Statistiques Appliquées Rôle des femmes dans la société

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques Appliquées Rôle des femmes dans la société"

Transcription

1 Statistiques Appliquées Rôle des femmes dans la société Denis Schelling Semestre d automne 2012 Résumé A partir de données concernant le rôle des femmes dans la société, nous avons effectué une analyse afin de déterminer quelles étaient les facteurs influançant la réponse des individus à l affirmation : «Les femmes devraient se concentrer sur les tâches ménagères et laisser les hommes travailler.» Après une analyse exploratoire ainsi que l ajustement de différents modèles de régression logistique et leurs comparaisons, nous avons obtenu le modèle le plus adéquat pour nos données. De ce modèle, nous déduisons que le nombre d années d éducation des individus ainsi que le sexe ont tous les deux une influence dans la réponse données par l individu. 1 Introduction A partir de la fin du 18 e siècle et au cours du siècle précédent, le rôle des femmes au sein de la société occidentale s est considérablement amélioré. Les femmes ont ainsi obtenu davantage de droits les ammenant progressivement à égalité avec les hommes. Ces changements ont néanmoins nécessité du temps si bien que les mentalités sur le rôle des femmes différaient souvent d un individu à l autre qu il soit masculin ou féminin et ce encore jusqu au début des années 90. Les données que nous allons analyser sont issues d une enquête effectuée dans les années 70 où il existait encore des pays, comme la Suisse, où certaines régions n accordaient toujours pas le droit de vote aux femmes par exemple. A cette époque, les femmes subissaient davantage d inégalités dans le monde du travail qu aujourd hui, les incitant à rester au foyer s occuper des tâches ménagères. Mais surtout le rôle de la femme au sein de la société du travail particulièrement était encore en pleine évolution. Nos données vont nous permettre d analyser l opinion public sur le rôle de la femme dans la société à cette époque là. 1

2 2 Données Les données sont issues d une enquête menée par le National Opinion Research Center de l université de Chicago aux Etats-Unis entre 1974 et Les individus se voyaient poser l affirmation suivante : «Les femmes devraient se concentrer sur les tâches ménagères et laisser les hommes travailler et diriger le pays.» Les individus avaient la posibilité de répondre qu ils étaient d accord ou non avec l affirmation. Chaque individu s est vu également demander le nombre d années d éducation qu il avait effectuées. Ces données sont visibles sur la table 1 pour les 2871 individus. Nombre d années d éducation D accord Pas d accord D accord Pas d accord Table 1: Tableau des données. Il y a au total 1305 hommes et 1566 femmes. La figure 1 indique le nombre de participants en fonction du nombre d années d éducation. 2

3 Nombre de participants Nombre de participants Figure 1: Nombre de participants en fonction du nombre d années d éducation pour les hommes et les femmes. Sur la figure 1, on remarque qu une grande proportion des personnes intérrogées se situe aux alentours de 12 années d éducations et ce indépendamment du sexe. A la vu de ces données, il est légitime de se poser la question suivante : Le sexe et/ou l éducation ont-ils une influence sur la réponse donnée par un individu à l affirmation? Nous allons tout d abord tenter de répondre à cette question en analysant les données de façon exploratoire dans la section suivante puis nous allons ajuster des modèles adéquats à nos données afin de pouvoir tirer des conclusions plus certaines. 3 Analyse exploratoire des données Un premier essai pour identifier l influence du nombre d années d éducation est de considérer les probabilités empiriques d être d accord avec l affirmation en fonction du nombre d années d éducation et ce pour les hommes et les femmes confondus. Pour un nombre d années d éducation j donné, on définit la probabilité empirique p j d être d accord avec l affirmation comme étant le nombre de personnes étant d accord et ayant reçu j années d éducation divisé par le nombre de personnes interrogées ayant j années d éducation. Les résultats obtenus sont indiqués sur le graphe de gauche de la figure 2. 3

4 Tous les individus confondus et séparés Probabilité empirique d'être d'accord Tous les individus Probabilité empirique d'être d'accord Figure 2: Probabilités empiriques d être d accord en fonction du nombre d années d éducation à gauche sans distinction du sexe, à droite avec la distinction. On remarque sur le graphe de gauche que les probabilités empiriques d être d accord ont tendance à baisser si le nombre d années d éducation augmente passant en dessous de 0.5 à partir de 9 années d éducations. Ainsi le graphe de gauche sur la figure 2 nous montre que le nombre d années d éducation semble avoir une véritable influence sur la réponse donnée par l individu et ce indépendamment du sexe. Les individus ayant reçu davantage d éducation serait ainsi plus enclins à ne pas être d accord avec l affirmation. Afin de maintenant essayer d identifier une eventuelle influence du sexe sur la réponse, nous allons considérer les probabilités empiriques p j,h, p j,f d être d accord avec l affirmation pour les hommes et les femmes respectivement ayant reçu j années d éducation. Ces probabilités empiriques sont visibles sur le graphe de droite de la figure 2. Bien que les valeurs obtenues pour les hommes et les femmes soient parfois différentes, nous ne pouvons clairement pas décider si le sexe a une incidence sur ces probabilités empiriques. Pour essayer tout de même d identifier l influence du sexe nous allons encore considérer les réponses moyennes obtenues µ H, µ F auprès des hommes et des femmes respectivement. Ces réponses moyennes sont obtenues en considérant le nombre d hommes (ou de femmes) ayant été d accord avec l affirmation divisé par le nombre total d hommes (ou de femmes) interrogés. On note encore σ 2 H et σ2 F les variances empiriques calculées pour µ H et µ F. Les résultats obtenus sont donnés sur la table 2. Homme Femme µ σ Table 2: Réponses moyennes d être d accord pour les hommes et les femmes. Le tableau 2 nous indique que les moyennes µ H et µ F sont proches. Néanmoins, les variances pour chacune de ces moyennes étant spécialement élevées, nous nous avisons de conclure quoi que ce soit sur l influence du sexe sur la réponse obtenue. Nous déduisons de notre analyse exploratoire que le nombre d années d éducation semble 4

5 jouer un rôle important dans la réponse donnée à la question alors que le rôle du sexe demeure plus difficle à cerner. Toutefois ces deux éléments doivent être appronfondis plus en détails afin de donner une réponse adéquate et précise. 4 Méthodes En vue d apporter des réponses plus exactes à notre question posée en fin de section 2, nous allons construire un modèle adéquat pour nos données. Tout d abord, nous considérons que chaque individu répond par "Oui" ou "Non" à l affirmation s il est respectivement d accord ou non avec celle-ci. Nous appelons y i la variable réponse de l individu i pour i = 1,..., n, où n = 2871 est le nombre total d individus. La variable y i est codée comme suit, { 1 si "Oui" y i =, pour i = 1,..., n. 0 si "Non" Ainsi les données dont nous disposons pour chaque individu sont sa réponse de type binaire ainsi que deux variables explicatives, son nombre d années d éducation education ainsi que son sexe, de type binaire également, codé de la forme 1 Homme, où 1 Homme,i = { 1 si l individu i est un homme 0 si l individu i est une femme, pour i = 1,..., n. Nous pouvons désormais attribuer à un individu i, pour i = 1,..., n une probabilité de succès p i de répondre "Oui", c est à dire la probabilité que y i = 1. Ceci nous conduit à supposer que la réponse de l individu i peut être vu comme une variable de Bernoulli avec probabilité de succès égale à p i. De plus, nous considérons que chaque individu répond indépendamment des iid autres ce qui nous conduit finalement à supposer que y i B(1, p i ) pour i = 1,..., n. Nous savons de Collett (1991) qu un modèle adéquat pour modéliser les données de type binomiale est la régression logistique linéaire qui dans le cas de k variables explicatives s exprime de la façon suivante : ( ) pi logit(p i ) = log = β 0 + β 1 x 1i + + β k x ki, pour i = 1,..., n, (4.1) 1 p i où x 1i,..., x ki sont les valeurs des k variables explicatives et β 0,..., β k sont les paramètres pour ces variables explicatives. Remarquons que de l équation (4.1) nous pouvons obtenir l expression suivante, p i = exp(β 0 + β 1 x 1i + + β k x ki ), pour i = 1,..., n. (4.2) 1 + exp(β 0 + β 1 x 1i + + β k x ki ) Une manière de vérifier si le modèle (4.1) est adéquat pour nos données est de considérer la figure 3 et de vérifier s il peut y avoir des relations linéaires entre les logit des probabilités empiriques, p j,h pour les hommes, p j,f pour les femmes, définies dans la section précédente, et le nombre d années d éducation. 5

6 Logit des probabilités empiriques Figure 3: Logit des probabilités empiriques en fonction du nombre d années d éducation. La figure 3 nous permet de voir qu il semble y avoir une certaine linéarité entre le logit des probabilités empiriques et le nombre d années d éducation. Il est donc raisonnable de considérer le modèle (4.1) que nous allons ajuster aux données. L ajustement du modèle s effectue en maximisant la vraisemblance par rapport au paramètre β = (β 0,..., β k ) T. Pour nos données, la vraisemblance s exprime comme L(β) = n i=1 p y i i (1 p i) 1 y i, (4.3) où p i = p i (β) par l expression (4.2). Ainsi notre fonction objectif à maximiser sera 5 Analyse n l(β) = log {L(β)} = {log(p i ) y i + log(1 p i ) (1 y i )}. (4.4) i=1 Nous allons effectuer différentes régressions logistiques sur nos données et essayer de trouver le modèle le plus adéquat pour celles-ci. Modèle A : Education et sexe comme variables explicatives Le premier modèle que nous allons ajuster et que nous appelerons le modèle A, s ajuste sur l ensembles des individus et prend comme variables explicatives le nombre d années d éducation ainsi que le sexe. Son expression s écrit comme logit(p i ) = β 0 + β 1 education i + β 2 1 Homme,i, pour i = 1,..., n. En ajustant le modèle, on obtient les résultats indiqués sur la table 3. 6

7 Paramètre Estimation Ecart-type Pr(> z ) β 0 (intercepte) <2e-16 β 1 (éducation) <2e-16 β 2 (sexe) Table 3: Résultats des estimations pour le modèle A Nous remarquons que la variables de l éducation est très significative. En revanche il semblerait que la variable indicatrice du sexe masculin ne soit pas si significative. Cela nous conduit à considérer un modèle sans la variable indicatrice du sexe masculin. Modèle B : Education comme variable explicative Le deuxième modèle que nous pouvons ainsi considérer est celui ne prenant pas en compte le sexe, c est-à-dire le modèle ne contenant que le nombre d années d éducation comme variable explicative, logit(p i ) = β 0 + β 1 education i, pour i = 1,..., n. On obtient ainsi les estimations suivantes, indiquées sur la table 4. Paramètre Estimation Ecart-type Pr(> z ) β 0 (intercepte) <2e-16 β 1 (éducation) <2e-16 Table 4: Résultats des estimations pour le modèle B Ce modèle n a que des variables significatives contrairement au modèle A. On remarque encore que le modèle B est imbriqué dans le modèle A. Ainsi, nous pouvons effectuer un test de rapport de vraisemblance afin de déterminer si la variable additionnelle du modèle A concernant le sexe est significative ou non. Nous calculons alors la statistique du test W AB = 2 ( l A l B ), où l A, l B sont les log-vraisemblances maximisées pour les modèles A et B respectivement. Sous l hypothèse nulle H 0 : β 2 = 0, on a W AB χ 2 q, où q est la différence des dimensions entre les paramètres du modèle le plus grand et le plus petit. On a q = 1 dans notre cas. Par le calcul, on obtient W AB et la p-valeur du test qui est p = P r(χ 2 1 > W AB). Ceux-ci sont donnés sur la table 5. W AB p-valeur Table 5: Résultat du test H 0 : β 2 = 0. Avec cette p-valeur il est clair que nous ne rejettons pas H 0 et donc nous ne pouvons pas tirer de conclusions concernant l influence du sexe. La figure 4 nous permet de visualiser les valeurs de la probabilité de répondre "Oui" en fonction du nombre d années d éducation pour notre modèle. Ces valeurs sont obtenues avec les paramètres ajustés du modèle à l aide de l équation (4.2). Les intervalles de confiance pour les probabilités ont été obtenus à l aide de la méthode delta. Les probabilités empiriques pour les hommes et les femmes ont également été incluses. 7

8 Probabilité d'être d'accord Tous individus Figure 4: Probabilité de répondre "Oui" obtenue à l aide des paramètres ajustés du modèle B avec les intervalles de confiances en traitillés. On peut dire de la figure 4 que ce modèle semble relativement bien convenir aux groupes des hommes et de femmes. Cependant, nous voulons vérifier s il y a une influence du sexe dans la réponse des individus mais ce modèle ne nous permet pas de répondre à cette question. Modèle C : Interaction entre le sexe et l éducation Le défaut de nos modèles précédents est que si l on considère la figure 3 alors considérer nos modèles A et B revient à assigner la même pente de droite de la régression logistique pour les hommes ainsi que pour les femmes. Ainsi nos modèles précédents ne prennent pas en compte un éventuel changement de pente entre ces deux groupes. Ce changement de pente s exprime comme l interaction entre les variables explicatives education et 1 Homme. Nous allons donc palier ce défaut en considérant désormais cette interaction. Notre nouveau modèle s exprime de la forme, logit(p i ) = β 0 + β 1 education i + β 2 1 Homme,i + β 3 1 Homme,i education i, pour i = 1,..., n. En ajustant ce modèle on obtient les resultats de la table 6. Paramètre Estimation Ecart-type Pr(> z ) β 0 (intercepte) <2e-16 β 1 (éducation) <2e-16 β 2 (sexe) β 3 (sexe éducation) Table 6: Résultats des estimations pour le modèle C On remarque sur la table 6 que toutes les variables du modèle C semblent être significatives. Etant donné que ce modèle C inclut le modèle A comme sous-modèle, nous pouvons encore effectuer un test de rapport de vraisemblance pour voir s il est juste d exclure l interaction entre 8

9 le sexe et l éducation qui se résume dans l hypothèse nulle H 0 : β 3 = 0. Si l on nomme l C la logvraisemblance maximisée pour le modèle C, alors nous avons que sous H 0, W AC = 2 ( l C l A ) est distribué selon une loi χ 2 q où q = 1. La valeur de W AC et la p-valeure sont données sur la table 7. W AC p-valeur Table 7: Résultat du test H 0 : β 3 = 0. Ainsi, avec la p-valeur obtenue nous rejettons l hypothèse nulle est nous en déduisons que l interaction entre le sexe et l éducation est d une importance significative. Ainsi l influence de la variable du sexe intervient à ce niveau là puisque la différence de pentes des droites de régression logistique est significative. A l aide de notre estimation β de β nous pouvons exprimer les formules des droites de régression logistique pour les hommes ainsi que pour les femmes. Ces droites ont pour équations, et sont données sur la figure 5. : logit(p) = education , (5.1) : logit(p) = education , (5.2) Logit des probabilités empiriques Figure 5: Droites de régression logistique pour les hommes ainsi que pour les femmes. Remarquons que le modèle C revient à attribuer à chaque groupe une droite de régression logistique différente. Une manière différente d obtenir également deux droites différentes est de considérer deux modèles indépendants, l un pour les hommes et l autre pour les femme. Ainsi, nos régressions logistiques ne s effectueraient que sur un seul groupe parmis les individus. Si l on suppose que les indices i sont ordonnées de telles sorte que pour i = 1,..., N H, l individu i est un homme et N H est le nombre total d homme, et pour i = N H + 1,..., n, l individu i soit une femme, avec N F = n N H le nombre total de femmes, alors les modèles s expriment dans ce cas 9

10 de la façon suivante, : logit(p i ) = β 0,H +β 1,H education i, pour i = 1,..., N H, (5.3) : logit(p i ) = β 0,F +β 1,F education i, pour i = N H + 1,..., n. (5.4) En ajustant chacune de ces régressions logistiques individuellement, nous obtenons les estimations indiquées sur la table 8. Paramètre Estimation Ecart-type Estimation Ecart-type β β Table 8: Estimations pour les modèles individuels. On remarque que si l on considère les droites de régressions logistiques issues de ces deux modèles alors nous obtenons des droites pratiquement identiques à celle obtenues avec le modèle C, données par les équations (5.3) et (5.4). Une façon d interpréter ces résultats est de se dire que le modèle C tente d ajuster une droite de régressions logistiques pour chacun des groupes. Cependant, lorsque notre échantillon est de grande taille, cela revient approximativement à effectuer une régression logistique sur chaque groupe indépendamment. Finalement, la figure 6 nous indique les valeurs des probabilités d être d accord avec l affirmation obtenues à l aide des coefficients estimés du modèle C pour les hommes et le femmes ainsi que les valeurs empiriques de ces probabilités en fonction du nombre d années d éducation. Probabilité d'être d'accord Figure 6: Probabilité de répondre "Oui" obtenue à l aide des paramètres ajustés du modèle C avec les intervalles de confiances en traitillés. La figure nous indique que ce modèle semble plus adéquat pour expliquer les valeurs obtenues pour les hommes et le femmes séparément. En effet, pour les valeurs obtenues pour les hommes et 10

11 les femmes sont sensiblement différentes surtout pour un nombre d années d éducation inférieur à 5 ans ou supérieur à 15 ans. On peut donc tirer des conclusions de notre analyse qui seront présentées dans la section suivante. 6 Conclusion En conclusion, afin d évaluer les potentielles influences du sexe ou du nombre d années d éducation dans les réponses données par les individus, nous avons tout d abord effectué une analyse exploratoire. A la fin de cette dernière il nous semblait juste de penser que le nombre d années d éducation avait très certainement une influence dans les réponses obtenues. L ajustement des différents modèles de régressions logistiques et leurs comparaison à l aide de test de rapport de vraisemblance nous a conduit au modèle C qui est le plus plausible pour l ensemble de toutes nos données. Ce modèle prenait en compte le nombre d année d éducation, le sexe mais également l interaction entre le sexe et le nombre d années d éducation. Les paramètres de ce modèle étant tous significatifs, nous pouvons déduire que la variable du sexe, par son action seule et son interaction avec le nombre d années d éducation a une importance pour l explication des données. Ainsi, nous concluons de notre analyse que non seulement l éducation mais également le sexe ont une importance pour la réponse obtenue à l affirmation. Références Collett, D. (1991) Modelling binary data. London : Chapman & Hall. 11

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Texte 1, Choix intertemporel du consommateur Microéconomie 3-851-84

Texte 1, Choix intertemporel du consommateur Microéconomie 3-851-84 1 Texte 1, Choix intertemporel du consommateur Microéconomie 3-851-84 1. Présentation générale du contexte intertemporel La théorie du comportement du consommateur telle que nous l'avons vue jusqu'à présent,

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

OPTIMISATION SOUS CONTRAINTES

OPTIMISATION SOUS CONTRAINTES OPTIMISATION SOUS CONTRAINTES Sommaire 1. Optimisation entre des bornes... 1 2. Exercice... 4 3. Optimisation sous contrainte à variables multiples... 5 Suite à une planification de la production, supposons

Plus en détail

Enquête.sba Procédure Tableaux croisés

Enquête.sba Procédure Tableaux croisés Enquête.sba Procédure Tableaux croisés Tris croisés p. 27 «Cette procédure est conçue pour le calcul et l édition massive de tableaux croisés. On obtient à partir de cette procédure des tableaux de contingence,

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

RAPPORT FINAL DES COHORTES 2013-2014 DANS LE CADRE DU PROJET BOURSE DU CARBONESCOL ERE PAR STÉPHANIE BÉRUBÉ, D.PS. LE 29 JUIN 2014

RAPPORT FINAL DES COHORTES 2013-2014 DANS LE CADRE DU PROJET BOURSE DU CARBONESCOL ERE PAR STÉPHANIE BÉRUBÉ, D.PS. LE 29 JUIN 2014 1 RAPPORT FINAL DES COHORTES 2013-2014 DANS LE CADRE DU PROJET BOURSE DU CARBONESCOL ERE PAR STÉPHANIE BÉRUBÉ, D.PS. LE 29 JUIN 2014 2 Le présent rapport constitue le rapport final des résultats provenant

Plus en détail

Faire et analyser un graphique de Bland-Altman pour évaluer la concordance entre deux instruments ou plus

Faire et analyser un graphique de Bland-Altman pour évaluer la concordance entre deux instruments ou plus Faire et analyser un graphique de Bland-Altman pour évaluer la concordance entre deux instruments ou plus Par Marie-Pierre Sylvestre Contexte On désire comparer deux instruments qui mesurent le même concept.

Plus en détail

TOUTE UNE VIE prévoir, aider, transmettre dans une société de longue vie

TOUTE UNE VIE prévoir, aider, transmettre dans une société de longue vie TOUTE UNE VIE prévoir, aider, transmettre dans une société de longue vie METHODOLOGIE I. Enquêtes utilisées Cette édition de BPCE L Observatoire s appuie notamment sur deux enquêtes : Une étude quantitative

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Rapport IN52. Sujet : Résolution d un puzzle

Rapport IN52. Sujet : Résolution d un puzzle CARRE Julien PIERNOT Jérôme Rapport IN52 Sujet : Résolution d un puzzle Responsable : M. Ruicheck Y. Automne 2007 1 SOMMAIRE INTRODUCTION...3 I. Description et approche du sujet...4 1. Description 2. Outils

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

CAUSES RÉELLES DE LA DETTE PUBLIQUE. ou comment les intérêts payés sur la dette nourrissent la dette

CAUSES RÉELLES DE LA DETTE PUBLIQUE. ou comment les intérêts payés sur la dette nourrissent la dette CAUSES RÉELLES DE LA DETTE PUBLIQUE ou comment les intérêts payés sur la dette nourrissent la dette Explications préalables Il y a quelques années nous avions demandé à l INSEE de nous fournir le montant

Plus en détail

3. et enfin, comment la prise en compte de ces relations annexes peut aider à comprendre les comportements de respect des échéances des clients.

3. et enfin, comment la prise en compte de ces relations annexes peut aider à comprendre les comportements de respect des échéances des clients. Conclusion Cette thèse a interrogé le fonctionnement de l intermédiation microfinancière dans les institutions de microfinance en Afrique de l Ouest. La question centrale qui l a animée consiste à interroger

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

INTRODUCTION A L ETUDE DES VARIABLES QUALITATIVES

INTRODUCTION A L ETUDE DES VARIABLES QUALITATIVES INTRODUCTION A L ETUDE DES VARIABLES QUALITATIVES Plan Introduction Définition Catégories de variables qualitatives Modèles pour Données avec Troncature Les Modèles pour Données Censurées Définition de

Plus en détail

Analyse longitudinale des stagiaires STE

Analyse longitudinale des stagiaires STE Analyse longitudinale des stagiaires STE Note d analyse de l Observatoire bruxellois de l Emploi Février 2015 1 Introduction Indépendamment des données portant sur le profil des stagiaires et des caractéristiques

Plus en détail

Exercice 2. Population de Bruxelles de 18 à 65 ans selon le sexe et le statut d occupation - 2010

Exercice 2. Population de Bruxelles de 18 à 65 ans selon le sexe et le statut d occupation - 2010 Chapitre 1. Tableau à double entrée Exercices : solutions Texte provisoire. Merci pour les remarques, commentaires, suggestions Exercice 1 1.a. Population de Bruxelles selon le sexe et la nationalité Hommes

Plus en détail

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale.

Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4. EXEMPLE N 4 Essai de répétabilité et de reproductibilité : calculs à effectuer à la main pour comprendre la démarche générale. 4.1. Objectif Le calcul de la répétabilité et de la reproductibilité implique

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Devoir Survéillé n 2 (1 ere ES/L) Samedi 14 décembre Durée : 3 h calculatrice autorisée - pas d échange de calculatrice ou de matériel Proposition de corrigé Dans tout ce devoir, la

Plus en détail

DOCUMENT D QUESTIONS SUR LA FISCALITÉ SCOLAIRE À LA SUITE DES MODIFICATIONS APPORTÉES À LA LOI SUR L INSTRUCTION PUBLIQUE EN 2006

DOCUMENT D QUESTIONS SUR LA FISCALITÉ SCOLAIRE À LA SUITE DES MODIFICATIONS APPORTÉES À LA LOI SUR L INSTRUCTION PUBLIQUE EN 2006 DOCUMENT D QUESTIONS SUR LA FISCALITÉ SCOLAIRE À LA SUITE DES MODIFICATIONS APPORTÉES À LA LOI SUR L INSTRUCTION PUBLIQUE EN 2006 AVRIL 2012 Les questions liées à l application de l étalement seront traitées

Plus en détail

Le Dobble. Cellya Sirot en Tale S ; Jean-Baptiste Fraisse en Tale S et Jammy Mariotton en Tale S

Le Dobble. Cellya Sirot en Tale S ; Jean-Baptiste Fraisse en Tale S et Jammy Mariotton en Tale S Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. Année 2014-2015 Le Dobble Cellya Sirot en

Plus en détail

Statistiques inférentielles : estimation

Statistiques inférentielles : estimation Statistiques inférentielles : estimation Table des matières I Estimation ponctuelle d un paramètre 2 I.1 Moyenne................................................ 2 I.2 Écart-type...............................................

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

Économétrie. Francesco Quatraro M1 EFM 2010/2011

Économétrie. Francesco Quatraro M1 EFM 2010/2011 Francesco Quatraro M1 EFM 2010/2011 1 La violation des hypothèses Le modèle des MCO considère que les hypothèses suivantes sont toutes respectées: H1: le modèle est linéaire en x i,t H2: les valeurs x

Plus en détail

RÉPONSES AUX QUESTIONS FAISANT SUITE AU 2 E AFFICHAGE DU PROGRAMME D ÉQUITÉ SALARIALE

RÉPONSES AUX QUESTIONS FAISANT SUITE AU 2 E AFFICHAGE DU PROGRAMME D ÉQUITÉ SALARIALE RÉPONSES AUX QUESTIONS FAISANT SUITE AU 2 E AFFICHAGE DU PROGRAMME D ÉQUITÉ SALARIALE Question 1 Conformément à l'article 76 de la Loi sur l'équité salariale, je vous soumets par écrit des observations

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Statistiques de groupe

Statistiques de groupe Système Méthodologique d Aide à la Réalisation de Tests Statistiques de groupe et analyse des questions de votre épreuve Une unité de soutien de l IFRES Université de Liège L analyse des statistiques de

Plus en détail

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP)

LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP) LE TRAITEMENT STATISTIQUE I. Les types de traitements statistiques en fonction des questions-problèmes (QP) Dans une recherche, on se pose toujours une ou plusieurs questions qu'il s'agira de résoudre.

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle Chapitre 01 : Intégrales généralisées Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle fermé borné de Dans ce chapitre, on va étudier le cas d

Plus en détail

L ÉVALUATION DES ACTIONS

L ÉVALUATION DES ACTIONS L ÉVALUATION DES ACTIONS PLAN A. Le modèle général du dividende actualisé ; B. Le modèle du dividende actualisé à croissance unique; C. Le modèle du dividende actualisé à croissance multiple ; D. La valeur

Plus en détail

Initiation à la Microéconomie Licence 1, Semestre 1 TD 2 Correction des questions

Initiation à la Microéconomie Licence 1, Semestre 1 TD 2 Correction des questions Initiation à la Microéconomie Licence 1, Semestre 1 TD 2 Correction des questions 1. Utilisez les courbes d offre et de demande pour illustrer comment chacun des évènements suivants devrait affecter le

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

Introduction sur l analyse en composantes principales (ACP)

Introduction sur l analyse en composantes principales (ACP) Introduction sur l analyse en composantes principales (CP) ) Introduction sur un exemple à 2 dimensions On veut représenter graphiquement les profils d élèves qui ont été notés sur 2 matières (Français

Plus en détail

FICHE N 13 : SUIVRE ET COMPARER DES CARRIÈRES PROFESSIONNELLES

FICHE N 13 : SUIVRE ET COMPARER DES CARRIÈRES PROFESSIONNELLES FICHE N 13 : SUIVRE ET COMPARER DES CARRIÈRES PROFESSIONNELLES De quoi s agit-il? La mesure des risques discriminatoires dans les carrières professionnelles au sein d une organisation présente des difficultés.

Plus en détail

NORME INTERNATIONALE D AUDIT 510 MISSIONS D AUDIT INITIALES SOLDES D OUVERTURE

NORME INTERNATIONALE D AUDIT 510 MISSIONS D AUDIT INITIALES SOLDES D OUVERTURE NORME INTERNATIONALE D AUDIT 510 MISSIONS D AUDIT INITIALES SOLDES D OUVERTURE Introduction (Applicable aux audits d états financiers pour les périodes ouvertes à compter du 15 décembre 2009) SOMMAIRE

Plus en détail

Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières

Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières efficience Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières L activité hospitalière présente la particularité d être à la fois non stockable et de répondre

Plus en détail

L interconnexion de batteries.

L interconnexion de batteries. L interconnexion de batteries. Le présent article (largement inspiré de la théorie publiée dans le site WEB http://www.smartgauge.co.uk) a pour but de présenter les différentes méthodes d interconnexion

Plus en détail

TP statistiques : Analyses en Composantes Principales (ACP)

TP statistiques : Analyses en Composantes Principales (ACP) TP statistiques : Analyses en Composantes Principales (ACP) Introduction Nous allons, à partir données du ministère de l intérieur et l INSEE, étudier les divers facteurs liés aux accidents de la route.

Plus en détail

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux

Cours 9 08/11/2011. Les tableaux croisés et le test d indépendance du Chi-deux Cours 9 Les tableaux croisés et le test d indépendance du Chi-deux 1 Retour sur TP1 et Cours 8 Les tableaux croisés et le test du Chi-deux Utilité, postulats d utilisation et logique Exemple de calcul

Plus en détail

Maîtriser le binaire et les conversions réciproques binaire-décimal.

Maîtriser le binaire et les conversions réciproques binaire-décimal. Support Réseau des Accès Utilisateurs SI 2 BTS Services Informatiques aux Organisations 1 ère année Support Réseau des Accès Utilisateurs Objectifs : Chapitre 1 : Codage de l'information Le système binaire

Plus en détail

Le Saux Loïc Tanguy Brewal. Enquête d opinion sur la dégradation de la qualité de la télévision française dans le temps

Le Saux Loïc Tanguy Brewal. Enquête d opinion sur la dégradation de la qualité de la télévision française dans le temps Le Saux Loïc Tanguy Brewal Enquête d opinion sur la dégradation de la qualité de la télévision française dans le temps Traitement des enquêtes M1 ISC 2007/2008 Sommaire Introduction... 3 I ANALYSE DESCRIPTIVE

Plus en détail

La maximisation du profit

La maximisation du profit 2 La maximisation du profit Le profit, au sens économique du terme, se définit comme la différence entre les recettes perçues et les coûts supportés par une firme. Il est important de bien comprendre que

Plus en détail

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 :

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 : Cours 5-62-96 : Traitement et analyse des données Test autodiagnostique PARTIE 1 : Problème 1 : Pour chacune des distributions ci-dessous, identifier la population et la variable étudiée en précisant si

Plus en détail

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE Nous abordons dans cette leçon la partie analyse de sensibilité de la résolution d'un problème de programmation linéaire. Il s'agit d'étudier les conséquences

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

Le stress au travail chez les prestateurs de soins de santé par Kathryn Wilkins

Le stress au travail chez les prestateurs de soins de santé par Kathryn Wilkins Le stress au travail chez les prestateurs de soins de santé 35 Le stress au travail chez les prestateurs de soins de santé par Kathryn Wilkins Mots-clés : santé au travail, charge de travail, professions

Plus en détail

STATISTICA Test d hypothèseshè

STATISTICA Test d hypothèseshè TEST D HYPOTHESES STATISTICA Test d hypothèseshè TEST D HYPOTHESES Les étapes : Problématique Revue de la littérature Formulation d une hypothèse théorique Construction de l expérience (méthodologie) Lister

Plus en détail

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques (605) GESTION DE STOCK À DEMANDE ALÉATOIRE Résumé : Chaque mois, le gérant d un magasin doit

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

LE MARCHÉ DES TRANSPORTS ROUTIERS DE MARCHANDISES AU PORTUGAL FACE AUX DÉFIS DU MARCHÉ COMMUN EUROPÉEN

LE MARCHÉ DES TRANSPORTS ROUTIERS DE MARCHANDISES AU PORTUGAL FACE AUX DÉFIS DU MARCHÉ COMMUN EUROPÉEN Ministério das Obras Públicas, Transportes e Comunicações E FLUVIAIS LE MARCHÉ DES TRANSPORTS ROUTIERS DE MARCHANDISES AU PORTUGAL FACE AUX DÉFIS DU MARCHÉ COMMUN EUROPÉEN Maria Luísa Nunes Teresa Sousa

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

accompagnant un avant-projet de loi modifiant la loi sur les communes (vote électronique au conseil général)

accompagnant un avant-projet de loi modifiant la loi sur les communes (vote électronique au conseil général) DIAF/Projet du 09.03.2015 Rapport explicatif accompagnant un avant-projet de loi modifiant la loi sur les communes (vote électronique au conseil général) [date en toutes lettres] Nous avons l honneur de

Plus en détail

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011 Francesco Quatraro L1 AES 2010/2011 1 Les courbes de coût Considérons la fonction de coût qui donne le coût minimum de production d un niveau d output y: c(w 1, w 2, y) Considérons les prix des facteurs

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

Date : 03.12.2013 La feuille de format A4 et ses cylindres présentation

Date : 03.12.2013 La feuille de format A4 et ses cylindres présentation Date : 03.1.013 a feuille de format A4 et ses cylindres présentation Titre : a feuille de format A4 et ses cylindres Numéro de la dernière page : 8 Degré : 11 ème S+C : première partie 11 ème S + 1 ère

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

Devoir Maison + Correction - Probabilité Application du théorème central limite

Devoir Maison + Correction - Probabilité Application du théorème central limite Devoir Maison + Correction - robabilité Application du théorème central limite Le devoir est à rendre avant le 7 décembre 0 à Mme Dos Santos secrétaire de la licence 3 de la MIAGE. Les devoirs qui seront

Plus en détail

«Les marqueurs de relation»

«Les marqueurs de relation» «Les marqueurs de relation» www.colvir.net/prof/michel.durand On appelle "marqueurs de relation" ou "charnières du discours" tous les mots ou expressions auxquels on peut avoir recours pour indiquer les

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Le modèle de marché de Sharpe

Le modèle de marché de Sharpe Le modèle de marché de Sharpe Modèle statistique sans fondement théorique, supposant que les rendements sont normalement distribuées et que la Régression linéaire de Ri sur RM, donne la relation : αi et

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

Consensus Scientifique sur la. Pollution de l'air. Ozone

Consensus Scientifique sur la. Pollution de l'air. Ozone page 1/5 Consensus Scientifique sur la Pollution de l'air Ozone Source : OMS (2003-2004) Résumé & Détails: GreenFacts Contexte - Les effets sur la santé de trois principaux polluants de l'air ont été revus

Plus en détail

Excel 2002 Avancé. Guide de formation avec exercices et cas pratiques. Patrick Morié, Bernard Boyer

Excel 2002 Avancé. Guide de formation avec exercices et cas pratiques. Patrick Morié, Bernard Boyer Excel 2002 Avancé Guide de formation avec exercices et cas pratiques Patrick Morié, Bernard Boyer Tsoft et Groupe Eyrolles, 2003 ISBN : 2-212-11238-6 5 - ANALYSE ET SIMULATION MODÈLE ITÉRATIF 1 - NOTION

Plus en détail

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 105 HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 1. Introduction En statistiques il arrive fréquemment que les individus soient décrits par un grand nombre de caractères. : voitures décrites par leur

Plus en détail

Comment se détermine le taux de change entre deux monnaies? (résumé du cours - le 12 octobre 2015 )

Comment se détermine le taux de change entre deux monnaies? (résumé du cours - le 12 octobre 2015 ) Comment se détermine le taux de change entre deux monnaies? (résumé du cours - le 12 octobre 2015 ) Le taux de change donne le prix des monnaies entre elles. Comment se fixe ce prix? Pourquoi peut- il

Plus en détail

La sécurité alimentaire en Mauricie et au Centre-du-Québec, ESCC cycle 3.1 (2005)

La sécurité alimentaire en Mauricie et au Centre-du-Québec, ESCC cycle 3.1 (2005) La sécurité alimentaire en Mauricie et au Centre-du-, ESCC cycle 3.1 (2005) Avant-propos La sécurité alimentaire du ménage est un nouvel indicateur du cycle 3.1 de l'enquête sur la santé dans les collectivités

Plus en détail

La différence entre risque et volatilité : intérêt et limites du CAPM

La différence entre risque et volatilité : intérêt et limites du CAPM La différence entre risque et volatilité : intérêt et limites du CAPM Le CAPM (Capital Asset Pricing Model) établit la relation clef qui doit unir sur un marché efficient la prime de risque des différents

Plus en détail

Livrable 1 : Modélisation UML A13

Livrable 1 : Modélisation UML A13 CHATIRON Thibault LAGRANGE Emilien CHATIRON Thibault LAGRANGE Emilien Automne 2013 Automne 2013 Livrable 1 : Modélisation UML 1 Sommaire Introduction... 3 Diagramme de cas d utilisation... 4 Diagramme

Plus en détail

TD1, sur la Régression Logistique (STA 2211)

TD1, sur la Régression Logistique (STA 2211) TD, sur la Régression Logistique STA 22) Exercice : Un sondage international cité dans un article de presse le 4 décembre 2004) rapportait le faible taux d approbation de la politique du Président des

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Annexe. au mémoire présenté par. BCT Consultation Inc. dans le cadre des consultations publiques sur la. Loi sur l équité salariale

Annexe. au mémoire présenté par. BCT Consultation Inc. dans le cadre des consultations publiques sur la. Loi sur l équité salariale Annexe au mémoire présenté par BCT Consultation Inc. dans le cadre des consultations publiques sur la Loi sur l équité salariale Mars 2003 AVANT-PROPOS Cette annexe se veut un document complémentaire au

Plus en détail

Test d indépendance de deux variables qualitatives (Chi2) Rapport de chances et Odds-ratio

Test d indépendance de deux variables qualitatives (Chi2) Rapport de chances et Odds-ratio Université Paris Ouest - Nanterre La Défense Master M1 SES Enquêtes et méthodes d analyses quantitatives A.K. FERMIN et C. Hardouin Test d indépendance de deux variables qualitatives (Chi2) Rapport de

Plus en détail

CONSEIL SCOLAIRE PUBLIC DU GRAND NORD DE L ONTARIO

CONSEIL SCOLAIRE PUBLIC DU GRAND NORD DE L ONTARIO Modifiée : Page 1 de 20 DIRECTIVES ADMINISTRATIVES DÉFINITIONS 1. La direction d école ou la direction nouvellement nommée s entend : a) d une direction qualifiée sans expérience dans ce poste au sein

Plus en détail

IX. IMAGE D UN OBJET PAR UNE LENTILLE SPHERIQUE MINCE CONVERGENTE

IX. IMAGE D UN OBJET PAR UNE LENTILLE SPHERIQUE MINCE CONVERGENTE page IX-1 IX. IMGE D UN JET PR UNE LENTILLE SPHERIQUE MINCE CNVERGENTE Nous allons utiliser les foyers 1 et leurs propriétés pour établir la position et la grandeur d une image, connaissant celles de l

Plus en détail

ETUDE DE LA CARACTERISTIQUE DU DIPÔLE OHMIQUE : LOI D OHM UTILISATION D UN TABLEUR

ETUDE DE LA CARACTERISTIQUE DU DIPÔLE OHMIQUE : LOI D OHM UTILISATION D UN TABLEUR Nom : Prénom : Classe : Date : Fiche élève 1/ 6 Physique Chimie ETUDE DE LA CARACTERISTIQUE DU DIPÔLE OHMIQUE : LOI D OHM UTILISATION D UN TABLEUR Objectifs : - Établir la loi d Ohm à l aide d un tableur-grapheur

Plus en détail

Test de connaissance du français

Test de connaissance du français Test de connaissance du français Rapport d analyse des résultats Sessions de juin 29 à Haïti PiHa/SeGe 23/7/29 - CQE Sèvres, le 22 Juillet 29 Pierre-Antoine HARLAUX & Sébastien GEORGES Département évaluation

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Exercices supplémentaires Christophe Lalanne Emmanuel Chemla Exercices Exercice 1 Un grand magasin a n portes d entrée ; r personnes arrivent à des instants divers et choisissent au hasard une entrée indépendamment

Plus en détail

Rapport de l ANFR sur les expérimentations concernant la compatibilité TNT/LTE autour de 790 MHz

Rapport de l ANFR sur les expérimentations concernant la compatibilité TNT/LTE autour de 790 MHz Rapport de l ANFR sur les expérimentations concernant la compatibilité TNT/LTE autour de 790 MHz 1. Introduction Afin de compléter les études de compatibilité entre la bande numérique télévisuelle et la

Plus en détail

Informations complémentaires sur l ordonnancement

Informations complémentaires sur l ordonnancement Chapitre 5 Annexe D1 Informations complémentaires sur l ordonnancement Cette annexe présente les informations complémentaires utiles pour réaliser l ordonnancement d un événement. Ordonnancement Aspect

Plus en détail

Rapport final : Projet NETG

Rapport final : Projet NETG Rapport final : Projet NETG Génie Logiciel Introduction Il nous été demandé de réaliser une librairie permettant de manipuler des nombres entiers très grands dont les capacités dépassent les représentations

Plus en détail

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante.

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Essai de détermination du nombre de prélèvements à effectuer lors d un diagnostic amiante afin d assurer une représentativité

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation

RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation RAPPORT DE LABORATOIRE DE PHYSIQUE Polarisation Benjamin Frere & Pierre-Xavier Marique ème candidature en sciences physiques, Université de Liège Année académique 003-004 1 1 Objectifs Le but de cette

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Carte de la Terre Sainte

Carte de la Terre Sainte Carte de la Terre Sainte Page 1 La Terre Sainte regroupe 8 communes du bout du canton de Vaud, les dernières communes avant le canton de Genève. Elles représentent environ 15'000 habitants. C est une région

Plus en détail

Acquisition et perte de compétences en littératie au cours de la vie.

Acquisition et perte de compétences en littératie au cours de la vie. SOMMAIRES EN LANGAGE SIMPLE Acquisition et perte de compétences en littératie au cours de la vie. Sommaire par T. Scott Murray Quel est le sujet de cette étude? Ce rapport, préparé par Doug Willms de l

Plus en détail

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1 Qualité Six Sigma Sylvain ROZÈS 28 mars 2008 Sommaire 1 Introduction 1 2 Étude séparée de quatre échantillons 1 3 Étude sur l ensemble des échantillons 8 4 Étude sur les range 13 1 Introduction Le but

Plus en détail

E T U D E Octobre 2008 Étude portant sur la mutualisation de la partie terminale des réseaux en fibre optique

E T U D E Octobre 2008 Étude portant sur la mutualisation de la partie terminale des réseaux en fibre optique E T U D E Octobre 2008 Étude portant sur la mutualisation de la partie terminale des réseaux en fibre optique Synthèse Qu@trec/PMP Sommaire I. Introduction... 3 II. Objectifs et méthodologie... 3 A. principes

Plus en détail

Calcul des plafonds du bulletin

Calcul des plafonds du bulletin Calcul des plafonds du bulletin Fonctionnement et appel des plafonds sur le bulletin Lors du calcul du bulletin, les plafonds de la Sécurité Sociale, de la retraite, des congés spectacles, critères essentiels

Plus en détail

Mesurer l incidence de BDC sur ses clients

Mesurer l incidence de BDC sur ses clients Équipe de la Recherche et de l analyse économique de BDC Juillet 213 DANS CE RAPPORT Le présent rapport est fondé sur une analyse statistique réalisée par Statistique Canada visant à évaluer l incidence

Plus en détail