-8-3 >5? *53,,3 / * $/ >B+? - 5, 2 34*56 7 /+#** //8" name="description"> -8-3 >5? *53,,3 / * $/ >B+? - 5, 2 34*56 7 /+#** //8">

" # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' /0 / * 0 4 * 0 6! "##$ % &!

Dimension: px
Commencer à balayer dès la page:

Download "" # $ % % & ' ( ) * +,! '()*+ *, + ' +' + ' ' -+ - +.+. /0 / 1 0 12 1 1 2 34+ 4 1 +. 50 5 * 0 4 * 0 6! "##$ % &!"

Transcription

1 "# $ %%& ' ( )*+, '()*+,'+''-++.+/ *406 "##$ %&

2 8CC "#$%& ' ( )* +,-./ */ 0 +3 *+:3 ;< = >-8-3 >5? *53,,3 / * $/ >B+? - 5, 2 34*56 7 /+#** //8 " 9#**//8 :' +3*++*/ 3 */;*/* 2/6 1

3 D 9D75,DCC E/8/3 ((* :(-,, - E,E 5,, >=A,E7C, 5$ :, 5 $ "-5&$,, 5 "F +&$ E= 9$ -:$ E*-,,D(, = D/8/ 3 ((* - * -,,DC < 75,DCC 8 #// C & 3 D/ B( 7/ %/ :*/ ( /' /// /4 58 D/ >/ 9 +**/ // 9*/ /? /*/ %*8 $*/(' */?* ' /*/ A*8 D' $**: ' */ /* 4E? #**' //8 :+*/

4 5, 2 34*56 7 /+#** //8 " 9#**//8 :' +3*++*/ 3 */;*/* 2/6 F D=-,:-2F 7 Retours Positifs Point mort Business Intelligence ROI Cumulatif Analyses Prédictives Systèmes Opérationnels Retours Négatifs Source: Jack Noonan G

5 +,,G,D8,G,D8H Modélisation Excel OLAP & Reporting Publications écrites Le doigt mouillé, Le feeling L expérience 5,203,527 quotidiennement Décisions d affaires H D-=9 OPTIMISER Rétention clients Promotions par ciblage Planification de la demande Amélioration de la demande Recommandations Scoring Data Mining ( *) () $( &' PERMETTRE Interaction client Gestion de stocks Supply Chain Management Mesure de la qualité " # $ % CONNAITRE Satisfaction client CA Produit Prix de revient Turnover des salariés I

6 I CC:*,D= Modélisation Prédictive Prédiction de valeurs Classification Régression Probabilité et raisons de Churn de chaque client Décider Modélisation Descriptive Exploration automatisée des données Clustering Associations Profil des «churners» et «non-churners» OLAP Exploration manuelle des données Cubes Historique de l attrition par périodes et par zones géographiques Requête et Reporting Agrégation des données et sommes SQL Feuilles de calcul Historique de l attrition par trimestre Mesurer Concept Technologie Exemple II J 89$GC GCH Modèles Prédictifs Modèles Descriptifs Classification Régression Prévisions avec séries temporelles Analyse Multi-variable Clustering Corrélation iolap Prédire l Inconnu Quels sont les facteurs explicatifs? Le Pouvoir de Comprendre I

7 5, 2 34*56 7 /+#** //8 " 9#**//8 :' +3*++*/ 3 */;*/* 2/6 I- -F + C-5C: IJ Attrition client GJ J 1J J J 7/ Region I1

8 IJ Attrition client GJ J 1J J J 7/ Region I< IJ - F+F Attrition client GJ J 1J J Est Centre Ouest J T T T T T T I

9 ,A =9 F Indicateurs de l attrition client < 1 - I Années client #appels Commandes (moy) Catégorie Région IF F+3 I 5 " 9K"26 #**//8 K"926 IG

10 )*-,-A,DCC -A,DCC Quel est le LTV de ce partenaire? Mon fournisseur livrera-t-il il en temps? Quel est mon risque sur ce prêt? Ce CLIENT quittera-t- il? Comment peut- on Qui achètera augmenter l acquisition ce de clients? PRODUIT? Est-ce que ce programme sera PROFITABLE? Est-ce une Quel est le FRAUDE? meilleur PRIX? Multitude de problèmes d affaires applicables IH +,D= Population totale

11 =-,: Population totale I =-,:: Population totale

12 -I 5 10% Mailing Test Base de Données Clients Appliquer Analyse Retour Mailing Lancement de la campagne - )*--: Historique des Transactions Comptes Clients Marketing Analyse 1< 1 -< - < I< I < Etat civil Total des Achats Age Ventes 1

13 -5 Résultats Net de la campagne Taux de réponse $ 6 5 5,68% $ Aveugle Data Mining ,04% Aveugle Data Mining Résultats: Cette campagne améliore le résultat r net de 46,460 $ avec un taux de réponse r de 6 fois supérieur < 5, 2 34*56 7 /+#** //8 " 9#**//8 :' +3*++*/ 3 */;*/* 2/6

14 I F +75F +":&?*' /6 &/ 8 F I F +75F +"&?*' /6 &/ 8 L*8M/ ' G

15 I F +75F +"&?*' /6 ' ' L*8M/ ' H 75F +?*' /6 -

16 75F +"&?*' /6 -I 75F ;79?*' /6 -

17 ?,,:7F + 8*/ 8' /6 --?,,:7F +"& 8*/ 8' /6-1

18 ?,,:7F +"& 8*/ 8' /6 -<?,,:7F +"& 8*/ 8' /6 -

19 +-K )-,5 L *- Objectifs de l entreprisel «Enterprise Modeling» Identifier les Indicateurs Clés s de Performance (KPIs) Découvrir ce qui influence chaque KPI Prédire le profit de chaque initiative Déployer le modèle Changer les règles Lancer un nouveau produit Ne rien faire -F 8*,GCH Objectif global de l entreprise: l Accroître le profit KPI: Profit par client KPI: Nombre total de clients Accroître l épargne Cross Sell Accroître les ventes en-ligne Cross Sell Accroître les prêts Cross Sell Accroître les ventes de crédit Développement Accroître demandes de prêt Développement Accroître les comptes- chèques Développement Augmenter le découvert Cross Sell Réduire le risque crédit Améliorer la satisfaction client Accroître les crédits Rétention Accroître les comptes- chèques Rétention Améliorer la satisfaction client Initiatives possibles Initiatives possibles -G

20 +,,M5 Performance Impact de la Performance actuelle modélisation potentielle Impact Initiative actuelle modélisation potentielle Impact Cross-Sell des produits $ 2% $ $ Réduire l attrition 5,5% 18% 4,5% $ Cross-Sell des services $ 30% $ $ Campagne en ligne 8% 100% 16% $ Réduire le risque crédit $ 3.4% $ $ -H I N-:O : C, I 5 Clients Ventes Opérations et plusieurs autres Optimisation campagnes Rétention clients Reccommen- Dation produits Risques Prêts-location Optimisation horaires Finance Telco Assurances ebusiness Manufacturier Biotechnologies Pharmaceutique Partout Modèles de Satisfaction Cross Sell Profils Optimisation réponse clients Up Sell représentants demande Marketing Finance Produits Cycle de vie Segmentation Analyse Prévision Planification client client perte et profit financière inventaire Modélisation De production Modélisation exploratoire Analyse de panier Analyse prix Valeur client Risques financiers Création de bundles 1

21 5, 2 34*56 7 /+#** //8 " 9#**//8 :' +3*++*/ 3 */;*/* 2/6 1I P 2/6 */#+/ D + /$?/8 +/NA=* 7*/**/= F<H4*D*;F / *27COF $ 0<I1HGH 1

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

Kaspersky Lab France Retour d expérience, intégration Marketo

Kaspersky Lab France Retour d expérience, intégration Marketo Kaspersky Lab France Retour d expérience, intégration Marketo Cécile Feroldi Head of Marketing Kaspersky Lab France 16 juin 2015 Agenda 1. Le projet 2. L état des lieux 3. Les outils aux service d une

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Analyse de données électroniques et intelligence d affaires

Analyse de données électroniques et intelligence d affaires Analyse de données électroniques et intelligence d affaires Valoriser les données internes et externes 3 avril 2014 Ordre du jour UNE INTRODUCTION À L ANALYSE DE DONNÉES Analyse de données et l intelligence

Plus en détail

Planification, Elaboration budgétaire, Simulation, Analyse Temps Réel BAO02. Cognos TM1. Pascal DELVAL, Customer Technical Professional

Planification, Elaboration budgétaire, Simulation, Analyse Temps Réel BAO02. Cognos TM1. Pascal DELVAL, Customer Technical Professional Planification, Elaboration budgétaire, Simulation, Analyse Temps Réel BAO02 Cognos TM1 Pascal DELVAL, Customer Technical Professional 2010 IBM Corporation 3 Ensemble complet de Fonctionnalités BI Requête

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Les solutions SAS pour les Petites et Moyennes Entreprises

Les solutions SAS pour les Petites et Moyennes Entreprises BROCHURE SOLUTION Les solutions SAS pour les Petites et Moyennes Entreprises Sur un marché aussi compétitif que celui des Petites et Moyennes Entreprises, le temps et l efficacité sont deux valeurs prioritaires

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données.

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données. Data Mining = Knowledge Discovery in Databases (KDD) = Fouille de données 1 Définition : Processus ou méthode qui extrait des connaissances «intéressantes» ou des motifs (patterns) à partir d une grande

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

We make your. Data Smart. Data Smart

We make your. Data Smart. Data Smart We make your We make your Data Smart Data Smart Une société Une société du du groupe Le groupe NP6 SPECIALISTE LEADER SECTEURS EFFECTIFS SaaS Marketing : 50% Data intelligence : 50% 15 sociétés du CAC

Plus en détail

Cybermarché et analyse comportementale

Cybermarché et analyse comportementale Cybermarché et analyse comportementale Antoine-Eric Sammartino aesammartino@e-laser.fr Séminaire Data Mining - Educasoft Formations 18 juin 2001-1- MENU Le Groupe LaSer Le processus Data Mining L industrialisation

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE

ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE Editeur - Intégrateur de solutions de gestion Notre stratégie d édition et d intégration : un niveau élevé de Recherche & Développement au

Plus en détail

Les 10 grands principes de l utilisation du data mining pour une gestion de la relation client réussie

Les 10 grands principes de l utilisation du data mining pour une gestion de la relation client réussie Les 10 grands principes de l utilisation du data mining pour une gestion de la relation client réussie Découvrir les stratégies ayant fait leurs preuves et les meilleures pratiques Points clés : Planifier

Plus en détail

SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)...

SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)... SharePoint (Toute la Gamme)... 1 Office 2010 (Toute la Gamme)... 2 OLAP (Toute la Gamme)... 2 STATISTICA Connecteur PI (Produit Complémentaire)... 3 Introduction... 3 Échelle Interactive... 4 Navigation

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

BI CONSULTING. Présentation de l offre. Mai 2013. La Synthèse et le Pilotage en réponse aux besoins des métiers

BI CONSULTING. Présentation de l offre. Mai 2013. La Synthèse et le Pilotage en réponse aux besoins des métiers Présentation de l offre BI CONSULTING La Synthèse et le Pilotage en réponse aux besoins des métiers Mai 2013 Valeur ajoutée 100% Banque Assurance 100% Systèmes de synthèse & de pilotage Des expertises

Plus en détail

Le data mining et l assurance Mai 2004. Charles Dugas Président Marianne Lalonde Directrice, développement des affaires

Le data mining et l assurance Mai 2004. Charles Dugas Président Marianne Lalonde Directrice, développement des affaires Le data mining et l assurance Mai 2004 Charles Dugas Président Marianne Lalonde Directrice, développement des affaires AGENDA Qu est-ce que le data mining? Le projet et les facteurs de réussite Les technologies

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Utilisations des mathématiques à des fins opérationnelles

Utilisations des mathématiques à des fins opérationnelles Utilisations des mathématiques à des fins opérationnelles Michael Vandenbossche mvn@softcomputing.com Soft Computing 165 avenue de Bretagne 59000 Lille 1. Présentation 2. Indicateurs statistiques de base

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox Des données à la connaissance client A la découverte de la plateforme de connaissance client knowlbox Livre blanc mai 2013 A l heure du Big Data, les entreprises s interrogent davantage sur leurs données.

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

1. Logiciel ERP pour les PME d ici... 3 2. Technologies Microsoft... 4 3. Modules disponibles... 5 3.1. Finance... 5 3.2. Analyses & BI... 6 3.3.

1. Logiciel ERP pour les PME d ici... 3 2. Technologies Microsoft... 4 3. Modules disponibles... 5 3.1. Finance... 5 3.2. Analyses & BI... 6 3.3. 1. Logiciel ERP pour les PME d ici... 3 2. Technologies Microsoft... 4 3. Modules disponibles... 5 3.1. Finance... 5 3.2. Analyses & BI... 6 3.3. Vente et marketing... 7 3.3.1. Gestion de la relation Client

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients

Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Data 2 Business : La démarche de valorisation de la Data pour améliorer la performance de ses clients Frédérick Vautrain, Dir. Data Science - Viseo Laurent Lefranc, Resp. Data Science Analytics - Altares

Plus en détail

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008 Petit Déjeuner Pépinière du Logiciel Libre 25 juin 2008 1 / 37 Agenda Définition & Principes Les différents outils & composants Les Solutions intégrés Open-Source Vos Questions 2 / 37 Agenda Définition

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel.

Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. IBM Software Group Les outils logiciels IBM à l'appui d'un projet de remontée des informations en temps réel. Lydie Peter, IBM Software Group. 2004 IBM Corporation Le principe : Identifier et réagir Filtres

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

Bienvenue! Le webinaire commencera d ici quelques minutes

Bienvenue! Le webinaire commencera d ici quelques minutes 11 Septembre 2014 Bienvenue! Le webinaire commencera d ici quelques minutes VIENNA LONDON MUNICH ZURICH BERLIN PARIS HONG KONG MOSCOW ISTANBUL BEIJING SINGAPORE DUBAI Jeudi 11 Septembre 2014 7 ingrédients

Plus en détail

ICHEC MANAGEMENT SCHOOL

ICHEC MANAGEMENT SCHOOL CASE TELECOMMUNICATION - MOBISTAR BUSINESS CASE TELECOMMUNICATIONS - MOBISTAR Defort Florence De Veyt Marie-Laure Dierickx Arnaud Leruite Julien Marlot Camille ICHEC MANAGEMENT SCHOOL MOBISTAR, EN ROUTE

Plus en détail

Chap 3 : La connaissance du client. I. Les fondements de la connaissance du client. Les principales évolutions sont résumées dans le tableau suivant :

Chap 3 : La connaissance du client. I. Les fondements de la connaissance du client. Les principales évolutions sont résumées dans le tableau suivant : Chap 3 : La connaissance du client I. Les fondements de la connaissance du client A. D une société de consommation à une société de consommateurs Depuis les années 1980, les mutations sociales ont eu d

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Le Concept Dynamics Nav. B.I.Conseil

Le Concept Dynamics Nav. B.I.Conseil Développement Croissance Développement Productivité Investissement Environnement Ouverture B.I.Conseil Nous sommes Microsoft Business Solutions Partner, ce qui nous permet de travailler en étroite collaboration

Plus en détail

Le décisionnel plus que jamais au sommet de l agenda des DSI

Le décisionnel plus que jamais au sommet de l agenda des DSI Le décisionnel plus que jamais au sommet de l agenda des DSI 9 juin 2011 www.idc.com Cyril Meunier IDC France Research & Consulting Manager Copyright 2008 IDC. Reproduction is forbidden unless authorized.

Plus en détail

Le métier de Chargé(e) d Etudes Statistiques

Le métier de Chargé(e) d Etudes Statistiques Le métier de Chargé(e) d Etudes Statistiques Nicolas Cabaj Sommaire Présentation du chargé d études statistiques 3 exemples de missions réalisées: Le scoring, illustré par un outil de détection des fraudes

Plus en détail

IBM Cognos Enterprise

IBM Cognos Enterprise IBM Cognos Enterprise Leveraging your investment in SPSS Les défis associés à la prise de décision 1 sur 3 Business leader prend fréquemment des décisions sans les informations dont il aurait besoin 1

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

MyReport Le reporting sous excel. La solution de business intelligence pour la PME

MyReport Le reporting sous excel. La solution de business intelligence pour la PME La solution de business intelligence pour la PME Qu est que la business intelligence La Business intelligence, dénommée aussi par simplification "Informatique Décisionnelle", est vraisemblablement l'unique

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

L emailing dans la performance digitale Quelle sera l évolution de l emailing à 3 ans?

L emailing dans la performance digitale Quelle sera l évolution de l emailing à 3 ans? L emailing dans la performance digitale Quelle sera l évolution de l emailing à 3 ans? Les engagements de nos membres 2 Les études du SNCD en 2014 3 2010-2012 : L'email est mort 4 Bilan en 2014 EMAIL 3,6

Plus en détail

LE PETIT RELATION CLIENT. Les pratiques clés en 15 fiches. Nathalie Houver

LE PETIT RELATION CLIENT. Les pratiques clés en 15 fiches. Nathalie Houver LE PETIT 2014 RELATION CLIENT Les pratiques clés en 15 fiches Nathalie Houver Dunod, Paris, 2014 ISBN 978-2-10-070826-0 Table des matières LA PRÉPARATION DE LA RELATION COMMERCIALE FICHE 1 Acquérir la

Plus en détail

Un nouveau regard sur votre marketing relationnel

Un nouveau regard sur votre marketing relationnel Un nouveau regard sur votre marketing relationnel La Proposition ellegiance repose sur une solution clef en main pour votre marque. Elle vous permet de déployer rapidement votre solution de communication

Plus en détail

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA

CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVATEUR DE DONNÉES 4.0 FAITES FRUCTIFIER VOS DONNÉES, RÉCOLTEZ DU ROI. DU BIG DATA AU SMART DATA CULTIVER SON CAPITAL CLIENTS, RECRUTER, FIDÉLISER ET RÉCOLTER DU ROI! La société Base Plus cultive depuis

Plus en détail

Sage CRM. La solution complète de Gestion des Relations Clients pour PME. Précision et efficacité à portée de mains!

Sage CRM. La solution complète de Gestion des Relations Clients pour PME. Précision et efficacité à portée de mains! Sage CRM Précision et efficacité à portée de mains! La solution complète de Gestion des Relations Clients pour PME Alliant l innovation pragmatique, la souplesse d utilisation et l efficacité Le CRM Simplicité

Plus en détail

Gérer les ventes avec le CRM Servicentre

Gérer les ventes avec le CRM Servicentre «Augmentez votre chiffre d affaires en prenant le contrôle de vos activités de ventes» 1 Gérer les ventes avec le CRM Servicentre L ÉVOLUTION EN SOLUTIONS INTÉGRÉES Un développeur de logiciels d expérience

Plus en détail

La Business Intelligence & le monde des assurances

La Business Intelligence & le monde des assurances Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 La Business Intelligence & le monde des assurances Karim NAFIE Regional Presales Manager EEMEA Operations

Plus en détail

Agenda. Impact d une mauvaise gestion des données. Les stratégies de promotion interne de la gestion de données

Agenda. Impact d une mauvaise gestion des données. Les stratégies de promotion interne de la gestion de données Comment définir les enjeux métier de la gestion de données Christophe Toum Chef de Produit DQ & MDM (Titre original dans l agenda : «Cas d utilisation de la gestion de données») Agenda Impact d une mauvaise

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

Avant Garde Plus Cisco Partner Demand Center. Comment stimuler les opportunités et dynamiser le business de votre entreprise?

Avant Garde Plus Cisco Partner Demand Center. Comment stimuler les opportunités et dynamiser le business de votre entreprise? Avant Garde Plus Cisco Partner Demand Center Comment stimuler les opportunités et dynamiser le business de votre entreprise? Guichet unique et complet du co-marketing avancé Le Partner Demand Center de

Plus en détail

Big Data et Marketing : les competences attendues

Big Data et Marketing : les competences attendues Big Data et Marketing : les competences attendues Laurence Fiévet Responsable Marketing Corporate Oney Banque Accord LA DYNAMIQUE DU MARKETING Selon la définition de Kotler et Dubois, «Le marketing est

Plus en détail

Partie I Stratégies relationnelles et principes d organisation... 23

Partie I Stratégies relationnelles et principes d organisation... 23 Introduction......................................................................... 1 1. Définition........................................................................ 2 1.1 Le CRM comme processus

Plus en détail

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com

Le Web, l'entreprise et le consommateur. Françoise Soulié Fogelman francoise@kxen.com Le Web, l'entreprise et le consommateur Françoise Soulié Fogelman francoise@kxen.com Forum "Quel futur pour le Web" Lyon, mardi 21 septembre 2010 THE DATA MINING AUTOMATION COMPANY TM Agenda Le Web un

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

LA GESTION DE LA RELATION CLIENT: CONCEPT ET MISE EN OEUVRE FATIHA BENARZI

LA GESTION DE LA RELATION CLIENT: CONCEPT ET MISE EN OEUVRE FATIHA BENARZI LA GESTION DE LA RELATION CLIENT: CONCEPT ET MISE EN OEUVRE FATIHA BENARZI les concepts de la gestion relation clients La démarche Un changement de perspective et la vente dans tous ça? Les enjeux Les

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Coheris est agréé organisme de formation, n d agrément 11 92 19507 92.

Coheris est agréé organisme de formation, n d agrément 11 92 19507 92. Formations 2015 Coheris est agréé organisme de formation, n d agrément 11 92 19507 92. Introduction La formation est une préoccupation constante de Coheris vis-à-vis de ses clients et de ses partenaires,

Plus en détail

BI2B est un cabinet de conseil expert en Corporate Performance Management QUI SOMMES-NOUS?

BI2B est un cabinet de conseil expert en Corporate Performance Management QUI SOMMES-NOUS? SOMMAIRE Qui sommes nous? page 3 Notre offre : Le CPM, Corporate Performance Management page 4 Business Planning & Forecasting page 5 Business Intelligence page 6 Business Process Management page 7 Nos

Plus en détail

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

Solution de planifi cation et de reporting unifi é pour Sanofi

Solution de planifi cation et de reporting unifi é pour Sanofi Solution de planifi cation et de reporting unifi é pour Sanofi «Avec Jedox, les départements font leur budget directement sur le web. C est un gain de temps indéniable pour mon équipe qui peut désormais

Plus en détail

CAMPAIGN MANAGER. La gestion des campagnes. Campaign Manager

CAMPAIGN MANAGER. La gestion des campagnes. Campaign Manager CAMPAIGN MANAGER La gestion des campagnes. Campaign Manager Aperçu de nos prestations. Adresses privéés Adresses professionelles Analyses Mutations d adresses Geomarketing Production de Mailings Sinus

Plus en détail

L INTELLIGENCE D AFFAIRE DANS LA VIE QUOTIDIENNE D UNE ENTREPRISE

L INTELLIGENCE D AFFAIRE DANS LA VIE QUOTIDIENNE D UNE ENTREPRISE 2009 L INTELLIGENCE D AFFAIRE DANS LA VIE QUOTIDIENNE D UNE ENTREPRISE Chapitre 1 : BI Une introduction La plupart des administrateurs de bases de données (DBA) ont rencontré une certaine forme de business

Plus en détail

l E R P s a n s l i m i t e

l E R P s a n s l i m i t e l ERP sans limite 2 Le groupe Divalto, solutions de gestion pour toutes les entreprises 30% du chiffre d affaires en R&D Créé en 1982, le groupe Divalto propose des solutions de gestion adaptées à toutes

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

L'impact économique total (Total Economic Impact ) de PayPal France

L'impact économique total (Total Economic Impact ) de PayPal France L'impact économique total (Total Economic Impact ) de PayPal France Sebastian Selhorst Consultant TEI Forrester Consulting 29 Mars 2011 1 2011 Forrester Research, Inc. Reproduction 2009 Prohibited Forrester

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

La fonction Conformité dans l assurance

La fonction Conformité dans l assurance La fonction Conformité dans l assurance L approche par les risques L exemple de la lutte contre le blanchiment Présentation pour : Faculté d Orléans Intervenant(s) : Laurent GUEREL AG2R LA MONDIALE 1/19

Plus en détail

Votre Infrastructure est-elle? Business Intelligence. Améliorer la capacité d analyse et de décision de vos équipes

Votre Infrastructure est-elle? Business Intelligence. Améliorer la capacité d analyse et de décision de vos équipes Votre Infrastructure est-elle? Business Intelligence Améliorer la capacité d analyse et de décision de vos équipes Sommaire Introduction : Les domaines d application de la Business Intelligence p. 4 Vue

Plus en détail

INTRODUCTION A LA GESTION DE LA RELATION CLIENT

INTRODUCTION A LA GESTION DE LA RELATION CLIENT INTRODUCTION A LA GESTION DE LA RELATION CLIENT La Gestion de la Relation Client (GRC) correspond à l'expression anglaise Customer Relationship Management (CRM). «La GRC est l'ensemble des outils et techniques

Plus en détail

Travailler avec les télécommunications

Travailler avec les télécommunications Travailler avec les télécommunications Minimiser l attrition dans le secteur des télécommunications Table des matières : 1 Analyse de l attrition à l aide du data mining 2 Analyse de l attrition de la

Plus en détail

webanalyste Boostez les performances de votre site Web grâce aux conseils du webanalyste

webanalyste Boostez les performances de votre site Web grâce aux conseils du webanalyste QUOI QUANTI QUALI POURQUOI webanalyste Boostez les performances de votre site grâce aux conseils du webanalyste webanalyste Qui c est? Mon nom est Franck Scandolera, je suis consultant et optimisation

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit La Business Intelligence pour les Institutions Financières Jean-Michel JURBERT Resp Marketing Produit Agenda Enjeux des Projets Financiers Valeur de Business Objects Références Clients Slide 2 Des Projets

Plus en détail

MICROSOFT DYNAMICS CRM & O Val

MICROSOFT DYNAMICS CRM & O Val MICROSOFT DYNAMICS CRM & O Val O Val Operational Value JSI Groupe 2, rue Troyon 92310 Sèvres 1 AGENDA 1. QUI SOMMES-NOUS? 2. NOS OFFRES 3. UNE ORGANISATION COMMERCIALE DÉDIÉE À NOS CLIENTS 4. O VAL : OPERATIONAL

Plus en détail

25 October 2013 Dossier Confidentiel MTS CONSULTING ORCA. ORCA est une suite d outils d informatique décisionnel dédiée aux télécoms.

25 October 2013 Dossier Confidentiel MTS CONSULTING ORCA. ORCA est une suite d outils d informatique décisionnel dédiée aux télécoms. 1 est une suite d outils d informatique décisionnel dédiée aux télécoms. C est un produit unique qui permet d accéder directement à vos multiples sources de données (Switch, IN, Facturation, Ventes, Comptabilité).

Plus en détail

Une réponse : Microsoft Dynamics AX. Les besoins des entreprises de plus de 200 personnes

Une réponse : Microsoft Dynamics AX. Les besoins des entreprises de plus de 200 personnes Les besoins des entreprises de plus de 200 personnes Pour rester compétitives et croître, les entreprises se montrent de plus en plus réactives afin de répondre efficacement aux demandes de leurs clients.

Plus en détail

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes SOFT COMPUTING et les projets Big Data Mission Un positionnement de spécialistes Sur le moyen terme, nous sommes profondément convaincus que les organisations qui tireront leur épingle du jeu et feront

Plus en détail

Piloter vos activités métier avec le BAM. Jean-Marc Langé

Piloter vos activités métier avec le BAM. Jean-Marc Langé Piloter vos activités métier avec le BAM Jean-Marc Langé Qu est-ce que le BAM? Le BAM (Business Activity Monitoring) consiste à agréger, analyser et présenter en temps réel des informations sur les activités,

Plus en détail

7 ingrédients pour personnaliser l expérience client et booster votre chiffre d affaires en seulement 5 semaines

7 ingrédients pour personnaliser l expérience client et booster votre chiffre d affaires en seulement 5 semaines 7 ingrédients pour personnaliser l expérience client et booster votre chiffre d affaires en seulement 5 semaines 24 S e p t e m b r e 2014 @Emarsys_France #ECP14 23 > 25 SEPTEMBRE 2014 I PARIS I PORTE

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

Découvrez le portefeuille de produits IBM SPSS

Découvrez le portefeuille de produits IBM SPSS Business Analytics Logiciels SPSS Découvrez le portefeuille de produits IBM SPSS L analytique avancée qui aident les entreprises à anticiper le changement et à prendre des mesures pour améliorer leurs

Plus en détail

Revenue Assurance : Pourquoi et comment maîtriser votre chaîne de revenu? Saunière Jean-Christophe Corcos Pascal Guédri Zouheir

Revenue Assurance : Pourquoi et comment maîtriser votre chaîne de revenu? Saunière Jean-Christophe Corcos Pascal Guédri Zouheir Revenue Assurance : Pourquoi et comment maîtriser votre chaîne de revenu? Saunière Jean-Christophe Corcos Pascal Guédri Zouheir *connectedthinking 19 février 2008 Agenda Qu est-ce que le Revenue Assurance?

Plus en détail

02.10.2015 Olivier Rafal, PAC CXP Group

02.10.2015 Olivier Rafal, PAC CXP Group 02.10.2015 Olivier Rafal, PAC CXP Group 1 Le groupe CXP L étude BARC Big Data Use Cases 2015 Etude internationale Plus de 550 participants 3e Edition Large couverture des types d industries & tailles d

Plus en détail