rsque et seuls de qualté mcrobologque - Eaux de bagade - Drectve 76/60/CEE Octobre p

4 par exemple qu à partr de 93 doées, la plus grade valeur est ue estmato du percetle 95 % correspodat à u veau de coface de 95 %. p 2 - AFSSE Aalyse statstque - veaux de rsque et seuls de qualté mcrobologque - Eaux de bagade - Drectve 76/60/CEE Octobre 2004

5 Aexe 3. Ajustemet d ue lo de probablté théorque sur des doées cesurées Cosdéros u paramètre X (cocetrato mcrobologque das ue eau de bagade par exemple) dot la mesure est cesurée das les fables valeurs : autremet dt, e dessous d ue certae valeur, qu correspod à la lmte de quatfcato de la méthode de mesure, l est mpossble d accéder à la valeur du paramètre X et le résultat de la mesure est borée par cette lmte de quatfcato. Commet alors accéder à la dstrbuto statstque du paramètre X sachat que certaes mesures de ce paramètre sot cesurées? Af de répodre à cette questo, ous ous placeros das le cas partculer où le paramètre cosdéré est supposé suvre ue dstrbuto ormale et ous chercheros doc à estmer la moyee et l écart type du paramètre X dépedammet de la cesure, par ajustemet de la lo ormale sur les valeurs o cesurées. Toute autre hypothèse de dstrbuto théorque peut aturellemet être fate. Supposos doc que le paramètre X admette pour moyee µ et pour écart type ; o cherche à détermer leur valeur. Soet x ( = à ), les résultats de mesure du paramètre X classés das l ordre crossat, mesures dot les c premères valeurs dot cesurées. O assoce à chaque valeur x sa probablté cumulée emprque p (vor aexe ), pus le percetle correspodat pour qorm, µ,. Les valeurs la lo ormale de moyee µ et d écart type, que l o otera ( ) de µ et de état pas coues, ce percetle se présete pour l stat sous la forme d ue focto dépedat de µ et de. Ajuster la lo ormale sur les valeurs des mesures o cesurées, par la méthode des modres carrés, cosste à détermer les valeurs de µ et de qu mmset la somme suvate : 2 [ x " qorm( p, µ,# )] c+ S o cherche les valeurs de µ et de qu mmset la somme complète, 2 [ x " qorm( p,,# )] µ, o retrouvera la moyee et l écart type calculé sur l esemble des mesures cesurées et o cesurées (ce est évdemmet pas ce que l o cherche). Das la pratque, pour la mmsato, ous proposos l utlsato de l algorthme du smplex [elder et Mead 965 : A smplex method for fucto mmzato. Comput. J. 7: ], ou celu de Gauss-ewto [Bates, D.M. ad Watts, D.G. 988: olear Regresso Aalyss ad Its Applcatos, Wley]. Aalysos les capactés de cette approche à retrouver à partr d u échatllo cesuré les valeurs de la moyee et de l écart type de l échatllo o cesuré tal. Pour cela, ous avos gééré 000 échatllos de 50 valeurs aléatores correspodat à la lo ormale de moyee 0 et d écart type ; pus, ous avos cesuré ces échatllos à la valeur du percetle 75 % de chacu. Autremet dt, 75 % des valeurs de chaque échatllo sot cesurées, et la cesure correspod à la valeur du percetle 75 % de l échatllo o cesuré. p AFSSE Aalyse statstque des veaux de rsque et seuls de qualté mcrobologque - Eaux de bagade - Drectve 76/60/CEE Octobre p 3

6 Ot alors été calculé : la moyee et l écart type (par les formules classques) de chaque échatllo avat cesure ; la moyee et l écart type (par ajustemet sur l esemble des doées) de chaque échatllo avat cesure ; la moyee et l écart type (par ajustemet sur doées o cesurées) de chaque échatllo après cesure ; les écarts etre moyees (resp. écarts types) ssues des formules classques et celles ssues des ajustemets. La même démarche a été etreprse pour 000 échatllos de 500 valeurs aléatores et parallèlemet pour ue cesure placée au percetle 50 % de l échatllo. Quatre smulatos ot doc été réalsées e tout. La comparaso des méthodes (formules classques vs ajustemet sur les quatles) sur échatllos o cesurés codut aux résultats suvats : la méthode par ajustemet apparaît comme très peu basée ; autremet dt, l estmato de la moyee et de l écart type par la méthode d ajustemet est e moyee équvalete à celle ssue des formules classques. Les écarts etre résultats ssus des formules classques et résultats ssus de l ajustemet sot féreurs à 0-8 sur la moyee et à 0-2 sur l écart type. Autremet dt, sur u échatllo o cesuré, la méthode d ajustemet codut aux mêmes résultats que les formules classques de la moyee et de l écart type. La comparaso des valeurs (moyees et écart types) ssues des échatllos o cesurés (formules classques) avec celles ssues des échatllos cesurés (ajustemet) codut aux résultats suvats : les valeurs ssues de l ajustemet sur échatllos cesurés sot très peu basées égalemet. Autremet dt, moyees et écarts types ssus des échatllos cesurés par ajustemets sot équvalets e moyee à ceux ssus des formules classques sur échatllos o cesurées. éamos, les écarts etre valeurs ssues de l ajustemet et valeurs o cesurées peuvet être mportats (pusque l o cherche d ue certae maère à retrouver u échatllo avec ue coassace partelle de cet échatllo). Ces écarts se traduset doc das la pratque par ue certtude sur l estmato de la moyee et de l écart type par la méthode d ajustemet (sur doées cesurées). Cette certtude tradute par u écart type est présetée das le tableau c-dessous ; elle apparaît équvalete pour l estmato de la moyee et celle de l écart type. Écart type des écarts etre moyees des échatllos o cesurés (formule classque) et des échatllos cesurés (ajustemet). Valeurs équvaletes pour les écarts etre écarts types. Cesure correspodat au percetle 50 % de chaque échatllo Cesure correspodat au percetle 75 % de chaque échatllo 000 échatllos de 50 varables aléatores de lo ormale de moy. 0 et d ec. type 000 échatllos de 500 varables aléatores O costate doc logquemet que plus la talle de l échatllo augmete, plus l certtude est fable, et, parallèlemet, que plus la proporto de doées cesurées dmue, plus l certtude est fable. Malheureusemet, l estmato de la moyee et de l écart type par la méthode d ajustemet d u échatllo de 50 valeurs ou mos, cesurées à u percetle 75 % ou plus apparaît peu satsfasate, du fat de la grade certtude attachée au résultat. p 4 - AFSSE Aalyse statstque - veaux de rsque et seuls de qualté mcrobologque - Eaux de bagade - Drectve 76/60/CEE Octobre 2004

7 Remarque Ue approche fodée sur le maxmum de vrasemblace permettrat égalemet l estmato des paramètres d u échatllo cesuré ; éamos, elle est apparue mos pertete que celle que ous proposos sur les doées des stes de bagade. AFSSE Aalyse statstque des veaux de rsque et seuls de qualté mcrobologque - Eaux de bagade - Drectve 76/60/CEE Octobre p 5

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chaptre 4 : RÉGRESSION 4. Régresso léare smple 4.. Équato de la régresso 4.. Estmato par les modres carrés 4..3 Coeffcet de détermato 4..4 Iférece sur les coeffcets 4..5 Prévso et aalyse des résdus Régresso

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

PHYSIQUE DES SEMICONDUCTEURS

PHYSIQUE DES SEMICONDUCTEURS MIISTERE DE L'ESEIGEMET SUPERIEURE ET DE LA REHERHE SIETIFIQUE UIERSITE DE BEHAR Départemet es Sceces Laboratore e Pysque es spostfs à semcoucteurs (L.P.D.S ttp://www.uv-becar.z/lps/ PHYSIQUE DES SEMIODUTEURS

Plus en détail

Value at Risk en assurance : recherche d une méthodologie à long terme

Value at Risk en assurance : recherche d une méthodologie à long terme Value at Rsk e assurace : recerce d ue métodologe à log terme Marc FEDOR Uversté Pars Daupe Jule MOREL ISFA Uversté Lyo I RESUME La Value at Rsk est deveue u stadard de la gesto de rsque das le mode facer.

Plus en détail

LE PARAMETRAGE DU MRP SOUS INCERTITUDES DE DELAIS D APPROVISIONNEMENTS ET DEMANDE : LE CAS DE SYSTEME D ASSEMBLAGE A UN NIVEAU

LE PARAMETRAGE DU MRP SOUS INCERTITUDES DE DELAIS D APPROVISIONNEMENTS ET DEMANDE : LE CAS DE SYSTEME D ASSEMBLAGE A UN NIVEAU 8 e Coférece Iteratoale de MOdélsato et SIMulato - MOSIM 0-0 au 2 ma 200 - Hammamet - Tuse «Evaluato et optmsato des systèmes ovats de producto de bes et de servces» LE PARAMETRAE U MRP SOUS INCERTITUES

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

Analyse Statistique des Données de Lifetest

Analyse Statistique des Données de Lifetest Aalyse Statstque des Doées de Lfetest Evas Gouo Laboratore de Statstque Applquée de l Uversté de Bretage-Sud Pla Gééraltés Les modèles paramétrques Essas accélérés : modèle d accélérato Exemple Step-Stress

Plus en détail

Méthodologie statistique

Méthodologie statistique Métodologe statstque M050 LA CORRECTIO DE LA O-REPOSE PAR REPODERATIO ET PAR IMPUTATIO atale Cao Documet de taval Isttut atoal de la Statstque et des Etudes Ecoomques ISTITUT ATIOAL DE LA STATISTIQUE ET

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Analyse de survie. Michel Fioc. (Michel.Fioc@iap.fr, www2.iap.fr/users/fioc/enseignement/analyse_de_survie/)

Analyse de survie. Michel Fioc. (Michel.Fioc@iap.fr, www2.iap.fr/users/fioc/enseignement/analyse_de_survie/) École doctorale d astroome et d astrophysque d Île de Frace. I.A.P., févrer 2013 Post-master. Approche statstque bayésee par l exemple Aalyse de surve Mchel Foc (Mchel.Foc@ap.fr, www2.ap.fr/users/foc/esegemet/aalyse_de_surve/)

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Performances d une méthode de localisation dans les réseaux sans fil mobiles

Performances d une méthode de localisation dans les réseaux sans fil mobiles Performaces d ue méthode de localsato das les réseaux sas fl mobles Matheu Bouet, Erwa Ermel, Guy Pujolle Résumé Avec la multplcato des objets commucats, la localsato est ue composate majeure des futurs

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Méthodologie statistique

Méthodologie statistique Méthodologe statstque 000 L'ECONOMETIE ET l'etude DES COMPOTEMENTS Présetato et mse e oeuvre de modèles de régresso qualtatfs Les modèles uvarés à résdus logstques ou ormaux LOGIT, POBIT Documet de traval

Plus en détail

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION. INTRODUCTION Il est fréquet de s'terroger sur la relato qu peut exster etre deux gradeurs e partculer das les problèmes de prévso et d estmato. Tros types

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses 6- Tests statstques - Chaptre 6 : Tests d hypothèses 6. Costructo d u test et règle de décso... 6. ussace d u test...3 6.3 Quelques tests d hypothèses...4 6.3. Test sur la moyee d ue dstrbuto ormale de

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2 203 LES DÉLAIS DE PAIEMENT STATISTIQUES DE 2000 À 202 EN NOMENCLATURE NAF rev. 2 Javer 204 Itroducto Des séres statstques chroologques des délas de paemet et du solde du crédt teretreprses sot dspobles

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

NOTATIONS ET FORMULAIRE

NOTATIONS ET FORMULAIRE Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable

Plus en détail

RECUEIL DES METHODES INTERNATIONALES D'ANALYSES OIV Guide de validation Contrôle qualité

RECUEIL DES METHODES INTERNATIONALES D'ANALYSES OIV Guide de validation Contrôle qualité Gude de valdato Cotrôle qualté Gude pratque pour la valdato, le cotrôle qualté, et l estmato de l certtude d ue méthode d aalyse œologque alteratve (Résoluto Oeo 10/005) Sommare 1. OBJET... 5. PREAMBULE

Plus en détail

UNE APPROCHE DE LA COMPÉTITIVITÉ DE LA ZONE EURO : LE TAUX DE CHANGE EFFECTIF DE L EURO

UNE APPROCHE DE LA COMPÉTITIVITÉ DE LA ZONE EURO : LE TAUX DE CHANGE EFFECTIF DE L EURO UN APPROCH D LA COMPÉTITIVITÉ D LA ZON URO : L TAU D CHANG FFCTIF D L URO Le taux de chage effectif d ue moaie omial et réel costitue u idicateur privilégié pour apprécier la compétitivité d ue écoomie

Plus en détail

Application de la théorie des valeurs extrêmes en assurance automobile

Application de la théorie des valeurs extrêmes en assurance automobile Applcato de la théore des valeurs extrêmes e assurace automoble Nouredde Belagha & Mchel Gru-Réhomme Uversté Pars 2, ERMES-UMR78-CNRS, 92 rue d Assas, 75006 Pars, Frace E-Mal: blour2002@yahoo.fr E-Mal:

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL 3èm aé r smstr II Alcatos à la gsto d ortfull. L modèl CAPM. a. Préfércs tr tmorlls t otmsato sur érods.. rdmt d actf t rsqu. msur sml du rdmt d u actf r avc d + d rx du ttr à la f d la érod cosdéré rx

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale Mstère de l téreur, de l outre-mer ublcato : «le gude statstque de et des collectvtés terrtorales la fscalté drecte locale 2007» Aexe 2 Note méthodologque sur le calcul des évolutos de bases, taux et produts

Plus en détail

Les sinistres graves en assurance automobile : Une nouvelle approche par la théorie des valeurs extrêmes

Les sinistres graves en assurance automobile : Une nouvelle approche par la théorie des valeurs extrêmes Les sstres graves e assurace automoble : Ue ouvelle approche par la théore des valeurs extrêmes Nouredde Belagha (*, Mchel Gru-Réhomme (*, Olga Vasecho (** (* Uversté Pars 2, ERMES-UMR78-CNRS, 2 place

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Rappel (voir cours 1). On obtient l ampleur de chacune de ces dispersions par les sommes suivantes :

Rappel (voir cours 1). On obtient l ampleur de chacune de ces dispersions par les sommes suivantes : Master SV U7 COURS III - - Aalyse de varace (ANOVA I Patrc Coqullard I. ANOVA T RGRSSION MULTIPL I.. Rappels Ue régresso multple s accompage toujours d ue aalyse de varace ( ANalyse Of VArace = ANOVA.

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

6GEI300 - Électronique I. Examen Partiel #1

6GEI300 - Électronique I. Examen Partiel #1 6GEI3 Électroque I Autome 27 Modalté: Aucue documetato est permse. Vous avez drot à ue calculatrce o programmable. La durée de l exame est de 3h Cet exame compte pour 2% de la ote fale. Questo 1. Questos

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

EVALUATION SPATIO-TEMPORELLE DES ENJEUX HUMAINS DANS LE CADRE D UNE ANALYSE DE VULNERABILITE AUX RISQUES TECHNOLOGIQUES

EVALUATION SPATIO-TEMPORELLE DES ENJEUX HUMAINS DANS LE CADRE D UNE ANALYSE DE VULNERABILITE AUX RISQUES TECHNOLOGIQUES Evaluato spato-temporelle des ejeux humas das le cadre d ue aalyse de vulérablté aux rsques techologques EVALUATION SPATIO-TEMPORELLE DES ENJEUX HUMAINS DANS LE CADRE D UNE ANALYSE DE VULNERABILITE AUX

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 010 SBN : 978--1-54754- Sommare Remercemets... troducto De l terchageablté à Sx Sgma... 1 V CHAPTRE 1 Du toléracemet tradtoel

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

CNAM-UPMC MASTER 2010-2011 Recherche Opérationnelle MODELES DE LOCALISATION ET APPLICATIONS Marie-Christine Costa

CNAM-UPMC MASTER 2010-2011 Recherche Opérationnelle MODELES DE LOCALISATION ET APPLICATIONS Marie-Christine Costa CNAM-UPMC MASTER 200-20 Recherche Opératoelle MODELES DE LOCALISATION ET APPLICATIONS Mare-Chrste Costa I INTRODUCTION Avertssemet: ce polycopé e cotet que les résultats prcpau. Les démostratos et complémets

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

Les emprunts indivis. Auteur : Philippe GILLET

Les emprunts indivis. Auteur : Philippe GILLET Les emruts dvs Auteur : Phle GILLET Emrut dvs et emrut oblgatare Emrut dvs Emrut oblgatare Souscrt ar ue ou luseurs baques Pluseurs souscrteurs Dvsé e arts : oblgatos Oblgatos cotées Grad ombre de souscrteurs

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre.

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre. - De la réducto des edomorphsmes - Ce cours a été rédgé e ovembre 994 alors que e préparas l'agrégato de mathématques et ms à our e u et ullet 2. Das le cas où l comporterat des erreurs, merc de me les

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

APPRENTISSAGE ARTIFICIEL («Machine-Learning»)

APPRENTISSAGE ARTIFICIEL («Machine-Learning») APPRENTISSAGE ARTIFICIEL («Mache-Learg») Fabe Moutarde Cetre de Robotque (CAOR) MINES ParsTech (Ecole des Mes de Pars) Fabe.Moutarde@mes-parstech.fr http://perso.mes-parstech.fr/fabe.moutarde Appretssage

Plus en détail

Une méthode alternative de provisionnement stochastique en Assurance Non Vie : Les Modèles Additifs Généralisés

Une méthode alternative de provisionnement stochastique en Assurance Non Vie : Les Modèles Additifs Généralisés Ue méthode alteratve de provsoemet stochastque e Assurace No Ve : Les Modèles Addtfs Gééralsés Lheureux Else B&W Delotte 85, av. Charles de Gaulle 954 Neully-sur-See cedex Frace Drect: 33(0).55.6.65.3

Plus en détail

Chapitre III. Gaz parfaits

Chapitre III. Gaz parfaits Chatre III Gaz arfats IIIA : Déftos rorétés IIIAI : Gééraltés : U gaz arfat est u flude déal qu satsfat à l équato d état vr, ou ecore c est u gaz qu obét rgoureusemet aux tros los MARIOE, GAY LUSSAC et

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

Techniques d optimisation pour la définition d une démarche d amélioration industrielle : une approche par analyse et agrégation des performances

Techniques d optimisation pour la définition d une démarche d amélioration industrielle : une approche par analyse et agrégation des performances Techques d optmsato pour la défto d ue démarche d amélorato dustrelle : ue approche par aalyse et agrégato des performaces Sofae Sahraou, Lama Berrah, Jacky Motma Résumé Cet artcle trate de la défto d

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3 UNIVERSITE MONTESQUIEU BORDEAUX IV Lcence 3 ère année Econome - Geston Année unverstare 2006-2007 Semestre 2 Prévsons Fnancères Travaux Drgés - Séances n 3 «Les Crtères Fondamentaux des Chox d Investssement»

Plus en détail

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

Apport de la technique de décomposition de domaine en réduction modale de branche

Apport de la technique de décomposition de domaine en réduction modale de branche Apport de la techque de décomposto de domae e réducto modale de brache Perre-Olver LAFFAY, Olver QUEMENER *, Etee VIDECOQ, Ala NEVEU Laboratore de Mécaque et d Eergétque d Evry (LMEE) 40, Rue du Pelvoux

Plus en détail