Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis)"

Transcription

1 Fiche sur les capteurs de courant à zéro de flux (application de l effet Hall et des systèmes asservis) Bibliographie. «Les capteurs en instrumentation industrielle», G. Asch & collaborateurs, DUNOD «Capteurs de courant et de tension», notice du fabricant L.E.M. Les explications de Michel Lavabre qui hélas est parti en retraite Le capteur à effet Hall. Le capteur à effet Hall permet de récupérer une image du flux magnétique qui traverse un barreau semiconducteur. Nous allons voir que l on peut l utiliser pour réaliser un capteur de courant (système qui délivre une tension proportionnelle au courant à observer). I.1. Structure de base. En simplifiant, on peut réaliser un capteur à effet Hall de la façon suivante : On distingue un barreau de semi conducteur sur lequel arrivent quatre électrodes reliées à des plaques métalliques. On fait passer un courant I entre les deux électrodes longitudinales. Nous allons chercher à comprendre ce qui se passe lorsque l ensemble est plongé dans le champ d induction magnétique B orienté comme sur la figure. rq : la zone utile de semi conducteur est d épaisseur e, de hauteur h et de longueur L. On peut par ailleurs définir la section S du canal conducteur par S = e.h. I. 2. Principe de fonctionnement. Nous allons commencer par faire une représentation du système dans le plan Oxz Nous allons supposer que la conduction (courant I) est assurée par les électrons (densité de porteur n et mobilité µ). Sous l action du champ magnétique, ces charges négatives vont être déviées vers l électrode 1

2 transversale (2) (force de Lorentz). Cette accumulation de charges va provoquer l apparition d un champ électrique E (entre les électrodes transversales). Il va être à l origine d une force qui s oppose à la force de Lorentz. On finit par atteindre un régime stationnaire lorsque les deux forces s équilibrent. Le champ électrique qui règne alors entre les électrodes transversales explique la différence de potentiel V H qui existe entre elles. La tension V H est appelée tension de Hall. Quantitativement, on peut écrire qu en régime stationnaire, on a VH q.e H = q. = q.v.b h r r v r De plus I = j.s = ρ.v.s = q.n.v. S (où j est la densité de courant, ρ la densité volumique de charges, n le nombre de charges par unité de volume, S la section de conducteur, v la vitesse moyenne des porteurs, I le courant considéré). De ces deux équations, on déduit que 1 I.B I.B VH =. = K H. q.n e e Ainsi, si on injecte un courant I connu fixé, on récupère une tension V H proportionnelle à B (que B soit continu ou variable ce qui est un grand avantage par rapport aux capteurs de flux inductifs classiques). Si on applique un champ magnétique B connu fixé, V H est directement proportionnel à I. Dans tous les cas, on remarque que K H est d autant plus forte que la densité de porteurs est faible. Si on veut une tension suffisante, il ne faudra pas doper trop fortement le matériau semi-conducteur. La densité de porteurs susceptibles de participer à la conduction va dépendre de la température. T va donc avoir une influence sur K H. I..3. Application à la mesure de courant. Nous allons essayer de comprendre comment utiliser un capteur à effet Hall pour récupérer une tension image d un courant à étudier. Il faut savoir que les principes qui vont être énoncés correspondent à ce qui se passe dans les pinces de courant qui permettent de détecter des courants continus comme des courants variables (dans la limite de la bande passante). Première approche : Dans un premier temps, on peut envisager la structure simple suivante : Le bobinage entourant le circuit magnétique est parcouru par un courant i(t). De ce courant va résulter un champ d induction B e proportionnel à i dans l entrefer. En effet : - le théorème d ampère donne Hf (t).l + He (t).l = N.i(t) - Si on considère que le circuit magnétique canalise suffisamment les lignes de champ, on peut négliger les flux de fuite et par conservation du flux, on aura B e.s e = B f.s f où B e et B f représentent respectivement le champ d induction moyen dans l entrefer et dans le matériau magnétique et où S e et S f représentent respectivement la section de l entrefer et du circuit magnétique. - Si on suppose que le matériau magnétique est assez doux (faible champ coercitif) et qu il n est pas trop saturé (probable en raison de l existence de l entrefer), alors on peut raisonnablement définir une perméabilité relative µ r telle que B f = µ o.µ r. Hf L équation déduite du théorème d ampère peut alors être transformée de la façon suivante : Bf Be Se Sf l.l +.l = N.i ou encore Be..L N. i µ o.µ r µ + = o µ o.µ r µ et ainsi o (t) B e = α.i(t) rq : même si le matériau sature (la signification de µ r est alors modifiée), le coefficient calculé sera, certes, altéré, mais la proportionnalité entre i et B e sera conservée. 2

3 Si on place un capteur à effet Hall dans l entrefer, il est soumis à B e. On peut alors imposer le courant I continu (fixé le plus précisément possible) qui traverse le barreau de semi conducteur. On va alors récupérer une tension V H proportionnelle à B e c est à dire I.Be I.. α VH = K H. = K H..i(t) e e Il suffit alors de faire un étalonnage pour déterminer le coefficient de proportionnalité entre V H (t) et i(t). Cependant, ce système présente un défaut important. En effet, le coefficient peut être modifié par les conditions expérimentales (température, saturation magnétique ), ce qui rend la procédure d étalonnage caduque. On peut alors envisager un système un peu plus complexe, mais moins sensible aux différentes perturbations expérimentales. On va faire en sorte que le capteur ne soit plus destiner qu à détecter un zéro de flux (ce qui élimine les effets de la fluctuation du coefficient de proportionnalité). Amélioration du système précédant (capteur à zéro de flux): On va considérer la structure suivante : Si on applique le théorème d ampère à la structure suivante (Φ est le flux global dans le circuit, différence entre Φ 1 et Φ 2 et R est la réluctance de ce dernier), alors.i (t) + N.i (t) = R. (t) N Φ Si on parvient à faire en sorte que Φ(t) soit nul, alors N1 i2 (t) =.i1(t) N 2 C est grâce au capteur à effet Hall que l on va réussir à détecter l annulation du flux. L intérêt de ce montage, c est que lorsque l on cherche à mesurer un courant i 1 de forte valeur, il suffit de prendre un rapport de spire adapté afin de pouvoir se contenter de travailler avec i 2 de beaucoup plus faible valeur mais directement proportionnel à i 1. On place alors une résistance de précision connue dans le circuit parcouru par i 2 et on mesure la tension à ses bornes. Pour parvenir à annuler le flux, on va instrumenter le système de la façon suivante : Dans le capteur à effet Hall, on fait à nouveau passer un courant continu I fixé (le plus stable possible!) afin que la tension de Hall V H détectée soit directement proportionnelle à la valeur du champ d induction B e dans l entrefer. La tension V H est amplifiée (éventuellement, on peut placer un correcteur intégral pour éliminer l erreur statique sur V H ce qui conduit à un zéro de flux). On peut alors écrire les équations suivantes - La tension de Hall V H est proportionnelle à B e champ d induction dans l entrefer, lui même proportionnel à la différence des flux Φ 1 et Φ 2. On a donc VH (p) = α.( Φ1 Φ 2 ) - Si G(p) représente le gain de l ensemble amplificateur de tension/correcteur, sachant que l amplificateur de puissance n agit pas sur la tension mais seulement sur le courant, et si on néglige la constante de temps introduite par l inductance du bobinage N 2, on a 3

4 G(p).V (p) R m.i2 (p) - Sachant que i 2 est beaucoup plus petit que i 1, la relation entre i 2 et Φ 2 peut être supposée linéaire (pas de saturation magnétique), soit R. Φ (p) Φ 2 ( p) =.i 2 (p) et donc G(p).V (p) = m 2 H - En utilisant l ensemble des équations précédentes, on peut faire apparaître la structure du système bouclé suivant : H = On a donc la relation α..g(p) Φ2 (p) R = m Φ1(p) α. 1+.G(p) R m Si le correcteur utilisé est un intégrateur de fonction de transfert 1 G(p) = τ.p Alors on a Φ 2 (p) 1 = Φ1(p) R m. τ 1+.p α. Il s agit bien d un système sans erreur statique, ce qui signifie que Φ 2 va tendre vers Φ 1 en régime permanent. Le flux global dans le circuit magnétique va donc tendre à s annuler. On va alors avoir une relation de proportionnalité entre i 2 et i 1 qui sera le simple rapport du nombre de spires entre les deux bobinages (voir la relation d Hopkinson déduite du théorème d Ampère lorsque le flux est nul). Il suffira alors de mesurer la tension aux bornes de la résistance de précision connue R m pour connaître précisément i 1. rq : on peut être étonné d avoir une tension V H qui tend vers 0 alors que le courant i 2 finit par se stabiliser à une valeur constante. Cependant, il n y aucune contradiction. Initialement, V H (t) est non nulle et est intégrée durant le transitoire qui conduit au régime permanent sans erreur statique. La tension en sortie de l intégrateur évolue alors et finit par prendre une valeur constante en régime permanent dès que V H s annule. C est cette valeur de tension constante en sortie du correcteur qui est à l origine du courant i 2 souhaité. Il ne faut donc pas confondre le signal d erreur et le signal de sortie du correcteur! rq : dans le temps de réponse du système, on n a pas fait apparaître le retard introduit par le passage de la tension de sortie de l amplificateur de puissance au courant i 2 Ce retard dépend notamment de la résistance des bobinages et des valeurs d inductances (intimement liées aux caractéristiques du matériau magnétique utilisé). Travail expérimental. L objectif de ce travail est de concevoir progressivement un capteur de courant, en envisageant différentes utilisations du capteur à effet Hall. Dans un premier temps, il devra délivrer une tension proportionnelle au courant à mesurer. Nous verrons que cette approche rend le système dépendant d une variation de la sensibilité (liée à la température par exemple ). Dans un deuxième temps, nous allons envisager de l intégrer dans une boucle d asservissement, afin de faire tendre le flux dans le circuit magnétique vers 0. Dans ce cas, une fluctuation de la sensibilité aura beaucoup moins d incidence sur la réponse de l ensemble. I.1. Etude d un capteur primaire (sans asservissement du flux). Nous allons commencer par étudier la structure suivante 4

5 Sur ce schéma, i(t) est le courant à visualiser, u H est la tension image de ce courant. I c représente le courant qui alimente le capteur. Comme capteur à effet Hall, on pourra utiliser l ensemble capteur/conditionneur Leybold (ENSC504). Le circuit magnétique est réalisé avec un circuit en U et deux barreaux solidement fixés laissant un entrefer suffisant pour placer le capteur (attention à la fixation, car en présence de courant, les deux barreaux vont être soumis à un effort qui risque de provoquer une pression mortelle sur le capteur ). De plus, toute variation de la largeur de l entrefer modifie la réponse de l ensemble du système Le courant i(t) à visualiser sera délivré par une alimentation stabilisée (utiliser le réglage fin de la tension, compte tenu de la faible impédance du circuit de N spires ). A température ambiante, étalonner le système en statique en traçant la caractéristique u H =f(i). Donner une image du temps de réponse du capteur. Pour cela, on appliquera un échelon de courant (de 0 à 3A par exemple ), en branchant brutalement l alimentation. Pourquoi n utilise-t-on pas le bouton marche/arrêt de cette dernière? Chauffer le capteur avec un sèche cheveux, et une fois le régime permanent atteint (pour la température), relever à nouveau la caractéristique statique. Conclure. I.2. Réalisation d un capteur à zéro de flux. I.2.1. Principe de la mesure d un courant important par annulation du flux magnétique. Cette fois, on place deux bobinages montés en opposition sur le circuit magnétique. En appliquant le théorème d ampère à ce circuit, on constate que le courant dans chacun d entre eux est proportionnel (rapport des nombres de spires) quand on annule le flux magnétique. Expérimentalement, réaliser le circuit suivant Relever la caractéristique i 2 = f(i 1 ) pour u H nulle. Quelle sera l incidence de la température sur la caractéristique? I.2.2. Capteur final : utilisation d un asservissement pour atteindre le zéro de flux. Pour automatiser la méthode précédente, on va réaliser le montage suivant 5

6 On prendra N 1 = 125 spires (bobine Leybold de 250 spires et on utilise la moitié du bobinage) et N 2 = 1000 spires. Comme résistance R m, on prendra une résistance 56Ω susceptible de supporter un courant de quelques centaines de ma. Pour tester ce capteur, on veillera à ne pas dépasser 1,5A pour i 1, afin de ne pas risque de brûler la résistance R m. L amplificateur de puissance est réalisé avec un montage push pull (par exemple les ampli phytex ENSC 300). La tension u m est visualisée via une sonde différentielle de tension afin de ne pas ramener la masse de l oscilloscope dans le circuit. Dans un premier temps, on prend R 1 = R 2 = R = 10 kω et C = 220 nf. Observer le flux dans le système (si tout va bien, il tend vers zéro à condition que les bobinages soient en opposition si le flux reste important, inverser les connections du circuit secondaire). Réaliser un étalonnage statique du système en relevant u m = f(i 1 ). Discuter sur l allure obtenue (ordonnée à l origine notamment). Chauffer le capteur à effet Hall et conclure quand à l incidence de la température. Relever la dynamique de réponse du système en appliquant un échelon de courant (de 0 à 1A). Comparer les temps de premier passage au régime permanent avec les configurations suivantes (R 1 =R 2 =10 kω, R = 1kΩ, C=220 nf) et (R 1 =R=10 kω, R 2 = 1kΩ, C=220 nf). Justifier les observations concernant la rapidité et la stabilité. Annexes. Circuit magnétique avec bobines Capteur à effet Hall et conditionneur (ENSC504) Résistance de 56 Ω susceptible de supporter 200 ma 6

7 Amplificateur de puissance push pull (ENSC300) Elément correcteur intégral (ENSC325) 7

a. Les éléments de base rectangle : représente un élément ou un groupe d éléments du système et son action associée

a. Les éléments de base rectangle : représente un élément ou un groupe d éléments du système et son action associée REGULATION 1/9 I. Présentation 1. Structure d'un système asservi L'objectif d'un système automatisé étant de remplacer l'homme dans une tâche, nous allons pour établir la structure d'un système automatisé

Plus en détail

Cours d électrotechnique

Cours d électrotechnique Cours d électrotechnique LES MACHINES A COURANT ALTERNATIF MACHINE STATIQUE A COURANT ALTERNATIF Les machines électriques statiques à courant alternatif - Table des matières générales TABLE DES MATIERES

Plus en détail

Devoir de Sciences Physiques n 1 pour le 09-09-2015

Devoir de Sciences Physiques n 1 pour le 09-09-2015 1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison

Plus en détail

Circuit fixe dans un champ magnétique variable

Circuit fixe dans un champ magnétique variable Circuit fixe dans un champ magnétique variable Calcul d un flux On peut montrer, dans le cadre de la mécanique des fluides, que le champ de vitesse pour un fluide visqueux incompressible, de coefficient

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique C est en 1831 que Michael Faraday découvre le phénomène d induction, il découvre qu un courant électrique est créé dans un conducteur lorsqu il est soumis à un champ magnétique

Plus en détail

TP-cours n 7 : Câble coaxial

TP-cours n 7 : Câble coaxial TP-cours n 7 : Câble coaial Matériel disponible : Câble coaial enroulé de 100m, GBF Centrad, adaptateurs BNC-banane, boite à décade de résistances. I Équation de propagation dans le câble coaial I.1 Introduction

Plus en détail

Extraits de récents DS

Extraits de récents DS 1 Extraits de récents DS Chap. 3 : Magnétostatique 2 UT MARSELLE GE 1 Année D.S. d'électricité n 3 avec Corrigé 29 Mars 1997 2 ème exercice. Circuit avec mutuelle. M i 1 (t) Le primaire du circuit ci-contre

Plus en détail

Electricité et magnétisme

Electricité et magnétisme Le champ magnétique Activité 1 a) O α S N s G n b) Bobine O s G n α I Document 1 Une petite aiguille aimantée suspendue par son centre de gravité G à un fil sans torsion est placée au voisinage d un aimant

Plus en détail

Magnétisme. Préparation à l agrégation de Sciences-Physiques ENS Physique

Magnétisme. Préparation à l agrégation de Sciences-Physiques ENS Physique Préparation à l agrégation de Sciences-Physiques ENS Physique Magnétisme Bertin Faroux Renault, Électromagnétisme 4 Rocard, Électricité Fleury Mathieu, Électrostatique, courants continus, magnétisme (T

Plus en détail

Partie A : Principe du moteur asynchrone (37%)

Partie A : Principe du moteur asynchrone (37%) Les trois parties A, B et C de cette épreuve sont indépendantes. Partie A : Principe du moteur asynchrone (37%) Aucune connaissance préalable du moteur asynchrone n est nécessaire pour l étude de cette

Plus en détail

Région de saturation V GS4 V GS3 V GS2 V GS1 -V DS

Région de saturation V GS4 V GS3 V GS2 V GS1 -V DS Transistor MO - introduction à la logique Transistor MO - introduction à la logique I. PARTI THORIQU I.1. Constitution et fonctionnement du transistor MO Un transistor MO (Metal Oxyde emiconducteur) est

Plus en détail

Les symboles des deux types de transistors sont représentés sur la figure 3.1. (i)

Les symboles des deux types de transistors sont représentés sur la figure 3.1. (i) hapitre 3 Les transistors bipolaires 3.1 Introduction Les transistors bipolaires ont été très utilisés au début (années 60, 70). Leur importance a diminuée avec l apparition des transistors à effet de

Plus en détail

1 Préparation : asservissement de position

1 Préparation : asservissement de position EPU ELEC 3 Travaux Pratiques d Automatique n 4 Asservissement de position d un moteur Le but de cette manipulation est d étudier l asservissement de position d un moteur à courant continu. Le châssis comprend

Plus en détail

Physique des Ondes : Propagation d ondes électrocinétiques dans un câble coaxial

Physique des Ondes : Propagation d ondes électrocinétiques dans un câble coaxial Travaux pratiques Série 2 Physique des Ondes : Propagation d ondes électrocinétiques dans un câble coaxial Objectifs du TP : Mesurer la vitesse de propagation d un signal dans un câble coaxial. Observer

Plus en détail

ETUDE D UN THERMOELEMENT

ETUDE D UN THERMOELEMENT TP - L3 Physique - Plate-forme TTE - C.E.S.I.R.E. - Université Joseph Fourier - Grenoble ETUDE D UN THERMOELEMENT BUT DU T.P. Mettre en évidence et comprendre les effets thermoélectriques. On cherchera

Plus en détail

Chapitre 8. Transformateur. 8.1 Introduction

Chapitre 8. Transformateur. 8.1 Introduction Chapitre 8 Transformateur 8.1 Introduction Le transformateur permet de transférer de l énergie (sous forme alternative) d une source à une charge, tout en modifiant la valeur de la tension. La tension

Plus en détail

TRAVAUX PRATIQUES D ÉLECTROTECHNIQUE

TRAVAUX PRATIQUES D ÉLECTROTECHNIQUE IUT de Saint-Nazaire Département Mesures-Physiques TRAVAUX PRATIQUES D ÉLECTROTECHNIQUE TP.1 : Sécurité électrique TP.2 : Mesures sécurisée sur une installation monophasée TP.3 : Electromagnétisme TP.4

Plus en détail

Cinquième partie Waldenburg 2012. 41 slides Le modèle général de transformateur saturable La modélisation de la gamme FLEX et FLEX+

Cinquième partie Waldenburg 2012. 41 slides Le modèle général de transformateur saturable La modélisation de la gamme FLEX et FLEX+ Cinquième partie Waldenburg 2012 41 slides Le modèle général de transformateur saturable La modélisation de la gamme FLEX et FLEX+ 1 La conception d une SMPS La conception d une SMPS est un exercice difficile.

Plus en détail

Les circuits réactifs (21)

Les circuits réactifs (21) Comment ça marche? Les circuits réactifs (21) L'adaptation (1) Transformateurs inductifs Par le radio-club F6KRK Après avoir vu l'usage des circuits réactifs dans les filtres fréquentiels, nous allons

Plus en détail

TD n 1 : Dopage des semiconducteurs

TD n 1 : Dopage des semiconducteurs TD n 1 : Dopage des semiconducteurs Exercice 1 : Silicium intrinsèque : On s intéresse au Silicium dans cet exercice On considère le semiconducteur intrinsèque 10 3 qui a une densité n i = 10 cm à T=300K

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

Exercices (Energie solaire photovoltaïque)

Exercices (Energie solaire photovoltaïque) Exercices (Energie solaire photovoltaïque) 1- Qu'est-ce que une diode Schottky? 2- Qu'est-ce qu'un contact ohmique? 3- Est-ce que la caractéristique I-V d'une diode est ohmique? 4- Qu'est-ce que la barrière

Plus en détail

Carte de Pilotage des Bras

Carte de Pilotage des Bras Carte de Pilotage des Bras But : Cette carte est destinée à piloter (rentrer / sortir) les deux bras du robot : Le bras latéral permettant de faire tomber les quilles ; Le bras permettant de ramasser les

Plus en détail

T.P. n 3. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe

T.P. n 3. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe .P. n 3 polytech-instrumentation.fr 85 563 563,5 C /min à partir d un poste fixe UILISAION DES MULIMERES I. Introduction Les multimètres numériques mesurent principalement des tensions et courants alternatifs

Plus en détail

LA BOBINE ET LE DIPOLE RL

LA BOBINE ET LE DIPOLE RL LA BOBINE ET LE DIPOLE RL Prérequis 1. Cocher les ou la bonne réponse Un champ magnétique peut être produit par : un aimant permanant; un corps isolant un corps aimanté un fil de cuivre un solénoïde parcourue

Plus en détail

LA CHARGE SANS CONTACT

LA CHARGE SANS CONTACT Epreuve commune de TIPE Session 2012 Ariel SHEMTOV - 25269 LA CHARGE SANS CONTACT PLAN I. PRESENTATION DU MONTAGE ETUDE THEORIQUE 1) Dispositif, lois physiques régissant son fonctionnement 2) Circuit électrique

Plus en détail

Poste à souder. Outils : Tournevis Pince coupante. Matériel :

Poste à souder. Outils : Tournevis Pince coupante. Matériel : Poste à souder Outils : Tournevis Pince coupante Matériel : 3 transformateurs de micro-onde 2 ventilateurs de micro-onde Câble d alimentation de micro-onde 17m de câbles gaînés de 4mm² 2m de câbles gaînés

Plus en détail

Travaux Pratiques Capteurs

Travaux Pratiques Capteurs Département Génie électrique Travaux Pratiques Capteurs I. Objectif : Permettre à l étudiant d exploiter la fiche technique des composants Permettre à l étudiant d exploiter et mettre en évidence l influence

Plus en détail

PARTIE 2 PROJET ELECTRICITE. Répondre sur des copies différentes de celles utilisées pour la partie Projet Mécanique.

PARTIE 2 PROJET ELECTRICITE. Répondre sur des copies différentes de celles utilisées pour la partie Projet Mécanique. PARTIE PROJET ELECTRICITE Répondre sur des copies différentes de celles utilisées pour la partie Projet Mécanique. AVERTISSEMENT Il est rappelé aux candidats qu'ils doivent impérativement utiliser les

Plus en détail

PRINCIPE DE FONCTIONNEMENT DES TRANSDUCTEURS

PRINCIPE DE FONCTIONNEMENT DES TRANSDUCTEURS PRINCIPE DE FONCTIONNEMENT DES TRANSDUCTEURS I DEFINITIONS 1 Exemple E x O X B V Le potentiomètre convertit une grandeur d entrée mécanique, la distance x en une grandeur de sortie électrique, la tension

Plus en détail

Montage n 24 Notion de capteur ; applications à la commande électronique d'un appareil d'utilisation

Montage n 24 Notion de capteur ; applications à la commande électronique d'un appareil d'utilisation Montage n 24 Notion de capteur ; applications à la commande électronique d'un appareil d'utilisation Introduction Une des tâches essentielles du scientifique est la mesure des grandeurs physiques, qui

Plus en détail

Chapitre II Les semi-conducteurs et les diodes

Chapitre II Les semi-conducteurs et les diodes PHYS-F-314 Electronique Chapitre II Les semi-conducteurs et les diodes G. De Lentdecker & K. Hanson 1 Rappels de la structure atomique Table des matières Semi-conducteurs (intrinsèques et extrinsèques)

Plus en détail

avec τ = 1. A la fermeture du circuit, on visualise à l aide d un oscilloscope à mémoire la tension UBA

avec τ = 1. A la fermeture du circuit, on visualise à l aide d un oscilloscope à mémoire la tension UBA Classe: 4 ème ath.s. : 2015/2016 ycée de Cebbala Sidi Bouzid Prof : Barhoumi zzedine e dipôle xercice n 1: e circuit de la figure 1 comporte en série : un générateur de tension idéal de fém, un résistor

Plus en détail

J AUVRAY Systèmes Electroniques

J AUVRAY Systèmes Electroniques LE TRANITOR MO Un transistor MO est constitué d'un substrat semiconducteur recouvert d'une couche d'oxyde sur laquelle est déposée une électrode métallique appelée porte ou grille (gate).eux inclusions

Plus en détail

FOUILLET Edgar MEICHEL Sébastien MULLER Guillaume PISTER Paul. Evaluateur de Mise en Appui

FOUILLET Edgar MEICHEL Sébastien MULLER Guillaume PISTER Paul. Evaluateur de Mise en Appui Evaluateur de Mise en Appui I. Introduction... 2 II. Etude... 2 1. Analyse fonctionnelle... 2 2. Pesette et pèse-personne... 3 3. Choix du matériel... 4 4. Etude du pèse-personne avec le matériel... 4

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

L EFFET PHOTOÉLECTRIQUE LA DÉTERMINATION DE LA CONSTANTE DE PLANCK

L EFFET PHOTOÉLECTRIQUE LA DÉTERMINATION DE LA CONSTANTE DE PLANCK L EFFET PHOTOÉLECTRIQUE LA DÉTERMINATION DE LA CONSTANTE DE PLANCK 1. Le but de l expérience L étude de l effet photoélectrique externe et le calcul de la constante de Planck( h ). 2. Considérations théoriques

Plus en détail

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes

La diode. Retour au menu. 1 La diode : un dipôle non linéaire. 1.1 Diode idéale. 1.2 Diode réelle à semi-conducteur. 1.3 Association de diodes etour au menu La diode 1 La diode : un dipôle non linéaire 1.1 Diode idéale 1.2 Diode réelle à semi-conducteur C est un dipôle électrique unidirectionnel dont les bornes sont l anode (A) et la cathode

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Les transistors bipolaires

Les transistors bipolaires Les transistors bipolaires I. Introduction: Définitions: Le transistor bipolaire est un composant à 3 électrodes comportant 2 jonctions PN. C est un cristal de semi-conducteur dans lequel on peut distinguer

Plus en détail

III.1 Quelques rappels théoriques sur les interférences à 2 ondes.

III.1 Quelques rappels théoriques sur les interférences à 2 ondes. III TP 3 : Intérférences à deux ondes dans le domaine hyperfréquence. 22 Introduction Le but de ce TP est d étudier le phénomène d interférences dans le domaine des ondes hyperfréquences 2. Il s agit donc

Plus en détail

ETUDE DE LA CARACTERISTIQUE DU DIPÔLE OHMIQUE : LOI D OHM UTILISATION D UN TABLEUR

ETUDE DE LA CARACTERISTIQUE DU DIPÔLE OHMIQUE : LOI D OHM UTILISATION D UN TABLEUR Nom : Prénom : Classe : Date : Fiche élève 1/ 6 Physique Chimie ETUDE DE LA CARACTERISTIQUE DU DIPÔLE OHMIQUE : LOI D OHM UTILISATION D UN TABLEUR Objectifs : - Établir la loi d Ohm à l aide d un tableur-grapheur

Plus en détail

ASSERVISSEMENT DE VITESSE D UN LAVE LINGE

ASSERVISSEMENT DE VITESSE D UN LAVE LINGE ASSERVISSEMENT DE VITESSE D UN LAVE LINGE Les différentes parties sont indépendantes et à l intérieur de chaque partie, de nombreuses questions sont indépendantes. Présentation Le système étudié est réalisé

Plus en détail

CIRCUITS RC, RL, RLC Comment réaliser quelques expériences avec l oscilloscope.

CIRCUITS RC, RL, RLC Comment réaliser quelques expériences avec l oscilloscope. IUITS,, omment réaliser quelques expériences avec l oscilloscope. Avant la manipulation, vérifier que les boutons de l oscilloscope, base de temps, potentiomètres des voies 1 et 2 sont calés en position

Plus en détail

TRANSISTORS bipolaires, MOS et à effet de champ

TRANSISTORS bipolaires, MOS et à effet de champ TRANSSTORS bipolaires, MOS et à effet de champ Deux transistors sont principalement utilisés en électronique : le transistor bipolaire et le transistor MOS. Dans une proportion moindre, on trouvera également

Plus en détail

2.1.3. La représentation graphique d évolutions

2.1.3. La représentation graphique d évolutions 2.1.3. La représentation graphique d évolutions 142 2 La mathématique financière 2.1.3. - LA REPRÉSENTATION GRAPHIQUE D ÉVOLUTIONS L analyse de la succession des données dans le temps va devoir être traitée

Plus en détail

PHYS-F-205. Physique 2. Examen du 6 juin 2012. I. Théorie (20 points 1 heure 15')

PHYS-F-205. Physique 2. Examen du 6 juin 2012. I. Théorie (20 points 1 heure 15') NOM, PRENOM (en majuscules)..... SECTION (barrer la mention inutile) Biologie Géographie Géologie PHYS-F-205 Physique 2 Examen du 6 juin 2012 I. Théorie (20 points 1 heure 15') Justifiez toujours vos réponses.

Plus en détail

Les interactions électromagnétiques

Les interactions électromagnétiques Les interactions électromagnétiques Activité 1 Le champ magnétique La force électromagnétique 1. Le champ magnétique Document 1 : Champ magnétique d un aimant droit Document 2 : champ magnétique d un aimant

Plus en détail

Courant alternatif. Université de Genève 21.1 M. Pohl

Courant alternatif. Université de Genève 21.1 M. Pohl Courant alternatif Au lieu d avoir toujours la même polarité, chaque borne d un générateur de tension alternative est positive puis négative en alternance. Les électrons du courant se déplacent dans un

Plus en détail

TD16 Machine synchrone et MCC

TD16 Machine synchrone et MCC TD16 Machine synchrone et MCC 161 Machine synchrone simpliste A Travaux Dirigés Un aimant cylindrique allongé peut tourner autour de l'axe passant par son centre et perpendiculaire à son moment magnétique.

Plus en détail

Fonctionnement des électrovannes de suspension

Fonctionnement des électrovannes de suspension Fonctionnement des électrovannes de suspension Le calculateur de suspension décide d agir sur la suspension suite à l analyse des informations fournies par les différents capteurs. Pour ce faire il peut

Plus en détail

De la cellule au champ PV

De la cellule au champ PV De la cellule au champ PV 1- De la cellule au module Tous les modules PV, quelque soit leur technologie fonctionnent grâce au même principe : l effet photoélectrique. Je ne vais pas entrer dans les détails

Plus en détail

Aquariums et capteurs de niveau

Aquariums et capteurs de niveau http://club2a.free.fr/site/article.php3?id_article=477 Aquariums et capteurs de niveau mercredi 9 mai 2007, par Bricoleau Cet article a pour but de présenter les éléments de base, qui permettent de se

Plus en détail

COMPRENDRE LE CÂBLE COAXIAL

COMPRENDRE LE CÂBLE COAXIAL COMPRENDRE LE CÂBLE COAXIIAL sans math est presque sans formules Pour partir sur une bonne base Afin que tout soit bien clair et afin de faciliter la compréhension de l exposé qui suit, je me permets de

Plus en détail

Travaux Pratiques CARACTERISATION DE LA REPONSE DU PILOTE A UN ECHELON DE CAP

Travaux Pratiques CARACTERISATION DE LA REPONSE DU PILOTE A UN ECHELON DE CAP PSI * 24/01/14 Lycée P.Corneille Réponse à un échelon de cap.doc Page : 1 Travaux Pratiques CARACTERISATION DE LA REPONSE DU PILOTE A UN ECHELON DE CAP Temps alloué 2 heures Vous disposez: du pilote TP5000

Plus en détail

ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE

ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE Journal of Electron Devices, ol. 5, 2007, pp. 22-26 JED [ISSN: 682-3427 ] Journal of Electron Devices ETUDE DE LA JONCTION PN D UN SEMI-CONDUCTEUR A L EQUILIBRE THERMODYNAMIQUE I. Sari-Ali, B. Benyoucef,

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

TRANSISTORS BIPOLAIRES

TRANSISTORS BIPOLAIRES TRANSISTORS BIPOLAIRES Licence Physique et Application - Semestre 4 1. L effet transistor 2. Polarisation d un transistor 3. Montages de base 4. Classes d amplification 5. transistor à effet de champ Attention,

Plus en détail

1. Rappels de 5 ème 5 h + 1 h DS. 2. L intensité du courant 4 h + 1 h DS. 3. La tension électrique 4 h + 1 h DS

1. Rappels de 5 ème 5 h + 1 h DS. 2. L intensité du courant 4 h + 1 h DS. 3. La tension électrique 4 h + 1 h DS En classe de 5 ème : Comprendre, réaliser et représenter un circuit électrique simple Comprendre ce qu est un courant électrique et déterminer le sens du courant dans un circuit électrique Distinguer conducteur

Plus en détail

HYDRAULIQUE PROPORTIONNELLE

HYDRAULIQUE PROPORTIONNELLE Comparaison des fonctionnements : Distributeur «Tout Ou Rien» (TOR) Distributeur à commande proportionnelle La bobine du distributeur n est pas alimentée, tous les orifices du distributeur sont fermés.

Plus en détail

Questionnaire : Notions d électricité et d électronique

Questionnaire : Notions d électricité et d électronique Questionnaire : Notions d électricité et d électronique 1. Qu est-ce que le courant électrique? ou Qu est ce qu un courant électrique? Cocher la ou les bonne(s) réponse(s) des forces électromagnétiques

Plus en détail

MESURE DES TENSIONS ET DES COURANTS

MESURE DES TENSIONS ET DES COURANTS Chapitre 7 MESURE DES TENSIONS ET DES COURANTS I- MESURE DES TENSIONS : I-1- Généralités : Pour mesurer la tension UAB aux bornes d un récepteur, il faut brancher un voltmètre entre les points A et B (

Plus en détail

La Photodiode : du composant au capteur optique

La Photodiode : du composant au capteur optique La Photodiode : du composant au capteur optique Electronique pour le traitement de l information Travaux Pratiques Denis Brac & Eric Magnan G3B11 Nous attestons que ce travail est original, que nous citons

Plus en détail

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W

N' = 1440 tr/min ; P 1 = 4500W ; P 2 = 2000 W MOTEUR ASYNCHRONE 1) Un moteur asynchrone triphasé à rotor bobiné et à bagues est alimenté par un réseau triphasé 50 Hz dont la tension entre phases est U = 380 V. Les enroulements du stator et du rotor

Plus en détail

Construction d un décodeur «4 lignes» pour la lecture des informations contenues dans la trame des balises 406

Construction d un décodeur «4 lignes» pour la lecture des informations contenues dans la trame des balises 406 Construction d un décodeur «4 lignes» pour la lecture des informations contenues dans la trame des balises 406 Jean-Paul YONNET F1LVT / ADRASEC 38 F1LVT@yahoo.fr www.f1lvt.com Nous allons décrire la construction

Plus en détail

CHAPITRE III. Amplificateur d instrumentation

CHAPITRE III. Amplificateur d instrumentation CHAPITRE III Amplificateur d instrumentation Olivier FRANÇAIS, 000 SOMMAIRE I NOTION DE TENSION DE MODE COMMUN ET D AMPLIFICATEUR DIFFÉRENTIEL... 3 I. DÉFINITION DE LA TENSION DE MODE COMMUN... 3 I.. Tension

Plus en détail

Expert Automobile 2001 Electricité

Expert Automobile 2001 Electricité Expert Automobile 2001 Electricité Le schéma suivant est une représentation simplifiée d une commande de montée / descente de la fourche d un chariot élévateur. Le mouvement de la fourche est contrôlé

Plus en détail

Les bons conducteurs ont leur dernière couche incomplète. Ils céderont facilement leurs électrons. Argent, or, cuivre, aluminium, fer, carbone...

Les bons conducteurs ont leur dernière couche incomplète. Ils céderont facilement leurs électrons. Argent, or, cuivre, aluminium, fer, carbone... Le Courant Continu Un courant est un flux d'électrons électrons. Pour que ces électrons puissent se déplacer, il faut que les électrons soient libres. On trouve des électrons libres, en général, dans les

Plus en détail

LES MOTEURS ELECTRIQUES

LES MOTEURS ELECTRIQUES L objectif de ce cours est de comprendre le fonctionnement des moteurs électriques. Nous verrons les notions de puissance, de pertes et de rendement. Nous étudierons de manière simplifié comment ces moteurs

Plus en détail

SCIENCES INDUSTRIELLES II

SCIENCES INDUSTRIELLES II SCIENCES INDUSTRIELLES II Étude d un chariot de golf électrique Le chariot de golf électrique est un véhicule permettant de transporter, lors d un parcours de golf, le matériel nécessaire au jeu dont la

Plus en détail

Partie II TEMPERATURES DANS LE REACTEUR

Partie II TEMPERATURES DANS LE REACTEUR Spé y 2001-2002 Devoir n 2 THERMODYNAMIQUE Ce problème étudie quelques aspects des phénomènes intervenants dans une centrale nucléaire de type Réacteur à Eau Pressurisée (ou PWR en anglais) qui est le

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

Type de document : Exercice

Type de document : Exercice Section : S Option : Sciences de l ingénieur Discipline : Génie Électrique Le compteur de passage Domaine d application : Etude d un système Type de document : Exercice Classe : Première Date : I Description

Plus en détail

TRANSFORMATEUR D'IMPULSIONS

TRANSFORMATEUR D'IMPULSIONS TRANSFORMATEUR D'IMPULSIONS 1. Schéma équivalent Le schéma équivalent d'un transformateur d'impulsions, toutes les grandeurs ramenées au primaire est donné figure 1. R1 Lf P1 Lp C R2 T.P * * S1 P2 S2 Figure

Plus en détail

Simulation d un système de pompage photovoltaïque.

Simulation d un système de pompage photovoltaïque. Simulation d un système de pompage photovoltaïque. Bureau d étude de Systèmes Energétiques (SE) Binôme : Responsable Projet : Katschnig Grégory Mr Lhomme Walter Sambourg Julien Master 1 ASE Année 21-211

Plus en détail

TRAIN: TRAIN RUNNING ADVANCED INFORMATION ON NETWORK

TRAIN: TRAIN RUNNING ADVANCED INFORMATION ON NETWORK TRAIN: TRAIN RUNNING ADVANCED INFORMATION ON NETWORK Rhanjati Mohamed mrhanjati@yahoo.com RÉSUMÉ Le projet «TRAIN» consiste en la gestion d un site ferroviaire donné. Cette gestion étant axée sur la détection,

Plus en détail

Lignes de transfert d Energie Electrique

Lignes de transfert d Energie Electrique Plan du cours Généralités Les surtensions Coordination d isolement Les dispositifs de protection contre les surtensions : éclateur et parafoudre 1 Généralités La coordination d isolement est l ensemble

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

Identification de personnes Système Mains-libres Lecteur RFID UHF STid GAT

Identification de personnes Système Mains-libres Lecteur RFID UHF STid GAT Identification de personnes Système Mains-libres Lecteur RFID UHF STid GAT NOTE D APPLICATION Introduction Le lecteur GAT permet l identification «mains libres» de personnes en mouvement. Ce document a

Plus en détail

Activité Dipôles électriques

Activité Dipôles électriques 1. Résistance Activité Dipôles électriques Une résistance est un composant électronique ou électrique dont la principale caractéristique est d'opposer une plus ou moins grande résistance à la circulation

Plus en détail

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique Chapitre 6 Électricité 6.1 Champ électrique 6.1.1 Interaction électrique L étude de l électricité peut se ramener à l étude des charges électriques et de leurs interactions. Rappelons que l interaction

Plus en détail

Chapitre 14 Notion de résistance électrique. Loi d Ohm

Chapitre 14 Notion de résistance électrique. Loi d Ohm Chapitre 14 Notion de résistance électrique. Loi d Ohm Plan Introduction: I Mesurer avec un multimètre Mesure de l intensité Mesure de la tension II Pour aller plus loin Mesures en courant continu. Rappels

Plus en détail

Oscillateurs et mesure du temps

Oscillateurs et mesure du temps Oscillateurs et mesure du temps Très tôt dans l histoire de l humanité, les phénomènes périodiques ont été utilisés pour mesurer le temps. Les premiers ont été les événements astronomiques puis, à mesure

Plus en détail

CERN LIBRARIES, GENEVA CM-P00100528 ACADEMIE DES SCIENCES DE L'URSS INSTITUT DE PHYSIQUE LEBEDEV, MOSCOU 1967. Preprint No. 150

CERN LIBRARIES, GENEVA CM-P00100528 ACADEMIE DES SCIENCES DE L'URSS INSTITUT DE PHYSIQUE LEBEDEV, MOSCOU 1967. Preprint No. 150 CERN LIBRARIES, GENEVA CM-P00100528 ACADEMIE DES SCIENCES DE L'URSS INSTITUT DE PHYSIQUE LEBEDEV, MOSCOU 1967 Preprint No. 150 TRANSFORMATEUR A CABLES POUR LE FORMAGE D'IMPULSIONS DE HAUTE TENSION D'UNE

Plus en détail

REMARQUES SUR LE SYSTEME FAP motorisation DW12ATED4 applications 406-607

REMARQUES SUR LE SYSTEME FAP motorisation DW12ATED4 applications 406-607 AVANT PROPOS Ce document cite uniquement des évolutions ou des compléments d informations sur le système FAP 1 ere génération (motorisations DW12ATED4 application 406 et 607 uniquement). La brochure «Filtre

Plus en détail

GENERER UNE TENSION CONSTANTE

GENERER UNE TENSION CONSTANTE GENERER UNE TENSION CONSTANTE ALIMENTATIONS STABILISÉES Page 1 I/ INTRODUCTION ET RAPPELS Le système de distribution électrique en France géré par Electricité de France assure la distribution d'une tension

Plus en détail

DIODES ET TRANSISTORS

DIODES ET TRANSISTORS 73 E4 DIODE ET TRANITOR I. INTRODUTION Dans cette expérience, nous allons étudier deux éléments qui sont à la base de la majorité des montages électroniques modernes; la diode et le transistor. es éléments

Plus en détail

Caractérisation de mélangeurs

Caractérisation de mélangeurs Caractérisation de mélangeurs Un mélangeur est un dispositif qui utilise la non-linéarité de diodes ou de transistors pour réaliser une multiplication : e(t) x(t) = K.e(t).e 0 (t) e 0 (t) Puisqu il multiplie

Plus en détail

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre :

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre : Physique 30 Labo L intensité du champ magnétique Contexte : La plupart des gens qui ont déjà joué avec un aimant permanent savent que plus on s en approche, plus la force magnétique est grande. Il est

Plus en détail

Conductivité conductimétrie

Conductivité conductimétrie Conductivité conductimétrie I. Généralités sur les milieux conducteurs Le courant électrique est dû à un mouvement d'ensemble des porteurs de charges sous l'action d'un champ électrique. Ils sont de trois

Plus en détail

CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE. U41 Instrumentation et Régulation

CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE. U41 Instrumentation et Régulation Session 2007 Brevet de Technicien Supérieur CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE U41 Instrumentation et Régulation Durée : 3 heures Coefficient : 4 L utilisation d une calculatrice réglementaire

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 2. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES 2. Durée : 4 heures SESSION 2003 PCM2007 EPEUVE SPECIFIQUE FILIEE PC MATHEMATIQUES 2 Durée : 4 heures L utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants *** N.B. : Le candidat attachera la

Plus en détail

1.1 Feuille n 2 : Modélisation et analyse d un système linéaire à partir des équations différentielles

1.1 Feuille n 2 : Modélisation et analyse d un système linéaire à partir des équations différentielles CHAPITRE 1 ANALYSE DES SYSTÈMES 1.1 Feuille n 2 : Modélisation et analyse d un système linéaire à partir des équations différentielles L objectif de ce TD est de montrer que l outil équation différentielle

Plus en détail

1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES

1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES 1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES Si vous lisez ce livre c est que, probablement, vous faites des expériences et que vous cherchez à mieux les organiser. Vous cherchez surtout

Plus en détail

L HYDRAULIQUE. 1) Formules de notions de base. Différence de température départ/retour en K

L HYDRAULIQUE. 1) Formules de notions de base. Différence de température départ/retour en K L HYDRAULIQUE 1) Formules de notions de base Puissance nécessaire pour élever une certaine quantité d eau d un différentiel de température Puissance (W) = 1.163 x Volume (l) x T ( C) Débit nécessaire en

Plus en détail

1.1. Remplacer le début des phrases suivantes par : «La tension aux bornes d un(e)» ou «L intensité du courant dans un(e)».

1.1. Remplacer le début des phrases suivantes par : «La tension aux bornes d un(e)» ou «L intensité du courant dans un(e)». BTS 2003 Le problème porte sur l impression de tickets de caisse du système de distribution de cartes d entrée de piscine. Dans la première partie, on étudiera l impression thermique de tickets de caisse,

Plus en détail

Département de physique

Département de physique Département de physique Etude de l impédance d un diapason à quartz résonant à 5 Hz ; application. Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

Cours 5. Moteurs électriques

Cours 5. Moteurs électriques Cours 5. Moteurs électriques 1. INTRODUCTION 2. MOTEURS ASYNCHRONES TRIPHASÉS 3. MOTEURS ASYNCHRONES MONOPHASÉS 4. MOTEURS SYNCHRONES À COURANT CONTINU 6. MOTEURS PAS À PAS Ces diapositives sont nouvelles

Plus en détail