RELATIONS FONCTIONNELLES. I Généralités

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "RELATIONS FONCTIONNELLES. I Généralités"

Transcription

1 Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces deux suies son proporionnelles si on passe de l'une à l'aure en muliplian par le même coefficien k di de proporionnalié. Remarque : On es condui fréquemmen à consruire un ableau di de proporionnalié Remarque : Une applicaion qui fai passer d un nombre x à a x s appelle une applicaion linéaire. On noe f : x a x ou f(x)=a x Exemple : Les ableaux suivans son-ils de proporionnalié? x 0,5 5 x 6 0 y,5 0,5,5 y Méhode : Vérifier que les quoiens son égaux dans oues les colonnes. a/ linéarié : / Propriéés Règle : Quand deux grandeurs son proporionnelles, si on muliplie une des grandeurs par un nombre alors il fau muliplier l'aure par le même nombre: f(λ x i ) = λ f(x i ) x x 8 y y 6 0 Règle : Quand deux grandeurs son proporionnelles, si on addiionne deux ermes de la première grandeur alors il fau addiionner les deux ermes de la deuxième grandeur f( x + x ) = f( x )+f(x ) x x x 0,, 6, y y y 9 0,6 8,4 b/ Produi en croix (quarième proporionnelle) Soi un ableau de proporionnalié avec a,b,c e d non nuls: a c b d On en dédui les égaliés suivanes :

2 Universié d'angers : LSEN relaions foncionnelles p. Applicaion : Déerminer la quarième proporionnelle dans les ableaux de proporionnalié suivans : c/ Représenaion graphique Propriéé : Un ableau de proporionnalié es représené graphiquemen par une droie passan par l'origine. / Viesse e Débi II/ Applicaions de la proporionnalié a/ Viesse b/ Débi La viesse (moyenne) es le coefficien de proporionnalié enre le emps e la disance. v= d= = avec v (viesse), d (disance) (emps) Aenion aux uniés! Exemple : Paradoxe de la viesse a. Anoine e Paul parcouren à bicyclee le raje enre Angers e Segré, soi 40 km, en h0. Quelle es la viesse moyenne? b. Anoine effecue le reour à une viesse de 5km/h. Quelle es sa viesse moyenne sur l aller e le reour? / échelle L échelle es le coefficien de proporionnalié enre la dimension réelle e la dimension de la care (ou de la maquee, ou de la phoo) Echelle = dimension reproduie dimension réelle (avec les dimensions dans la même unié!) Exercice : a. Sur une care à l échelle /5 000, villes son séparées de,5 cm. Quelle es la disance réelle enre ces villes en km. b. Les dimensions d un sade recangulaire son 0 m e 50 m. Quelles son les dimensions obenues pour une maquee à l échelle /400.

3 Universié d'angers : LSEN relaions foncionnelles p. / Parage proporionnel e inversemen proporionnel Parage proporionnel Soi une somme S=500 euros. Si cee somme es paragée enre personnes proporionnellemen à, e 4, on obien respecivemen pour chaque personne : Parage inversemen proporionnel On souhaie réparir une prime de 650 euros à employés inversemen proporionnellemen au nombre de jours d absence : 5 e 8. 4/ Double proporionnalié Exemple : Pour consruire un parking de 500 m² avec 4 employés, il fau 5 jours. Combien fau-il de jours pour consruire un parking de 00 m² avec employés? 5/ Pourcenage a. Appliquer un pourcenage : 00 x Calculer un pourcenage % d'une grandeur x revien à calculer : Exemple : 50% de 0 = 00% de 0 = 00 x Exemple : Une populaion es passée à 800 habians après une augmenaion de 5%. Quel es le nombre d'habians iniial? b. Déerminer un pourcenage Pour calculer ce que représene en pourcenage une grandeur y par rappor à une grandeur x revien à calculer : 00. Exemple : Sur 400 personnes, 5 son érangères. Quel es le pourcenage de personnes érangères?

4 Universié d'angers : LSEN relaions foncionnelles p. 4 c. Calculer une grandeur après une augmenaion de % : ( + 00 ) x Règle : Calculer une grandeur après une augmenaion de % revien à calculer : (+ d. Calculer une grandeur après une diminuion de % : ( 00 ) x Règle : Calculer une grandeur après une augmenaion de % revien à calculer : (+ 00 ) x 00 ) x Exemple : Le ableau suivan radui une augmenaion ou une diminuion par a x. Déerminer le pourcenage d'augmenaion ou de diminuion correspondan: a x ou de % a x ou de %,05 x augmenaion de 5 % 0.97 x diminuion de 7 %. x de 50 % puis de 50% x de 0 % puis de 0% Parie C : Foncions affines / Foncions affines Définiion : Soien a e b deux réels donnés. Lorsqu à chaque réel x, on associe le réel ax + b, on défini une foncion affine f e on noe f(x) = ax + b. Lorsque b = 0, la foncion es die linéaire, comme par exemple, f(x) = -x. Lorsque a = 0, la foncion es die consane, comme par exemple, f(x) =, pour ou réel x. Dans un repère, la représenaion graphique d une foncion affine f : x ax + b es une droie. On di que cee droie a pour équaion y = ax + b e que a es son coefficien direceur, b son ordonnée à l origine. Cee droie passe par le poin P(0 ; b). A P O a y = ax + b Dans le cas d une foncion linéaire x ax, l image y es proporionnelle à la variable x. Dans le cas d une foncion affine x ax+b, les variaions de la réponse y son proporionnelles aux variaions de la variable x. Propriéé Soi f une foncion affine définie par f(x) = ax + b. Alors, pour ous u e v els que u v, = a. Ce rappor es appelé aux de variaion de f enre u e v. Ce rappor es égalemen égal au coefficien de proporionnalié relian les variaions de x à celle de y.

5 Universié d'angers : LSEN relaions foncionnelles p. 5 Exemple : Rerouver graphiquemen les foncions affines représenées ci-dessous. x 4 f(x) y x x 0 l(x) y x y x g(x) 5 x Exercice : Dans un repère, les poins A e B on pour coordonnées (-4 ; -) e ( ; ). Quelle es la foncion affine représenée par la droie (AB)? ) Foncions affines par morceaux définiion : Une foncion es die affine par morceaux si elle es définie sur une réunion d inervalles sur lesquels elle coïncide avec une foncion affine. Remarque : La courbe représenaive d une foncion affine par morceaux es donc composée de segmens e de demi droies. x exemple : f (x) = x + 5 x pour x : x y pour x pour < pour x > x pour < x : x y pour x > : x 6 y 0 0 ) Inerpolaion linéaire Principe : On suppose qu on connaî la valeur d une foncion pour valeurs de x. On esime alors la valeur de la foncion pour les valeurs inermédiaires en supposan que la foncion es affine.

6 Universié d'angers : LSEN relaions foncionnelles p. 6 exemple : Le ableau suivan indique les empéraures relevées oues les 4 heures dans une ville au cours d une journée : heure 0h 4h 8h h 6h 0h 4h empéraure T Dans un repère du plan, l axe des abscisses représene le emps (0,5 cm pour h) e l axe des ordonnées représene la empéraure T (0,5 cm pour ). Le ableau ne nous donne pas les empéraures en dehors des valeurs mesurées. Pour esimer ces valeurs, on fai une inerpolaion linéaire. T (en C) 5 a) à l aide du graphique, donnez une esimaion de la empéraure à h 0 b) On va rerouver cee valeur par le calcul : méhode : (en h) 4/ Régionnemen du plan La droie (d) d équaion ax + by = c parage le plan en deux demi-plans : Un demi-plan fermé P conenan la droie (d), qui es l ensemble des poins M(x ;y) els que : ax + by = c 0 ; Un demi-plan fermé P conenan la droie (d), qui es l ensemble des poins M(x ;y) els que : ax + by = c 0 ; La droie (d) es appelée droie fronière des demi-plans P e P. Si les inégaliés son srices (< ou >), les demi-plans ne coniennen pas la droie (d). Pour disinguer les deux demi-plans, on calcule la valeur de ax + by pour les coordonnées d un poin qui n es pas sur la droie (d), l origine O(0 ;0) du repère par exemple lorsque c es possible. On regarde ensuie si cee valeur vérifie bien l inéquaion du demi-plan. On peu aussi revenir à l'équaion sous réduie. Sysèmes d inéquaions : applicaion à la programmaion linéaire Résoudre un sysème de deux (ou plusieurs) inéquaions à deux inconnues x e y signifie déerminer l ensemble des poins M(x ;y) don les coordonnées vérifien simulanémen oues les inéquaions du sysème. Dans la praique, après avoir déerminé les demi-plans définis par chaque inéquaion du sysème, la parie soluion es la parie qui rese non hachurée. La parie non hachurée es alors la parie soluion.

7 Universié d'angers : LSEN relaions foncionnelles p. 7 Exemple : À l'approche des fêes de Pâques, un arisan chocolaier décide de confecionner des oeufs en chocola. En allan inspecer ses réserves, il consae qu'il lui rese 8 kg de cacao, 8 kg de noisees e 4 kg de lai. Il a deux spécialiés : l'oeuf Exra e l'oeuf Sublime. Un oeuf Exra nécessie kg de cacao, kg de noisees e kg de lai. Un oeuf Sublime nécessie kg de cacao, kg de noisees e kg de lai. Il fera un profi de 0 en vendan un oeuf Exra, e de 0 en vendan un oeuf Sublime. Combien d'oeufs Exra e Sublime doi-il fabriquer pour faire le plus grand bénéfice possible? Résoluion : Poser les inconnues du problème Déerminer les conraines sur ces inconnues (inégaliés) Déerminer graphiquemen l'ensemble des soluions par régionnemen du plan. Déerminer la foncion bénéfice ou coû en foncion des variables e représener les soluions possibles pour une valeur de bénéfice fixe. Trouver la soluion opimale.

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

1 Proportionnalité et représentation graphique

1 Proportionnalité et représentation graphique 1 Proporionnalié 1 Proporionnalié e représenaion graphique 1 a) proporionnalié e conséquences On di qu il y a proporionnalié dans un ableau lorsque l on peu passer d une ligne à l aure en muliplian par

Plus en détail

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0 TS avril 04 Devoir de physique-chimie n 5 LES EXERCICES SNT INDEPENDANTS CALCULATRICE AUTRISEE Eercice : Quand Sébasien Loeb renconre Isaac Newon /5,0 "( ) Sébasien Loeb e son copiloe Daniel Elena on brillammen

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

La population d une ville était de 150 000 habitants en 2000. Elle s est accrue chaque année de 20 000 habitants.

La population d une ville était de 150 000 habitants en 2000. Elle s est accrue chaque année de 20 000 habitants. Exercice 1 : évoluions e pourcenages La populaion d une ville éai de 150 000 habians en 2000. Elle s es accrue chaque année de 20 000 habians. Calculer l augmenaion en pourcenage de 2000 à 2001, de 2001

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Aide pour le devoir maison n 1 de Terminale STG GSI (704)

Aide pour le devoir maison n 1 de Terminale STG GSI (704) Aide pour le devoir maison n 1 de Terminale STG GSI (704) Mahémaiques Nombre d'exercices : 4 exercices Noe : L'exercice 4 es une pure copie d'un exercice d'un devoir surveillé de l'an dernier. Cela ne

Plus en détail

4.9 Calcul de la maçonnerie portante soumise à une charge verticale

4.9 Calcul de la maçonnerie portante soumise à une charge verticale La radioacivié évenuellemen émise dans les consrucions es due, principalemen, à la présence de Radium (Ra 226) e/ou Thorium (Th 232) dans le sous-sol e dans les maériaux uilisés. Parmi ceux-ci, le béon

Plus en détail

Relais de mesure et de contrôle industriels Zelio Control 3

Relais de mesure et de contrôle industriels Zelio Control 3 Présenaion elais de mesure e de conrôle indusriels Zelio Conrol elais de conrôle de réseaux riphasés M T 0 M T Foncionnaliés Ces appareils son desinés à la surveillance des réseaux riphasés e à la proecion

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

L = 15 m. 1) Modéliser le pont ainsi que ses appuis (fibre moyenne et représentation des appuis).

L = 15 m. 1) Modéliser le pont ainsi que ses appuis (fibre moyenne et représentation des appuis). ESTP TP1 nnée 2008-2009 PPLICTION 1 : POUTRES DROITES ISOSTTIQUES EXERCICE 1 On considère un pon en béon, de longueur 15 m, don la secion es une dalle en béon armé de largeur 5m e d épaisseur 0,9 m. Le

Plus en détail

Retour aux bases de la photographie Partie 1 L' EXPOSITION

Retour aux bases de la photographie Partie 1 L' EXPOSITION Parie 1 - Secion 1.5 Reour aux bases de la phoographie Parie 1 L' EXPOSITIO Secion 1.5 Synhèse Exposiion Indices de Luminaion IL (EV) 1 Synhèse des valeurs Rappel des échelles normalisées des différens

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

Séquence 2. Pourcentages. Sommaire

Séquence 2. Pourcentages. Sommaire Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Lorsqu un mobile se déplace avec une vitesse constante v, on dit que son mouvement est uniforme. (Attention aux unités!)

Lorsqu un mobile se déplace avec une vitesse constante v, on dit que son mouvement est uniforme. (Attention aux unités!) Mouvemen uniforme (gleichmäβige Bewegung) 1 Définiion Lorsqu un mobile se déplce vec une viesse consne v, on di que son mouvemen es uniforme. Exemple: ) Cyclise rouln vec une viesse consne de 5 km/h. b)

Plus en détail

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine.

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine. CHAPITRE 5 Foncion linéaire. Proporionnalié. Foncion affine. (Voir : 4 ème, chapire 5 ; 3 ème, chapires 3, 13.) I) Foncion linéaire A) Définiion a désigne un nombre relaif connu e fié. Définiions : La

Plus en détail

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés Le redressemen c'es la ransformaion de l'énergie élecrique alernaive du réseau en énergie coninue. Symbole : ~ = Les redresseurs se divisen en deux grands groupes : les redresseurs demi onde, à une alernance

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre Fonctions linéaires et fonctions affines Cours Objectifs du chapitre Connaitre le sens de variation d une fonction affine. Connaitre le signe d une fonction affine. 1 Introduction Activité 2 Fonctions

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES SYNTHESE ( THEME 9 ) FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES A - FONCTION AFFINE A : DEFINITION ET NOTATION a et b étant deux nombres fixés, on appelle fonction affine tout processus

Plus en détail

3 ème Révisions Fonctions linéaires et affines

3 ème Révisions Fonctions linéaires et affines Exercice 1 Mettre une croix où la réponse est oui. 3 ème Révisions Fonctions linéaires et affines La fonction est une fonction linéaire affine constante f(x) = 5x + 2 g(x) = 3x² h(x) = 5x i(x) = 7 + 2x

Plus en détail

L évaluation immobilière. Michel Baroni 27/11/2009

L évaluation immobilière. Michel Baroni 27/11/2009 L évaluaion immobilière Michel Baroni 27/11/2009 Méhodes exisanes Méhodes des comparables Dépend de la base de données; méhode hédonique évenuellemen possible Méhodes de capialisaion Dépend de la base

Plus en détail

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013 LCD Physique ebc 1 Exercices M1: Cinémaique du poin A) Quesions de compréhension 1) Un voyageur dans un rain en mouvemen à viesse consane laisse omber un obje. Esquisser l allure de la rajecoire : pour

Plus en détail

Université d été Solvabilité 2 Juillet 2011

Université d été Solvabilité 2 Juillet 2011 LES INDICATEURS OPERATIONNELLES LIÉS À L ORSA Version 1.0 Universié d éé Solvabilié 2 Juille 2011 Frédéric PLANCHET Acuaire Associé fplanche@winer-associes.fr Marc JUILLARD Acuaire mjuillard@winer-associes.fr

Plus en détail

FONCTIONS LINEAIRES ET FONCTIONS AFFINES

FONCTIONS LINEAIRES ET FONCTIONS AFFINES Chapitre 3 FONCTIONS LINEAIRES ET FONCTIONS AFFINES Terminale BEP Objectifs (à la fin du chapitre, je dois être capable de ) : - Différencier fonction affine et linéaire. - Calculer une image. - Déterminer

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2003-2004 Devoir n 5 CONVERSION DE PUISSANCE Parie I EUDE D UN CAPEUR DE POSIION ANGULAIRE A / ÉUDE D'UN CIRCUI MAGNÉIQUE Considérons le disposiif schémaisé sur la figure, composé de deux bobines

Plus en détail

PTSI PT AUTOMATIQUE. Constituants des systèmes

PTSI PT AUTOMATIQUE. Constituants des systèmes PTSI PT AUTOMATIQUE des sysèmes Table des maières 1 LA CHAINE FONCTIONNELLE 1 1.1 STRUCTURE FONCTIONNELLE... 1 1.2 CHAINE D ENERGIE... 1 1.3 CHAINE D INFORMATION... 2 2 LES ACTIONNEURS 3 2.1 LES VERINS

Plus en détail

Temporisation et monostable Contrôleurs de rotation XSA-V

Temporisation et monostable Contrôleurs de rotation XSA-V Temporisaion e monosable Conrôleurs de roaion XSA-V Manuel didacique Version Française TE Sommaire Chapire Page Temporisaion - Lecure des hisogrammes 3. Définiion 3.2 Bu 3.3 Principe de foncionnemen 3.3.

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Fonctions numériques Proportionnalité

Fonctions numériques Proportionnalité Foncions numériques Proporionnalié I Foncions numériques 1 ) Définiion e noaions Définir une foncion f qui à x associe y c es donner une formule mahémaique qui perme pour oue valeur donnée de x soi de

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

Première STG Chapitre 4 : taux d'évolution. page n

Première STG Chapitre 4 : taux d'évolution. page n Première STG Chapire 4 : aux d'évoluion. page n 1 On peu lire dans un journal : " Le prix de la able basse, qui es passé de 500 à 502, n'a praiquemen pas bougé. " e plus loin : " Hausse impressionnane

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

ChN8 FONCTIONS AFFINES progression. séance 0 test d'entrée

ChN8 FONCTIONS AFFINES progression. séance 0 test d'entrée ChN8 FONCTIONS AFFINES progression séance 0 test d'entrée séance 1 exercice complémentaire 1 activité 1 (intro fonctions affines) cours : I. Définition séance 2 exercice complémentaire 2 fiche ex. 1 ex

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE :

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : Afin de vous noer : - si vous avez oues les bonnes réponses à un QCM, vous avez poin, - si vous avez une erreur par eeple, une réponse que vous n avez pas

Plus en détail

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I :

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I : Filière SM Module Physique lémen : lecricié Cours Prof..Tadili 2 ème Parie Chapire 2 ude des dipôles nergie élecrique e puissance. appel Considérons un dipôle d un circui parcouru par un couran d inensié

Plus en détail

CH VI Notion de fonctions : les fonctions linéaires et affines.

CH VI Notion de fonctions : les fonctions linéaires et affines. CH VI Notion de fonctions : les fonctions linéaires et affines. I) Activités : Activité 1 : Relier les points correspondants. [- ; 3] Ensemble des réels x tels que x [ ; + [ Ensemble des réels x tels que

Plus en détail

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU SOMMAIRE ARTICLE 1 - Définiion du aux de renabilié ARTICLE 2 - Seuil minimum de renabilié ARTICLE 3 - Evaluaion de la recee acualisée

Plus en détail

EXERCICE 1 Un automobiliste effectue un trajet en roulant à 90 km/h. Voici son tableau de marche : 3 2 2

EXERCICE 1 Un automobiliste effectue un trajet en roulant à 90 km/h. Voici son tableau de marche : 3 2 2 EXERCICE 1 Un auomobilie effecue un raje en roulan à 90 km/. Voici on ableau de marce : 3 2 2 Diance parcourue (km) 90 180 270 360 450 Durée écoulée () 1 2 3 4 5 90 a. Ce ableau décri-il une iuaion de

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

Exercice 3 (3 points) Soit f la fonction définie sur [ 3;6] par

Exercice 3 (3 points) Soit f la fonction définie sur [ 3;6] par Contrôle de mathématiques n o 6 Correction du sujet Exercice (Questions de cours, points) Compléter la propriété : Les points A, B et C sont alignés si et seulement si AB et AC sont colinéaires Compléter

Plus en détail

Terminale STG Chapitre 1 : Droites Régionnement du plan - Optimisation à deux variables

Terminale STG Chapitre 1 : Droites Régionnement du plan - Optimisation à deux variables 1. EQUATIONS DE DROITES Toute droite du plan a une équation, non unique, de la forme ax + by = c, où a et b sont deux réels non nuls en même temps. Si b = 0, l équation est x = c c'est-à-dire de la forme

Plus en détail

Les fonctions affines.

Les fonctions affines. Les fonctions affines. Dans cette leçon, nous considérerons comme acquis le chapître sur les fonctions linéaires. On se placera dans un repère. I.Les fonctions affines : 1.Activité d introduction : Considérons

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

LES FONCTIONS LINEAIRES ET AFFINES

LES FONCTIONS LINEAIRES ET AFFINES LES FONCTIONS LINEAIRES ET AFFINES I) Les fonctions linéaires : 1) Activité: 2) Définition : Une fonction linéaire f est une fonction définie par f(x) = ax ( ou f : x ax ) où a est un nombre réel et x

Plus en détail

CHAPITRE VII. Les Convertisseurs Analogiques Numériques

CHAPITRE VII. Les Convertisseurs Analogiques Numériques CHAPITRE VII Les Converisseurs Analogiques Numériques Olivier Français, 2 SOMMAIRE LES CONVERTISSEURS À INTÉGRATION... 3 I LE CONVERTISSEUR SIMPLE RAMPE... 3 I.1 PRINCIPE... 3 I.2 PHASES DE FONCTIONNEMENT...

Plus en détail

1 ère L Les pourcentages

1 ère L Les pourcentages 1 ère L Les pourcenages Ce chapire se place dans le cadre de l informaion chiffrée. III. Calculer une valeur après un pourcenage d augmenaion e de diminuion (opéraeur associé à un pourcenage d évoluion)

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE 1 Origines e principes de base de l analyse echnique 2 Les ouils de l analyse graphique radiionnelle 3 Les ouils de l analyse saisique A) LES ORIGINES ET

Plus en détail

Séance 1 : Notion de fonction : fonction linéaire et fonction affine

Séance 1 : Notion de fonction : fonction linéaire et fonction affine Séance 1 : Notion de fonction : fonction linéaire et fonction affine La première partie de la première séance est dédiée à la lecture de la fiche méthodologique. Pourquoi débuter les révisions par une

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0)

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0) Fonction affine I Définition Étant donné deux nombres m et p, on définit une fonction affine f lorsque, à tout nombre x, on associe le nombre f(x) = mx+p. On note f : x mx+p cette fonction. Remarque :

Plus en détail

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques Groupe de ravail maser MASEF-Universié Paris-Dauphine Opimisaion d une foncion d uilié sous conraines de risques Benedea Baroli Thibau Masrolia Eienne Pillin sous la direcion d Anhony Réveillac 13 sepembre

Plus en détail

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x Exercice Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x A B E F H G D Le fond de la boîte est le rectangle EFGH. La feuille est au format A4, donc

Plus en détail

03/12/2015. Le transistor bipolaire. Pascal MASSON. Sommaire. I. Historique. Caractéristiques du transistor. Polarisation du transistor

03/12/2015. Le transistor bipolaire. Pascal MASSON. Sommaire. I. Historique. Caractéristiques du transistor. Polarisation du transistor 3/2/25 (pascal.masson@unice.fr) diion 25-26 École Polyechnique Universiaire de ice Sophia-Anipolis Parcours des écoles d'ingénieurs Polyech (Peip) -Parcours des écoles 645 roue d'ingénieurs des Lucioles,

Plus en détail

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar Le découplage des courbes de rendemen en euro e en dollar Benoî MOJON Direceur des Éudes monéaires e financières Fulvio PEGORARO Direcion des Éudes monéaires e financières Cee lere présene le résula de

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS Auteur : Alain Ladureau DÉVELOPPEMENTS LIMITÉS TI-Nspire CAS 1. Objectifs Découvrir la notion de développement limité. Utiliser des développements limités dans l étude locale des fonctions. Les appliquer

Plus en détail

Fonctions Affines. 1. Activité 1

Fonctions Affines. 1. Activité 1 1. Activité 1 Fonctions Affines La centrale PS10 en Espagne (Séville) produit de l électricité au moyen de 624 miroirs de 120 m 2 chacun qui concentrent les rayons du soleil au sommet d une tour de 115

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Les nouveautés d Excel 2016

Les nouveautés d Excel 2016 EXCEL 2016 Office 2016 - Excel, Word, PowerPoin e Oul ook Les nouveaués d Excel 2016 Uiliser la sélecion muliple dans les filres à segmen Les segmens, uilisés dans des ableaux de données ou des ableaux

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

4. "SEPO" - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE

4. SEPO - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE D/ Baobab: Cours de gesion des projes page 46 4. "" - UN MÉTHD UR L'AUT- ÉVALUATIN T UR L RJT-ILT 4.1 Inroducion (angl.:w) es un ouil pour l'auoévaluaion e pour les projes-piloe. Il a éé élaboré lors de

Plus en détail