Pb de longueurs : reporter, mesurer. Cercle : propriétés d'équidistance. Géogebra : cercle et longueurs définies

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Pb de longueurs : reporter, mesurer. Cercle : propriétés d'équidistance. Géogebra : cercle et longueurs définies"

Transcription

1 séquence 2 Décrire et construire : éléments de base de la géométrie, cercle et vocabulaire, règle et compas, programmes et problèmes de construction. Initiation geogebra séquence 4 Pb de longueurs : reporter, mesurer. ercle : propriétés d'équidistance. Géogebra : cercle et longueurs définies OURS (trace écrite) PHOTOOPIE DISTRIUEE UX ELEVES ET OLLER DNS LE OURS EN GRS : E QUE LES ELEVES OMPLETENT U FUR ET MESURE DE L SEQUENE Figures de base de la géométrie plane. 1.Le point le nom du point le point 2.la droite. Propriété 1 :Par deux points, il ne passe qu une seule droite. (d) On note : la droite (). La droite passe par les points et La droite est prolongeable indéfiniment au-delà de et de. Remarque : On peut noter aussi la droite avec une seule lettre : (d) Propriété 2 : Par un point passe une infinité de droite. droite verticale M droite horizontale Vocabulaire : M est appelé point d intersection des droites. Définition : Des points sont dits alignés quand ils appartiennent à une même droite. 3. la demi-droite. On note : la demi-droite [). La demi-droite part de et passe par. La demi-droite a pour origine le point et est prolongeable indéfiniment au-delà du point. 4. le segment. On note : le segment []. Le segment est limité par ses deux extrémités : les points et. SEQUENE TYPE 3 Page 1

2 5. le cercle. Une corde O est le centre du cercle EN MONT DM : Un rayon o Un diamètre corde (Figure, découpée colée, provenant de l exo «ficelle et corde») Reproduis dans le cadre ci-dessous le dessin de la souris avec soin et précision. Séance 1 alcul mental : critère de divisibilité par 2 ; 5 et 10 Introduction séquence 1 Dictée 1. partir des points donnés réalise ci-dessous une figure en suivant les instructions que te donne ton camarade installé au bureau. E F G SEQUENE TYPE 3 Page 2

3 2. Observe maintenant la figure modèle affichée au tableau. La figure que tu as réalisée, est-elle identique au modèle? Si ce n est pas le cas indique ci-dessous quelques différences : 3.Écris sur ton cahier un texte qui permettra de dessiner exactement la figure modèle. Modèle qu a sous les yeux l élève au bureau (en plus de la feuille d énoncé) : M N E F G FIRE 3. Texte à rédiger Séance 2 QM : évaluation 3 du doc sur évaluations. lignés en maths et dans le langage courant. DEFIS! DEFI n 1 : onstruire deux points non alignés. DEFI n 2 : onstruire : - Placer un point T tel que d une part T, R, S, d autre part T, E, soient alignés. - Placer un point tel que d une part,, R, d autre part, S, E soient alignés. R E S SEQUENE TYPE 3 Page 3

4 DEFI n 3 : Passer par ces neuf points en quatre segments mis bout à bout. DEFI n 4 : La figure suivante comporte un cercle et deux rectangles. ombien y a-t-il de points d intersection?.. Réalise maintenant une figure comportant aussi un cercle et deux rectangles mais ayant le maximum de points d intersection. (Tu peux donner les dimensions que tu veux au cercle et aux rectangles). FIRE 3. Défi 4, mise en place en classe, à poursuivre à la maison. Séance 3 orrection : présentation des réalisations défis démonstration guidée prof OURS 1. à 4. DM : explication des consignes, départ en classe. L élève doit reproduire le dessin présenté à partir des éléments de départ qui lui sont donnés. Il ne peut utiliser comme seul instrument que la règle (non graduée). La seule obligation à respecter et qu aucun des points à relier n est pris au hasard. FIRE 3. DM Le moulin. SEQUENE TYPE 3 Page 4

5 Séance 4 Exercice : «Ficelle et corde» Ficelle : Pour réaliser ce motif, Julie a utilisé les quatre morceaux de ficelle ci-dessous. Ficelle : Ficelle : Ficelle : D Ficelle : 1. omplète la légende figurant sur le motif en indiquant la lettre correspondant à chaque morceau de ficelle. 2. omplète maintenant le texte qui explique comment Julie a procédé. «vec le morceau de ficelle le plus long Julie a réalisé le.... Puis elle a utilisé le morceau pour tracer.... du cercle et le morceau D pour faire.... du cercle. vec le morceau restant elle a construit une... du cercle.» 3. Dans le cadre ci-dessous le segment dessiné représente la ficelle D. l aide de la règle et du compas complète le dessin pour obtenir le motif. (On considèrera que la ficelle n a pas d épaisseur). OURS 5. FIRE DM «pour devenir un pro du compas 1». u choix selon niveau élève Voir page 9 Figures simples aide au démarrage en classe SEQUENE TYPE 3 Page 5

6 Séance 5- SLLE INFO Prénom et NOM :.. lasse : 6 ème.. Prénom et NOM :.. Décrire et construire onstruction Logiciel : Geogebra Description ide et correction prof Refaire la figure Je place quatre points,, et D. Je trace M D Je place quatre points,, D et E. Je trace I E D Je place deux points et. Je construis qui est le milieu du segment []. Je trace FIRERévision DS n 1. SEQUENE TYPE 3 Page 6

7 SEQUENE 4 OURS (trace écrite) (Entièrement manuscrit - suivants dans séquence 5, unités de mesure et chgt d unités, périmètre). PROLEMES DE LONGUEURS. 1. Longueur et distance. Un segment a une longueur. Le segment [] a une longueur que l on note. ette longueur peut être reportée avec le compas ou mesurée avec la règle graduée. Le milieu d un segment est le point qui partage ce segment en deux segments de même longueur. I est le milieu de [] :, I et sont alignés et I=I. 2. La ligne polygonale. I D E La ligne polygonale est constituée de segments «mis bout à bout». DE est une ligne polygonale constituée des 4 segments [], [], [D] et [DE].,,, D et E sont les cinq sommets de cette ligne polygonale. 3. Le cercle. «Equidistant» veut dire «à la même distance de». Le cercle répond à la question : «quels sont tous les points équidistants d un point donné?» En effet si on considère un cercle de centre O et de rayon de longueur r : Propriété : si un point M est sur un cercle de centre O et de rayon r, alors OM = r. Réciproque : si un point M est à une distance r de O, alors M est sur le cercle de centre O et de rayon r. r r r r Séance 1 Introduction séquence 4 pied! hez laire haque matin orentin et laire se rendent au collège à pied. orentin affirme que c est lui qui doit faire le trajet le plus long. laire proteste en disant qu au contraire c est elle qui a la plus grande distance à parcourir! En t aidant du plan ci-dessous qui indique les rues empruntées par chacun des deux collégiens, peux-tu dire qui a raison? (orrection par comparaison des différentes hez orentin méthodes : mesurer les longueurs des segments à la règle, reporter au compas, papier blanc et marques) SEQUENE TYPE 3 Page 7

8 FIRE DM des clous. Séance 2 alcul mental :tables, compléments (avec longueurs). Exercice dicté. 1. Tracer un segment [] de longueur 8 cm. Placer I le milieu de []. 2. Tracer un segment [D] de longueur 5 cm. Placer J le milieu de [D]. 3. Tracer un segment [EF] de longueur 3,5 cm. Placer G afin que F soit le milieu de [EG]. 4. Tracer un segment [RS] de longueur 4,3 cm. Placer T afin que S soit le milieu de [RT]. OURS 1 2 Exercice. Quelle figure a le plus grand périmètre? Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6. FIRE «Quelle ligne est la plus longue?» SEQUENE TYPE 3 Page 8

9 Séance 3 Exercice. 1. iter tous les points de la figure ci-dessus qui se situent à 5 cm de. 2. iter tous les points de la figure ci-dessus qui se situent à 2,5 cm de K. 3. iter tous les points de la figure ci-dessus qui se situent à moins de 3 cm de H. 2 m OURS 3 faire «lancer de poids» Steeve (S) et ces camarades Emile (E), Franck (F), harly () et Dewey (D) font du lancer de poids en EPS. Steeve lance le poids a une distance maximale de 12 m. es camarades qui se situent tous en dehors de la piste de lancer se sentent en sécurité. Ont-ils raison? Zone de lancer Toby le chien. Séance 4 maison Toby le chien (point T sur la figure) est attaché à la maison par une laisse en un point fixe O. Représenter les limites de la zone où Toby peut se déplacer. FIRE DM «pour devenir un pro du compas 2». u choix selon niveau élève : O T SEQUENE TYPE 3 Page 9

10 Séance 5- SLLE INFO Prénom et NOM :.. lasse : 6 ème.. Prénom et NOM :.. Figure n 1 : Intro prof : - onstruire un segment de longueur donné : [] - Point sur objet : D - fficher une longueur : =5 - réer le milieu du segment (rappel) : - onstruire un cercle de rayon donné : centre, rayon 8 - onstruire un cercle passant par un point (rappel) : petits cercles Refaire seul la figure. ppeler professeur pour validation Figure n 2 : onstruire un cercle de centre O et de rayon 8. Placer deux points et sur ce cercle. Tracer le segment []. fficher la longueur. Déplacer le point sur le cercle. Quelle doit être la position de pour que la longueur soit maximale? Figure n 3 : Reproduire la figure donnée, où : est le milieu de []. E est le milieu de []. D est le milieu de []. Qui est le plus long : le segment [] ou la ligne polygonale EFID? FIRE «à chacun sa longueur»(séquence 5 : ordre de grandeur) SEQUENE TYPE 3 Page 10

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( )

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( ) HPITRE IV TRINGLES OMPÉTENES ÉVLUÉES DNS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences Eval.1

Plus en détail

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e SOMMAIRE I Les programmes et les différences de conditions pédagogiques II La géométrie dans le plan III La

Plus en détail

COURS : LA SYMÉTRIE AXIALE

COURS : LA SYMÉTRIE AXIALE HPTRE 7 OURS : L SYMÉTRE XLE Extrait du programme de la classe de Sixième : ONTENU Symétrie orthogonale par rapport à une droite (symétrie axiale) OMPÉTENES EXGLES -onstruire le symétrique d un point,

Plus en détail

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème Lundi Matin - «Comparatif des programmes de CM2 et 6 ème» Page 1 Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème CM2 6 ème Plus tard... Vocabulaire divers Le vocabulaire

Plus en détail

ACTIVITÉS. Droites remarquables du triangle. 1 Carte d identité CHAPITRE

ACTIVITÉS. Droites remarquables du triangle. 1 Carte d identité CHAPITRE HPTRE 10 Droites remarquables du triangle TVTÉS 1 arte d identité À partir d un même triangle, et à l aide d un logiciel de géométrie, Philippe a réalisé ces quatre constructions. Fig. 1 Fig. 2 Fig. 3

Plus en détail

QUADRILATÈRES PARTICULIERS

QUADRILATÈRES PARTICULIERS hapitre 8 QURLTÈRES PRTULERS - REOMMNTONS. NTROUTON l s'agit de consolider les connaissances acquises en 6e sur les parallélogrammes particuliers (rectangle, losange, carré) et le trapèze, et de les approfondir

Plus en détail

DIPLÔME NATIONAL DU B REVET

DIPLÔME NATIONAL DU B REVET REPÈRE 14DNBGENMATMEAG1 DIPLÔME NATIONAL DU B REVET SESSION 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 oefficient : 2 Le candidat répond sur une copie modèle Éducation Nationale.

Plus en détail

Traits Lignes Utilisation Exemple

Traits Lignes Utilisation Exemple Voici les lignes conventionnelles qui sont utilisées pour le dessin technique. Toute ligne peut être un tracé fort, moyen ou faible. Elles sont donc classées de cette façon : Traits Lignes Utilisation

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Exercice 6 : Brevet des Collèges - Orléans-Tours - 94 L unité est le cm. Exercice 7 : Brevet des Collèges - Antilles-Guyane - 92

Exercice 6 : Brevet des Collèges - Orléans-Tours - 94 L unité est le cm. Exercice 7 : Brevet des Collèges - Antilles-Guyane - 92 THM : THLS T S RIPROQU XRIS xercice n 1 : revet des ollèges - ix-marseille - 1993 On considère la figure ci-après telle que les droites () et () sont parallèles, et telle que : = 3 = 7 = 4 = 4 L'unité

Plus en détail

Année scolaire 2006-2007

Année scolaire 2006-2007 INSPECTION ACADEMIQUE EURE ET LOIR Évaluation des compétences nécessaires en Mathématiques En fin de cycle 3 Année scolaire 2006-2007 Nom Prénom Classe de École page 2 MATHEMATIQUES EXERCICE 1 GRANDEURS

Plus en détail

exercices travail autonome

exercices travail autonome travail autonome 1 On considère les quatre figures suivantes : 6 On considère les quatre figures suivantes : R R R T Fig. 1 Fig. 2 (d) R T Fig. 1 Fig. 2 T Fig. 3 Fig. 4 À l aide du codage des figures,

Plus en détail

Comparatif des programmes de mathématiques Cycle 3 et 6 ème

Comparatif des programmes de mathématiques Cycle 3 et 6 ème Comparatif des programmes de mathématiques Cycle 3 et 6 ème 1 - Nombres et calcul Cycle 3 L étude organisée des nombres est poursuivie jusqu au milliard, mais des nombres plus grands peuvent être rencontrés

Plus en détail

Des surfaces bien mesurées

Des surfaces bien mesurées Activité 5 Des surfaces bien mesurées en groupe-classe X en équipe individuelle Au cours de cette activité, l élève estime, mesure et compare des surfaces à l aide d unités de mesure non conventionnelles

Plus en détail

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité.

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité. Cycle 3 de l'école primaire Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) Classe de 6ème du collège Le texte en caractère droit indique des

Plus en détail

TP CFAO - PORTE CLÉ DESSIN SUR FEUILLE DU PORTE CLÉ. 10 mm = 1 cm 25 mm = 2,5 cm M DM CM MM. Rayon

TP CFAO - PORTE CLÉ DESSIN SUR FEUILLE DU PORTE CLÉ. 10 mm = 1 cm 25 mm = 2,5 cm M DM CM MM. Rayon TP CFAO - PORTE CLÉ DESSIN SUR FEUILLE DU PORTE CLÉ Sur la feuille réponse (schéma 1) réalise ton porte clé à l aide des indications suivantes : y Trace à la règle un rectangle noir de 100 mm de long et

Plus en détail

Secondaire DOMAINE DE LA MATHÉMATIQUE. Mon cahier de conjecture. Le cercle

Secondaire DOMAINE DE LA MATHÉMATIQUE. Mon cahier de conjecture. Le cercle Secondaire 2 DOMAINE DE LA MATHÉMATIQUE Mon cahier de conjecture Le cercle COMMISSION SCOLAIRE DE LA CAPITALE Mon cahier de conjecture Commission scolaire de la Capitale 1900, Place Côté Québec, Qc G1N

Plus en détail

20 Choix du plan de travail

20 Choix du plan de travail 20 Choix du plan de travail 20-1 Systèmes de coordonnées : Avant de commencer à dessiner il est nécessaire de faire apparaître les Systèmes de coordonnées Universelles ( SC universelles) et Utilisateur

Plus en détail

CHAPITRE 2 LES BASES DE GEOMETRIE

CHAPITRE 2 LES BASES DE GEOMETRIE la sse de six ièm e HPITRE 2 LES SES DE GEOMETRIE Les bases de géométrie Page 1 2.1. Points et droites 2.2. Les parties d'une droite 2.3. ercles et angles M1 : Replacer des points sur une figure à partir

Plus en détail

Conclusion. a. ABC est un triangle. I est le milieu de [AB] et J est le milieu de[ac].

Conclusion. a. ABC est un triangle. I est le milieu de [AB] et J est le milieu de[ac]. EXERE 1 Dessin à main levée onclusion a. est un triangle. est le milieu de [] et est le milieu de[]. Dans le triangle Puisque est le milieu de [] Et puisque est le milieu de [] lors () est parallèle à

Plus en détail

Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques

Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques Concours de recrutement de professeurs des écoles Exemple de sujet : épreuve écrite de mathématiques À compter de la session 2014, les épreuves du concours sont modifiées. L arrêté du 19 avril 2013, publié

Plus en détail

Chapitre 12 : Périmètres et aires

Chapitre 12 : Périmètres et aires hapitre 12 : Périmètres et aires Périmètres et aires par comptage 1 ire et périmètre par dénombrement Périmètres de figures usuelles 3 étermine, à l'aide de ta règle graduée, le périmètre de chacune des

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

LES FRACTIONS Séance 1/9

LES FRACTIONS Séance 1/9 LES FRACTIONS Séance 1/9 DOMAINE : Mathématiques (Nombres et calcul) NIVEAU : CM1 DURÉE : 45 minutes COMPÉTENCES : Nommer les fractions simples et décimales en utilisant le vocabulaire : demi, tiers, quart,

Plus en détail

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19 MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Mme Cochez-ARU2 Page 19 ATTENTION Pour cette première partie : la calculatrice est interdite tu auras besoin

Plus en détail

Ressources pour l école élémentaire

Ressources pour l école élémentaire Ressources pour l école élémentaire éduscol Mathématiques Progressions pour le cours élémentaire deuxième année et le cours moyen Ces documents peuvent être utilisés et modifiés librement dans le cadre

Plus en détail

Fiches méthode SOMMAIRE

Fiches méthode SOMMAIRE Fiches méthode Tableur (LibreOffice) SOMMAIRE 1. Saisir une formule dans une cellule page 2 2. Recopier une formule sur plusieurs cellules page 2 3. Créer une liste de nombres page 5 4. Trier une liste

Plus en détail

CHAPITRE 4 : LA SYMETRIE AXIALE ET FIGURES GEOMETRIQUES

CHAPITRE 4 : LA SYMETRIE AXIALE ET FIGURES GEOMETRIQUES HPITRE 4 : L SYMETRIE XILE ET FIGURES GEOMETRIQUES 1. La médiatrice d un segment On dit que est la médiatrice du segment [] si : - - Ex 1 : Trace la médiatrice de [IJ] et [MN] puis place G pour que soit

Plus en détail

GLOSSAIRE MATHÉMATIQUE

GLOSSAIRE MATHÉMATIQUE Chapitre 9 - GM GLOSSAIRE MATHÉMATIQUE EN GÉOMÉTRIE DE L'ESPACE GM_01 règle GM_02 GM_03 GM_04 GM_05 GM_06 GM_07 tourne GM_08 GM_09 GM_10 GM_11 plan GM_12 GM_13 GM_14 GM_15 GM_16 GM_17 GM_18 Dessin schématisant

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton matériel

Plus en détail

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter?

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter? .M.1 38 Triangle 1 - Par pliage, marque quatre droites. ombien de triangles peux-tu compter? Trois droites qui se coupent déterminent un triangle. La quatrième droite recoupe les trois autres aux points,,.

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX Classe de CM2-6 ème DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE Cette séquence peut s organiser autour de trois séances en mathématiques 1 ère séance

Plus en détail

Chapitre 10 Géométrie dans l espace. Table des matières. Chapitre 10 Géométrie dans l espace TABLE DES MATIÈRES page -1

Chapitre 10 Géométrie dans l espace. Table des matières. Chapitre 10 Géométrie dans l espace TABLE DES MATIÈRES page -1 hapitre 10 Géométrie dans l espace TLE DES MTIÈRES page -1 hapitre 10 Géométrie dans l espace Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Triangles. I - Définition du triangle. II - Somme des angles d un triangle

Triangles. I - Définition du triangle. II - Somme des angles d un triangle Triangles Un chapitre complet sur les triangles. Ne pensez pas que puisqu il n y a qu un mot dans le titre, il sera court, au contraire. Beaucoup de nouvelles notions vont être énoncées dans ce cours sur

Plus en détail

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses LES ABEILLES D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses 1. Présentation de la trame : Recherche et synthèse d infos Notion d optimisation Intérêt et

Plus en détail

DOSSIER D APPRENTISSAGE

DOSSIER D APPRENTISSAGE Livret 4 NOMBRES ET CALCULS DOSSIER D APPRENTISSAGE ET/OU DE CONSOLIDATION (Deuxième partie) Ordre dans N N9 Le but de ce dossier est de t aider à trouver le plus petit de deux nombres qui te sont donnés.

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges MÉTROPOLE - NTILLES - GUYNE Juin 2014 Durée : 2h00 Calculatrice autorisée Indication portant sur l ensemble du sujet Toutes les réponses doivent être justifiées,

Plus en détail

DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION. ÉVALUATION À L ENTRÉE EN 6 e MATHÉMATIQUES CAHIER DE L ÉLÈVE

DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION. ÉVALUATION À L ENTRÉE EN 6 e MATHÉMATIQUES CAHIER DE L ÉLÈVE DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION F ÉVALUATION À L ENTRÉE EN 6 e MATHÉMATIQUES CAHIER DE L ÉLÈVE NOM DE L ÉLÈVE... PRÉNOM DE L ÉLÈVE... N DE LA CLASSE... 2004

Plus en détail

CHAPITRE 4 PARALLÉLISME ET PERPENDICULARITÉ

CHAPITRE 4 PARALLÉLISME ET PERPENDICULARITÉ lasse de sixième HPITRE 4 PRLLÉLISME ET PERPENDIULRITÉ Parallélisme et perpendicularité Page 1 lasse de sixième 4.1. Sécantes et parallèles 4.2. Droites perpendiculaires 4.3. Propriétés M1 : Les propriétés.

Plus en détail

Activité 2 : Parallélogramme et centre de symétrie

Activité 2 : Parallélogramme et centre de symétrie ctivités ctivité 1 : Les quadrilatères a. omment appelles-tu des figures géométriques qui ont plusieurs côtés? rois côtés? Quatre côtés? b. Quatre élèves ont nommé la igure 1. Quels sont ceux qui se sont

Plus en détail

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités DES NGLES Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités Les deux droites sont sécantes en O... Deux droites sont parallèles...... est un triangle

Plus en détail

Séance 1 : a/b nombre de part sur -ième

Séance 1 : a/b nombre de part sur -ième CM Les fractions Matière mathématiques Compétence B.0. Nombres et calcul Fractions CM - Nommer les fractions simples et décimales en utilisant le vocabulaire : demi, tiers, quart, dixième, centième. -

Plus en détail

DIPLÔME NATIONAL DU B REVET

DIPLÔME NATIONAL DU B REVET REPÈRE 14DNBGENMATMEAG1 DIPLÔME NATIONAL DU B REVET SESSION 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Ministère de l'éducation nationale Session 2008 MAT-08-PG3 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Mercredi 30 avril 2008 - de 8h 30 à 11h 30 Deuxième épreuve d'admissibilité

Plus en détail

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu.

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu. :.. 6 - TR - SYTR XL URS STRUT L TR U ST []. a. vec la règle et l équerre : La médiatrice d une segment [] est la droite perpendiculaire à ce segment et passant par son milieu.. n mesure le segment []

Plus en détail

Geogebra. Logiciel de géométrie dynamique. Activité pour la classe. Thomas Castanet http://chingatome.net - page 1

Geogebra. Logiciel de géométrie dynamique. Activité pour la classe. Thomas Castanet http://chingatome.net - page 1 Geogebra Logiciel de géométrie dynamique ctivité pour la classe Thomas astanet http://chingatome.net - page 1 Table des matières Geogebra - ctivités - page 2 . Présentation : Geogebra est un logiciel de

Plus en détail

VG1 ÉPREUVE CANTONALE DE RÉFÉRENCE DE MATHÉMATIQUES 10VG NIVEAU 1 MAI 2015 1 RE PARTIE SANS CALCULATRICE

VG1 ÉPREUVE CANTONALE DE RÉFÉRENCE DE MATHÉMATIQUES 10VG NIVEAU 1 MAI 2015 1 RE PARTIE SANS CALCULATRICE ÉPREUVE CANTONALE DE RÉFÉRENCE DE MATHÉMATIQUES VG1 10VG NIVEAU 1 MAI 2015 1 RE PARTIE SANS CALCULATRICE Nom Prénom Classe Etablissement Durée de l épreuve : 25 minutes. Matériel à disposition : matériel

Plus en détail

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail

Lecture croisée français mathématiques d un conte de Marcel Aymé : Le problème (in Les contes rouges du chat perché Folio junior n 434).

Lecture croisée français mathématiques d un conte de Marcel Aymé : Le problème (in Les contes rouges du chat perché Folio junior n 434). 1 FRANÇAIS-MATHEMATIQUES en 6 ème Il était une fois l histoire d un problème. Nathalie Bertrand, professeur de lettres Jean-Philippe Roth, professeur de mathématiques FICHE ENSEIGNANT Lecture croisée français

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

Sommaire de la séquence 1

Sommaire de la séquence 1 Sommaire de la séquence 1 Séance 1...................................................................................................... 7 Je construis des triangles...................................................................................

Plus en détail

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES CORRECTION DU BREVET BLANC ---- MAI 010 4 points sont attribués pour la qualité de la rédaction, le soin et la présentation. points correspondent au soin et à la propreté, ils sont proportionnels à la

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHÉMATIQUES SUJET C12

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHÉMATIQUES SUJET C12 Sujet C12 Page 1 sur 7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHÉMATIQUES SUJET C12 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche concernant les logiciels

Plus en détail

Évaluation de fin du troisième trimestre 2006/2007 Compétences attendues (fin du cycle 2) Mathématiques

Évaluation de fin du troisième trimestre 2006/2007 Compétences attendues (fin du cycle 2) Mathématiques Nom :... Prénom :... Date... /... /... Évaluation de fin du troisième trimestre 2006/2007 Compétences attendues (fin du cycle 2) Mathématiques Connaître ou reconstruire très rapidement les résultats des

Plus en détail

Dispositif d évaluation 4 ème EGPA. Mathématiques. Livret de l élève

Dispositif d évaluation 4 ème EGPA. Mathématiques. Livret de l élève Dispositif d évaluation 4 ème EGPA Mathématiques Livret de l élève NOM :.... Prénom : Date de naissance :.... Année scolaire :. Etablissement :.... Etablissement :.... Académie de Lille - 2015 Sommaire

Plus en détail

Classe de Pascale Valmont 28 élèves (8TPS/20PS)

Classe de Pascale Valmont 28 élèves (8TPS/20PS) Classe de Pascale Valmont 28 élèves (8TPS/20PS) Pascale travaille en lien avec sa collègue de TPS/PS de la classe voisine. Dans sa classe, elles ont mis coin cuisine et poupée et dans la classe de sa collègue

Plus en détail

Différents niveaux de géométrie

Différents niveaux de géométrie Géométrie et TUIC Qui suis-je? Différents niveaux de géométrie Cela se voit. Je le sais parce que je l ai vu et que je possède des connaissances antérieures. Géométrie de la perception Est vrai ce qui

Plus en détail

C F A O (Galaad) Initiation Poste : TechnoRC

C F A O (Galaad) Initiation Poste : TechnoRC 4 ème Mécanique Envoyer le fichier à TECHNOJOST@gmail.com (avec nom, prénom et classe) ou rapporter le fichier réalisé sur clé USB le jour même. Objectifs : Matériel : Un poste de travail sur le pôle informatique.

Plus en détail

J étudie le carré et le rectangle

J étudie le carré et le rectangle J étudie le carré et le rectangle Dans cette séquence, les élèves passent du perceptif à l'analytique pour vérifier si une figure est un carré ou un rectangle en ayant recours aux propriétés des figures

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

FORMES ET EQUILIBRE *

FORMES ET EQUILIBRE * FORMES ET EQUILIBRE * Christine BONNAS Professeur des Ecoles, Satolas et Bonce I - LES CONDITIONS DE L EXPERIMENTATION L activité s est déroulée dans une classe de moyenne section de 14 élèves. Choix de

Plus en détail

Protocole du NICHD pour les auditions d enfants I. Introduction

Protocole du NICHD pour les auditions d enfants I. Introduction Protocole du NICHD pour les auditions d enfants I. Introduction 1. Bonjour, je m appelle et je suis un(e) policier(ière). (Présentez toute autre personne présente dans la pièce; idéalement, personne d

Plus en détail

La dictée à l adulte géométrique

La dictée à l adulte géométrique La dictée à l adulte géométrique Ecole de Chavenat Classe de CE2 CM1 CM2 Les élèves sont tous en possession de la même figure géométrique complexe. Le maître est au tableau et fait comme s il ne connaissait

Plus en détail

Sommaire de la séquence 3

Sommaire de la séquence 3 Sommaire de la séquence 3 Séance 1..................................................................................................... 57 Je découvre la symétrie centrale par l expérience...................................................

Plus en détail

2D - 3D. La représentation 2D-3D

2D - 3D. La représentation 2D-3D Dossier HABITAT - Représenter l objet technique 2D - 3D 2010-2011 La représentation 2D-3D Situation de départ : Nous devons vendre notre pavillon et les futurs acheteurs désirent avoir un plan des différentes

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2012 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Coefficient 2 Le candidat répondra sur une copie Éducation Nationale. Ce sujet comporte 7 pages numérotées

Plus en détail

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Première Maths FONCTIONS DE LA FORME f+g ET kf I- FONCTION DE RÉFÉRENCE Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Elle est

Plus en détail

79140 CERIZAY. Page 1 sur 23

79140 CERIZAY. Page 1 sur 23 SEGPA Collège G. G. CLEMENCEAU 79140 CERIZAY Page 1 sur 23 SOMMAIRE 1. CREATION DU SOCLE... 2 2. RÉALISATION DES PERÇAGES... 5 3. USINAGE DES TÊTES DE VIS 7 4. SAUVEGARDE DU FICHIER 10 5. DÉMARRAGE DE

Plus en détail

Exercices de 6 ème Chapitre 6 Périmètres et aires Énoncés

Exercices de 6 ème Chapitre 6 Périmètres et aires Énoncés Énoncés Exercice 1 Nommer tous les rectangles, les losanges et les carrés de la figure ci-contre dont les noms sont constitués uniquement de consonnes. J I B M A O E L K U Y Exercice onner la nature précise

Plus en détail

Durée de l épreuve : 2 heures

Durée de l épreuve : 2 heures Ö ãú Ø Ð âò åò ÙâÑ Ö Ó½µ åñ Øá ãñ Ø Õ Ù ê ãñ Ö ¾¼½ Ó Ð Ð Â Ù Ð Ø Ø Ó Ù Durée de l épreuve : 2 heures L usage de la calculatrice est autorisé ucun prêt de matériel (calculatrice, compas, règle, équerre

Plus en détail

La géométrie : quelles continuités, quelles nouveautés?

La géométrie : quelles continuités, quelles nouveautés? Présentation de la nouvelle édition hapitre 2 La géométrie : quelles continuités, quelles nouveautés? ans J apprends les Maths P, l enseignant trouvera pour l essentiel trois grands types d activités :

Plus en détail

Enseigner la géométrie aux cycles 2 et 3

Enseigner la géométrie aux cycles 2 et 3 Auch 9 février 2011 Enseigner la géométrie aux cycles 2 et 3 Marie-Lise PELTIER Maître de conférences en didactique des mathématiques Laboratoire de didactique André Revuz Université Paris 7 Denis Diderot

Plus en détail

Le tricercle de Mohr

Le tricercle de Mohr Sujet 1 Épreuve pratique de mathématiques en troisième Fiche élève Le tricercle de Mohr On considère un segment [AB] tel que AB = 10 cm et un point C quelconque du segment [AB]. Soit 1 le demi-cercle de

Plus en détail

Contrôle de mathématiques n 2

Contrôle de mathématiques n 2 ontrôle de mathématiques n 2 xercice 1 / 9 1 ) Nomme les lignes géométriques déjà représentées : 2 ) eprésente les lignes géométriques proposées et donne leur notation : La droite passant par et La demi-droite

Plus en détail

Comment fonctionne un moteur électrique?

Comment fonctionne un moteur électrique? 4 5 6 7 Le monde construit par l homme Comment fonctionne un moteur électrique? 1. QUE SAIS-TU? Tous les moteurs sont électriques. Tous les moteurs ont besoin d énergie pour fonctionner. Les moteurs transforment

Plus en détail

6 ème 5 ème 4 ème 3 ème

6 ème 5 ème 4 ème 3 ème Collège LOUIS PASTEUR - S.E.G.P.A.36, avenue du Collège - 57380 FAULQUEMONT ( 03 87 50 11 40 http://www4.ac-nancy-metz.fr/clg-pasteur-faulquemont/ PROPOSITION DE PROGRAMMATION PAR COMPÉTENCE ET CONNAISSANCE

Plus en détail

Sommaire de la séquence 1

Sommaire de la séquence 1 Sommaire de la séquence t t t t t t t t t Séance...................................................................................................... Je calcule le produit de deux nombres relatifs.........................................................

Plus en détail

Dispositif d évaluation. Mathématiques. Livret de l élève

Dispositif d évaluation. Mathématiques. Livret de l élève Dispositif d évaluation 6 ème EGPA Mathématiques Livret de l élève NOM : Prénom : Date de naissance :.... Année scolaire :. Etablissement :.... Etablissement :.... Académie de Lille - 2015 Sommaire Passation

Plus en détail

CONSTRUCTION DU NOMBRE A L ECOLE MATERNELLE. 2 Ordinalité et cardinalité

CONSTRUCTION DU NOMBRE A L ECOLE MATERNELLE. 2 Ordinalité et cardinalité CONSTRUCTION DU NOMBRE A L ECOLE MATERNELLE 2 Ordinalité et cardinalité Yvonne SEMANAZ Groupe Mathématiques Stage Maternelle - IA 38 janvier 2012 Compétences abordées : Cardinalité = être capable de dire

Plus en détail

Parallélogrammes. Cette construction futuriste a été réalisée dans le port de. Histoire des arts : l architecture

Parallélogrammes. Cette construction futuriste a été réalisée dans le port de. Histoire des arts : l architecture 10 Parallélogrammes istoire des arts : l architecture expression du chapitre ette construction futuriste a été réalisée dans le port de ambourg en llemagne en 2005. es architectes ont imaginé l immeuble

Plus en détail

VOLUME 3 ROBERT ET MICHEL LYONS. ( Octobre 2001 )

VOLUME 3 ROBERT ET MICHEL LYONS. ( Octobre 2001 ) VOLUME 3 ROBERT ET MICHEL LYONS ( Octobre 2001 ) Introduction Si votre enfant a réussi les activités des deux volumes précédents, vous serez peut-être surpris, mais le plus difficile est fait. Son succès

Plus en détail

1 Extrait du DNB Juin 2014 3ème

1 Extrait du DNB Juin 2014 3ème Exemples d activités et extraits d évaluations Pour chacune des évaluations et activités suivantes, 1 résoudre le problème et anticiper les différentes démarches que les élèves pourraient envisager 2 déterminer,

Plus en détail

Brevet des collèges Polynésie septembre 2012

Brevet des collèges Polynésie septembre 2012 Brevet des collèges Polynésie septembre 2012 Durée : 2 heures Activités numériques Exercice 1 : On donne le programme de calcul suivant : Choisir un nombre. Lui ajouter 1. Calculer le carré de cette somme.

Plus en détail

Je découvre le diagramme de Venn

Je découvre le diagramme de Venn Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme

Plus en détail

La cigale et la Fourmi font des maths! La fuite de la Cigale. Année 2013-2014

La cigale et la Fourmi font des maths! La fuite de la Cigale. Année 2013-2014 Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. La cigale et la Fourmi font des maths! La

Plus en détail

D.S.T. n 3 ANNEE 2007-2008 PHYSIQUE-CHIMIE. Série S. DURÉE DE L ÉPREUVE : 1 h 30

D.S.T. n 3 ANNEE 2007-2008 PHYSIQUE-CHIMIE. Série S. DURÉE DE L ÉPREUVE : 1 h 30 D.S.T. n 3 ANNEE 2007-2008 PHYSIQUE-CHIMIE Série S DURÉE DE L ÉPREUVE : 1 h 30 Il sera tenu compte de la qualité de la présentation et de l expression des résultats numériques en fonction de la précision

Plus en détail

LES TICE EN GEOMETRIE DE L ESPACE : LOGICIELS 3D OU LOGICIELS 2D?

LES TICE EN GEOMETRIE DE L ESPACE : LOGICIELS 3D OU LOGICIELS 2D? François LMEZ Irem de Paris 7, équipe DIDIREM Résumé : u moment où se met en place l épreuve pratique de mathématiques au baccalauréat en section S, il est légitime de comparer l apport des logiciels 2D

Plus en détail

Mathématiques Logiciel de géométrie: GeoGebra. GeoGebra. Mode d'emploi

Mathématiques Logiciel de géométrie: GeoGebra. GeoGebra. Mode d'emploi Mathématiques Logiciel de géométrie: GeoGebra GeoGebra Avant propos: Mode d'emploi Dans les programmes officiels de Mathématiques, un élève doit savoir utiliser un logiciel de géométrie pour construire

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2011 LA PHOTOCOPIEUSE. Fiche professeur... 2. Fiche élève... 4

Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2011 LA PHOTOCOPIEUSE. Fiche professeur... 2. Fiche élève... 4 LA PHOTOCOPIEUSE Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur LA PHOTOCOPIEUSE Niveaux et objectifs pédagogiques 3 e : introduction

Plus en détail

Le lexique géométrique

Le lexique géométrique Le lexique géométrique Document réalisé, sous la direction de : M. DETILLEUX, I-IPR de Mathématiques Mme GIEN, Inspectrice de l'education Nationale dans le cadre des temps de concertation écoles / collège

Plus en détail

Mathématiques. Questions de test diffusées, 2015. Cycle moyen. année. Test en lecture, écriture et mathématiques DIRECTIVES

Mathématiques. Questions de test diffusées, 2015. Cycle moyen. année. Test en lecture, écriture et mathématiques DIRECTIVES Questions de test diffusées, 2015 Cycle moyen 6e année Mathématiques Test en lecture, écriture et mathématiques DIRECTIVES Comment répondre aux questions choix multiple Comme ceci : et non comme cela :

Plus en détail

Progressions en mathématiques au cycle 1 élaborées lors de l animation pédagogique de la circonscription d ANNONAY (situations problèmes en

Progressions en mathématiques au cycle 1 élaborées lors de l animation pédagogique de la circonscription d ANNONAY (situations problèmes en Progressions en mathématiques au cycle 1 élaborées lors de l animation pédagogique de la circonscription d ANNONAY (situations problèmes en mathématiques au cycle 1) en mars 2012 Compétence : se situer

Plus en détail

MATHÉMATIQUES (1 heure)

MATHÉMATIQUES (1 heure) NE RIEN ÉCRIRE DANS CE CADRE Académie : Session : Modèle E.N. Examen : Série : Spécialité/option : Repère de l épreuve : Epreuve/sous épreuve : NOM (en majuscule, suivi s il y a lieu, du nom d épouse)

Plus en détail

Travaux pratiques en classe de Seconde

Travaux pratiques en classe de Seconde ANNÉE SCOLAIRE 2010-2011 Travaux pratiques en classe de Seconde DIDIER PIHOUÉ Table des matières TP n 1 : Conjecture et preuve..................................... 2 TP n 2 : Équations de droites.....................................

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

M ATHÉMATIQUES AU. QUOTIDIEN 20S, 10 e ANNÉE. Examen de préparation de l examen final Corrigé

M ATHÉMATIQUES AU. QUOTIDIEN 20S, 10 e ANNÉE. Examen de préparation de l examen final Corrigé M ATHÉMATIQUES AU QUOTIDIEN 20S, 10 e ANNÉE Examen de préparation de l examen final Corrigé M ATHÉMATIQUES AU QUOTIDIEN, 10 e ANNÉE Examen de préparation de l examen final Corrigé Nom : Numéro d étudiant

Plus en détail

Sac à dos de l explorateur Outils de découverte

Sac à dos de l explorateur Outils de découverte Sac à dos de l explorateur Outils de découverte Aperçu de la leçon : La leçon porte sur les facteurs d incitation positifs et négatifs liés à la migration, les outils et les techniques utilisés par les

Plus en détail

Livret 5 PROPORTIONNALITE

Livret 5 PROPORTIONNALITE Livret 5 PROPORTIONNALITE EVALUATION DIAGNOSTIQUE PROPORTIONNALITE DP1 : utiliser une échelle, trouver un coefficient de proportionnalité DP2 : vérifier la proportionnalité, trouver le coefficient de proportionnalité

Plus en détail