Fluctuation et estimation

Dimension: px
Commencer à balayer dès la page:

Download "Fluctuation et estimation"

Transcription

1 Fluctuatio et estimatio Table des matières I Idetificatio de la situatio II Échatilloage, itervalle de fluctuatio asymptotique II. Itervalle de fluctuatio pour ue loi biomiale II.2 IItervalle de fluctuatio asymptotique II.3 Predre ue décisio à partir d ue itervalle de décisio III Itervalle de cofiace IV Exercice (livre Math x) I Idetificatio de la situatio O cosidère deux ures U et U 2 coteat chacu u grad ombre de boules, rouges ou bleues. Das l ure U 2, o igore la proportio de boules Das l ure U, o coaît la proportio p de rouges. boules rouges. O effectue des tirages avec remise de boules ; O procède à des tirages, avec remise, de boules o essaye alors d estimer la proportio p de boules et o observe la fréquece d apparitio d ue boule rouges das l ure, proportio dot o a aucue rouge. idée a priori. Cette fréquece chage à chaque série des tirages. Cette estimatio se fait au moye d u «itervalle Celle-ci appartiet à u «itervalle de fluctuatio» de cofiace». Cet itervalle déped d u coefficiet, le «iveau de cofiace» que l o attribue à de cetre p, dot l amplitude dimiue avec. O est ici das le domaie de l échatilloage et l estimatio. de l itervalle de fluctuatio. O est ici das le domaie de l estimatio et de l itervalle de cofiace II II. Échatilloage, itervalle de fluctuatio asymptotique Itervalle de fluctuatio pour ue loi biomiale Défiitio Soit X ue variable aléatoire qui suit la loi biomiale B( ; p) et soit α ]0 ;. a ; b ] est u itervalle de fluctuatio au seuil α sigifie que P(a X b)= α. O choisit a le plus petit etier tel que p(x a) > 0, 025. O choisit b le plus grad etier tel que p(x b) > 0, 975.

2 II.2 IItervalle de fluctuatio asymptotique Théorème et défiitio Soit X ue variable aléatoire suivat ue loi biomiale B( ; p). et soit α u réel tel que 0<α<. Si X est ue variable aléatoire suivat la loi ormale cetrée réduite N (0 ; ), o appelle u α l uique réel tel que p ( u α X u α = α). O appelle I α l itervalle I = ( ) Alors lim p X + I = α. p u α ; p+ u α ]. L itervalle I cotiet la fréquece F = X avec ue probabilité qui se rapproche de α lorsque augmete : o dit que c est u itervalle de fluctuatio asymptotique de F au seuil α. Démostratio : O pose Z = X p p p] et o applique le théorème de Moicre-Laplace. Si X est ue variable aléatoire X qui suit la loi ormale cetrée réduite N (0 ; ), o appelle u α l uique réel tel que p ( u α X u α )= α. (voir chapitre précédet). lim p (Z u α ; u α ])= p (X u α ; u α ])= α. + Or Z u α ; u α ] u α X p u α. p u α X p+ u α p u α X p+ u α (e divisat tout par ). Exemple : O a ue ure coteat des boules bleues et rouges ; la proportio de boules rouges est p=0,4. O tire 50 boules ; o souhaite détermier l itervalle de fluctuatio au seuil α = 0,. À la calculatrice, o trouve u 0,,645 (o cherche β tel que F (Z β)= α = 0,95) où F est la foctio de 2 répartitio de la loi ormale cetrée réduite. 0,4 0,6 0,4 0,6 L itervalle de fluctuatio est doc I 50 = 0,4 u 0, ; 0,4+u 0, ]=0,286 ; 0,54] Aisi, e effectuat 50 tirages das cette ure, la fréquece d apparitio d ue boule rouge est comprise etre 0,286 et 0,54 avec ue probabilité de 0,9. Remarque : Pour 500 tirages, toujours avec ue probabilité de 0,9, o obtiet comme itervalle de fluctuatio I 500 = 0,364 ; 0,436] ; l amplitude de l itervalle a été divisée par plus de trois. Cas particulier : O sait que, pour α=0,05, o a u α,96. O e déduit : Défiitio L itervale de fluctuatio au seuil de 0,95 de la variable aléatoire fréquece F est défii par : ] p,96 ; p+,96 Page 2/6

3 Illustratio du calcul de u 0,05 : A = 0,95 0. c = 0.95 C 0,05 2 = 0, Remarque : cet itervalle est iclus das l itervalle vu e secode : 0. p ; p+ ] Démostratio : Soit f : p ). f (p)=p p 2 ; f (p)= 2p ; f (p)=0 p = 2 ; f (p) 0 p 2. O e déduit que f est croissate sur 0 ; ] ] puis décroissate sur 2 2 ; et ce maximum est 4. O peut doc majorer,96 par 2 et par 4 = 2 doc,96 par 2 ] 2 =. L itervalle p,96 ; p+,96 est doc bie iclus das p ; p = ]. II.3 Predre ue décisio à partir d ue itervalle de décisio Remarque : pour tester u hypothèse à l aide d u itervalle de fluctuatio asymptotique, o doit vérifier que les coditios d utilisatio suivates sot vérifiées : 30 ; p 5 et ( p) 5. Si ces coditios sot vérifiées, o calcule l itervalle de fluctuatio asymptotique I au seuil α (e gééral, 0,95). Si la fréquece observée appartiet pas à l itervalle I, o rejette j hypothèse. Exemple Das u casio, il a été décidé que les «machies à sous» doivet être réglées sur ue fréquece de gai du jouer de p = 0,6. Ue fréquece iférieure est supposée faire fuir le cliet et ue fréquece supérieure ruier le casio. Trois cotrôleurs différets vérifiet ue même machie. Le premier a joué 50 fois et gagé 2 fois, le deuxième a joué 20 fois et gagé 4 fois et le troisième a joué 400 lis et gaté 30 fois. E utilisat à chaque fois l itervalle de fluctuatio asymptotique au seuil 95 %, quelle décisio a pu redre le cotrôleur? Solutios : Premier cotrôleur : = mais p = 50 0,06=3<5 doc les coicios e sot pas réuies. Deuxième cotrôleur : = 20>30 ; p = 7,2>5; ( p)=2,8> 5 : les coditios sot réuies. 0,06 0,94 0,06 0,94 I 20 = 0,06,96 ; 0,06+,96 ] 0,07 5 ; 0,02 5] Page 3/6

4 La fréquece observée est f 2 = ,6 7 I 20. Le cotrôleur est coduit à rejeter l hypothèse que p = 0,06 (il a trop souvet gagé). Troisième cotrôleur : = 400>30 ; p = 24>5; ( p)=376>5 : les coditios sot réuies. 0,06 0,94 0,06 0,94 I 400 = 0,06,96 ; 0,06+,9 ] 0,036 7 ; 0,083 3] La fréquece observée est f 3 = = 0,075 I Le cotrôleur est coduit à accepter l hypothèse que p = 0,06 III Itervalle de cofiace Das ce paragraphe, la proportio p du caractère étudié das la populatio est icoue ; o essaye de l estimer à partit d u échatillo pris das la populatio. Défiitio Pour tout α ]0 ;, u itervalle de cofiace pour ue proportio p au iveau de cofiace α est la réalissatio, à partir d u échatillo, d u itervalle aléatoire coteat la proportio p avec ue probabilité supérieure ou égale à α. Il y a plusieurs itervalles de cofiace possibles. E Termiale, o cosidère celui-là : Propriété L itervalle de cofiace au iveau de cofiace de 05 % est l itervale I = fréquece observée du caractère sur u échatillo de taille. f ; f + ]où f ets la Exemple d applicatio : Lors d u scruti électoral, o souhaite coaître la proportio p de fraçais votat pour le cadidat «A». L istitut SOFOS mèe ue equête auprès de 000 persoes tirées au hasard et avec remise (c est-à-dire qu ue même persoe peut évetuellemet être choisie plusieurs fois). Le résultat idique qu ue proportio f = 49 % d etre elles voterot pour le cadidat «A».. Quelle est la loi suivie par le ombre de persoes votat pour «A» das ue equête avec remise effectuée auprès de 000 persoes? 2. État doé le résultat de l equête SOFOS. doer u itervalle de cofiace à 95 % pour l estimatio de p. 3. Peut-o affirmer d après l equête que le cadidat «A» aura pas la majorité des votes, c est- à-dire que p < 0,5? Solutio. chaque étape de l equête, il y a ue probabilité p de tirer ue persoe votat pour «A», car o procède à des tirages avec remise. De plus, les 000 tirages sot effectués de faço idépedate. L equête est doc u schéma de Beroulli dot chaque succès correspod à tirer ue persoe votat pour «A», Le ombre de persoes votat pour «A» das l equête suit doc ue loi biomiale B( ; ) où p est icou. Page 4/6

5 2. Notos F la proportio de persoes votat pour «A» parmi 000. D après le cours, si 30, p > 5,( p)>5, u itervalle de cofiace au iveau 95 % pour p est F ; F + ] Ici, = 000> 30, p 5 p 0,005 et ( p) 5 p 0,995. O e coaît pas p, mais au vu de l elquête, f = 0,49, doc o peut raisoablemet peser que p les coditios sot vérifiées. L itervalle de cofiace est 0, ; 0, ]=0,458 ; 0,522]. 3. L itervalle de cofiace précédet motre qu i est tut à fait possible que p 0,5. Doc il est pas raisoable d affirmer suite à l equête que le cadidat «A» obtiedra pas majorité des votes. Autre exemple : Das ue ure coteat des boules rouges et bleues e proportios icoues, o effectue des tirages au hasard avec remise.. Après avoir effectué 00 tirages, o compte 52 boules rouges et 48 boules bleues. Doer u itervalle de cofiace à 95 % de la proportio p de boules rouges das l ure. 2. Combie faudrait-il, au miimum, effectuer de tirages pour obteir u itervalle de cofiace à 95 % de logueur iférieure ou égale à (c est-à-dire ue précisio d au mois 0,02)? Solutio. Avec = 00 et f = 0,52, o a f = 0,42 et f + = 0,62. U itervalle de cofiace à 95 % de la proportio p de boules rouges das l ure est : 0.42 ; 0,62]. 2. O cherche le plus petit etier aturel tel que 0 2. O trouve 0 4. E prélevat au mois boules, o obtiet u itervalle de cofiace à 95 % à la précisio 0,02. IV Exercice (livre Math x) Pour décider la costructio d u grad stade, ue muicipalité veut soder la populatio pour estimer si plus de 50 % des électeurs y sot favorables.. La muicipalité réalise u sodage aléatoire de taille 00 et obtiet 54 avis favorables. a) Quelle est la fréquece f d avis favorables sur ce sodage? b) La muicipalité peut-elle décider la costructio du stade e prétextat que plus de 50 % de la populatio est favorable? 2. O suppose que la muicipalité réalise u sodage de taille et que la fréquece f des votes favorables reste égale à 0,54. Si p est la proportio (icoue) d avis favorables das la populatio, doer l expressio d u itervalle de cofiace de p au iveau de 95 %. 3. La muicipalité e costruira le stade que si la proportio p d avis favorables dépase 50 %. a) Motrer que pour avoir p > 0,5, au seuil de cofiace de 95 %, il suffit d avoir : 0,54 > 0,5. b) Détermier le plus petit etier 0 à partir duquel l iéquatio est vérifiée. c) Si le sodage, avec la même fréquece observée portait sur 650 persoes, pesez-vous que le stade serait costruit? Page 5/6

6 Solutio. a) f = 0,54 b) Au iveau de cofiace de 95 %, l itervalle de cofiace est 0,54 00 ; 0, ]=0,44 ; 0,64]. O e peut pas affirmer, au iveau de cofiace de 95 %, p > 0,5. La répose est o. 2. I = 0,54 ; p+ ]. 3. a) Pour avoir p > 0,5, il suffit, au iveau de cofiace de 95 %, d avoir 0,54 > 0,5. b) Cela équivaut à > 625 doc 0 = 626. c) Pour = 650, o aurait p > 0,5 avec u iveau de cofiace de 95 %. Le stade serait costruit. Page 6/6

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

STATISTIQUES - ESTIMATION

STATISTIQUES - ESTIMATION STATISTIQUES - ESTIMATION I Echatilloage et estimatio : itroductio O se situe ici das 2 domaies des statistiques qui sot ceux de l «échatilloage» et de l «estimatio». Ces 2 domaies ot des cotextes d applicatio

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a.

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a. Échatilloage 9 Pour repredre cotact Les réposes exactes sot : Répose c. Répose a. Répose c. 3 Répose a. 4 Répose b. Répose c. Activité. La populatio étudiée est la productio d automobiles. Le caractère

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Mathématiques : statistiques et simulation

Mathématiques : statistiques et simulation PAF Amies - Eseigemet des Mathématiques : Statistiques et simulatio 8 javier 0 Uiversité de Picardie Jules Vere 0-0 UFR des Scieces - LAMFA CNRS UMR 640 PAF Amies - Formatio Eseigemet des Mathématiques

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Application du logiciel Excel

Application du logiciel Excel Applicatio du logiciel Ecel Utilisatio du Solver du logiciel Ecel Table de matiers Lacemet du logiciel... Optimisatios... Programmatio liéaire... Problème du trasport... 8 Problème de programmatio quadratique...

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Automates 1 Présentation

Automates 1 Présentation Automates Présetatio Présetatio d u automate 2 Ue maière de désiger l automate de l exemple 3 Défiitio géérale 4 U exemple d automate 5 Mot costruit sur l alphabet C 6 L esemble de tous les mots das u

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

Estimation par intervalle de conance

Estimation par intervalle de conance SQ20 - ch7 Page 1/6 Estimatio par itervalle de coace Pricipe de costructio : Das le chapitre précédet, ous avos déi les estimateurs, et l'estimatio poctuelle d'u paramètre θ. Soit : X ue variable aléatoire

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté CTU, Licece de Mathématiques Statistique Iféretielle Jea-Yves DAUXOIS Uiversité de Frache-Comté Aée scolaire 2011-2012 Ce polycopié cotiet le cours, les sujets d exercice et leurs corrigés aisi que les

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie 16 novembre 2012

Corrigé du baccalauréat S Nouvelle-Calédonie 16 novembre 2012 Durée : heures Corrigé du baccalauréat S Nouvelle-Calédoie 6 ovembre 0 EXERCICE Commu à tous les cadidats 6 poits. a. f est ue somme de foctios dérivables sur [0 ; + [ et sur cet itervalle : f )= = = +

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

ÉCHANTILLONNAGE ESTIMATION

ÉCHANTILLONNAGE ESTIMATION Chapitre 16 ÉCHANTILLONNAGE ESTIMATION Vous vous ferez estimer e supportat les ijustices. Cicéro 1 ÉCHANTILLONNAGE 1.1 Itroductio O cosidère ue populatio (par exemple la populatio fraçaise) et u certai

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Séquence 1. Suites numériques

Séquence 1. Suites numériques Séquece Suites umériques Objectifs de la séquece Recoaître des situatios faisat iterveir des suites géométriques ou des suites arithmético-géométriques. Modéliser ces situatios par des suites géométriques

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Terminale S Chapitre 10 «Loi Normale» 21/03/2013

Terminale S Chapitre 10 «Loi Normale» 21/03/2013 Termiale S Chapitre «Loi Normale» /3/3 I) Itroductio O fait ue étude statistique de la taille des idividus d'ue populatio. Das chaque cas, la taille moyee est de 7 cm, avec u écart type de cm. O trace

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Modélisation stochastique

Modélisation stochastique Uiversité de Lorraie Master 2 IMOI 2014-2015 Modélisatio stochastique Madalia Deacou 2 Table des matières Itroductio 5 1 Simulatio de variables aléatoires 7 1.1 Itroductio............................ 7

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Corrigé Exercice Sujets Bac Maths Aales Mathématiques Bac Sujets + Corrigés - Alai Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL Aales Bac Maths SESSION MATHÉMATIQUES Série S Cadidats ayat pas suivi l eseigemet

Plus en détail

Contrôle du mercredi 3 juin 2015 (50 minutes) TS1

Contrôle du mercredi 3 juin 2015 (50 minutes) TS1 TS Cotrôle du mercredi jui 20 (0 miutes) Préom :.. Nom : Note :. / 20 I. (6 oits : ) 2 oits ; 2 ) 2 oits ; ) 2 oits) Ue ure cotiet boules blaches et boules oires idiscerables au toucher. O cosidère l exériece

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

QUOI DE NOUVEAU EN PROBABILITE EN TERMINALE?

QUOI DE NOUVEAU EN PROBABILITE EN TERMINALE? QUOI DE NOUVEAU EN PROBABILITE EN TERMINALE? S ES et L STI2D et STL Probabilités Coditioemet Idépedace Coditioemet Lois à desité Loi uiforme Loi expoetielle Loi uiforme Loi uiforme Loi expoetielle Lois

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

Probabilités et Statistiques MATH-F-315. Simone GUTT

Probabilités et Statistiques MATH-F-315. Simone GUTT Probabilités et Statistiques MATH-F-315 Simoe GUTT 2012 Das la vie, ous sommes cotiuellemet cofrotés à des collectios de faits ou doées. Les statistiques formet ue brache scietifique qui fourit des méthodes

Plus en détail

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres B A S E Biotechol Agro Soc Eviro 00 6 (3) 43 53 Utilisatio du bootstrap pour les problèmes statistiques liés à l estimatio des paramètres Rudy Palm Uité de Statistique et Iformatique Faculté uiversitaire

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Fonctions convexes. Prologue

Fonctions convexes. Prologue Foctios covexes Prologue Ce chapître développe les propriétés des foctios covexes f C E R défiies sur ue partie covexe C d u espace de dimesio fiie E. Si, fodametalemet, la covexité est ue propriété uidimesioelle

Plus en détail

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne :

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne : I. Itroductio. LOIS NORMALES. Voici quelques exemples de courbes proveat de la vie quotidiee : La répartitio du QI das la populatio Le poids d ue populatio de chatos Répartitio des coscrits e 1907 Age

Plus en détail

Classes de première générale et technologique STATISTIQUES ET PROBABILITÉS

Classes de première générale et technologique STATISTIQUES ET PROBABILITÉS Classes de première géérale et techologique STATISTIQUES ET PROBABILITÉS Sommaire I. Itroductio...4 II. Statistique descriptive, aalyse de doées...4 III. Variables aléatoires discrètes...6 IV. Utilisatio

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail