TIQUE DE FRANCE THÉORÈME DE BEILINSON EXPLICITE

Dimension: px
Commencer à balayer dès la page:

Download "TIQUE DE FRANCE THÉORÈME DE BEILINSON EXPLICITE"

Transcription

1 Bulletin de la SOCIÉTÉ MATHÉMATIQUE DE FRACE THÉORÈME DE BEILISO EXPLICITE François Brunault Tome 135 Fascicule SOCIÉTÉ MATHÉMATIQUE DE FRACE Publié avec le concours du Centre national de la recherche scientifique pages

2 Bull. Soc. math. France 135 (2), 2007, p VALEUR E 2 DE FOCTIOS L DE FORMES MODULAIRES DE POIDS 2 : THÉORÈME DE BEILISO EXPLICITE par François Brunault Résumé. ous montrons une version explicite du théorème de Beilinson pour la courbe modulaire X 1 (). Ce résultat est la première étape d un travail reliant, d une part, la valeur en 2 de la fonction L d une forme primitive de poids 2, et d autre part, la fonction dilogarithme associée à la courbe modulaire correspondante, dans l esprit de la conjecture de Zagier pour les courbes elliptiques. Comme corollaire de notre théorème, dans le cas où est premier, nous répondons à une question de Schappacher et Scholl concernant l image de l application régulateur de Beilinson. Abstract (Value at 2 of L-functions of modular forms of weight 2: an explicit version of Beilinson s theorem) We prove an explicit version of Beilinson s theorem for the modular curve X 1 (). This result is the first step of a work linking the value at 2 of the L-function of a newform of weight 2 on the one hand, and the dilogarithm function associated to the corresponding modular curve on the other, in the spirit of Zagier s conjecture for elliptic curves. As a corollary of our theorem, in the case is prime, we answer a question raised by Schappacher and Scholl concerning the image of Beilinson s regulator map. Texte reçu le 2 mars 2006, accepté le 15 mai 2006 François Brunault, Université de Lyon, Unité de mathématiques pures et appliquées, ES, Lyon, France brunault@umpa.ens-lyon.fr Classification mathématique par sujets (2000). 11F67, 11G40, 19F27. Mots clefs. K-théorie algébrique, conjecture de Beilinson, fonction L, valeur spéciale, régulateur, forme modulaire, courbe modulaire, courbe elliptique, dilogarithme. BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE /2007/215/$ 5.00 Société Mathématique de France

3 216 BRUAULT (F.) 1. Introduction Soient 1 un entier et X 1 () la courbe modulaire (complète) définie sur Q associée au sous-groupe de congruence {( ) } a b (1) Γ 1 () = SL 2 (Z) c 0 (mod ), a d 1 (mod ). c d Bloch et Beilinson [6], [4], [5], [22] ont développé des conjectures générales prédisant en particulier, dans le cas de la courbe X 1 (), la valeur spéciale en s = 2 de la fonction L(h 1 (X 1 ()), s) à un facteur rationnel près. Ces travaux ont permis à Goncharov et Levin de démontrer la conjecture de Zagier, reliant la valeur spéciale L(E, 2) associée à une courbe elliptique E définie sur Q, et la fonction dilogarithme elliptique [27], [14]. La conjecture de Beilinson fait intervenir une application régulateur dont la source est le groupe de K-théorie algébrique K 2 (X 1 ()) associé à X 1 (). La définition de cette application est la suivante. Soit F = Q(X 1 ()) le corps des fonctions de X 1 (). Pour toutes fonctions rationnelles u, v F, la forme différentielle (2) η(u, v) = log u d arg v log v d arg u est de classe C hors des zéros et pôles de u et v dans X 1 ()(C). On définit (3) r : K 2 (F ) Hom Q (Ω 1 (X 1 ()), R), ( ) {u, v} ω η(u, v) ω. X 1()(C) L application régulateur r s obtient alors en composant r avec l homomorphisme naturel K 2 (X 1 ()) K 2 (F ). ous écrirons (4) r : K 2 ( X1 () ) Z Q Hom Q ( Ω 1 ( X 1 () ), R ). Après tensorisation de (4) par C, nous obtenons une application, que nous noterons encore r, définie sur K 2 (X 1 ()) Z C et à valeurs dans le dual de S 2 (Γ 1 ()). Rappelons maintenant les résultats de Beilinson. Soit f S 2 (Γ 1 ()) une forme parabolique primitive (propre pour l algèbre de Hecke, nouvelle et normalisée), de caractère ψ. Soit χ un caractère de Dirichlet pair de niveau arbitraire. Beilinson a montré (voir [4], [23]) que la quantité L(f, 2)L(f, χ, 1) est égale à r (γ f,χ ), f pour un certain élément γ f,χ K 2 (X 1 ()) Z C défini à l aide d unités modulaires de niveau divisible par. Un autre ingrédient important est l existence d un caractère χ tel que L(f, χ, 1) soit non nul. Cependant, la méthode de Beilinson souffre des imprécisions suivantes : 1) L écriture de γ f,χ comme symbole de Milnor n est pas explicite. tome n o 2

4 THÉORÈME DE BEILISO EXPLICITE 217 2) Le régulateur associé à γ f,χ est calculé à un facteur algébrique près. 3) Le caractère χ est choisi parmi une infinité de caractères. Cet article précise les points 1) à 3) ci-dessus. Le résultat principal s énonce de la manière suivante. Soit O ( Y 1 () ) le groupe des unités modulaires définies sur Q de X 1 (). Pour tout caractère de Dirichlet χ modulo, pair et non trivial, il existe une unique unité modulaire u χ O ( Y 1 () ) Z C satisfaisant Ñ é (5) log u χ (z) = 1 π lim s 1 Re(s)>1 χ(n) Im(z)s mz + n 2s (m,n) Z 2 où le symbole indique la sommation sur (m, n) (0, 0). (z H), Théorème 1.1. Soit f S 2 (Γ 1 ()) une forme parabolique primitive, de caractère ψ. Pour tout caractère de Dirichlet χ modulo, pair, primitif et distinct de 1 et ψ, le symbole {u χ, u ψχ } appartient à K 2 (X 1 ()) Z C, et nous avons (6) L(f, 2)L(f, χ, 1) = πτ(χ) r ({u χ, u ψχ }), f. 2ϕ() La démonstration du théorème 1.1 reprend la méthode de Beilinson en explicitant chacune de ses étapes. L intérêt de la formule (6) réside dans le fait qu elle utilise uniquement des unités modulaires de niveau. Signalons aussi que Kato [15, 7] et Scholl [25, Thm ] ont obtenu des formules explicites pour des intégrales de nature analogue. Le lien entre ces formules et la formule (6) n est pas clair pour l auteur. Remarque 1.2. Pour obtenir une information sur L(f, 2) à partir de la formule précédente, il est nécessaire que L(f, χ, 1) soit non nul. Un théorème de Merel (voir l appendice de [8]) entraîne l existence d un caractère pair χ modulo tel que L(f, χ, 1) 0. Il serait donc utile de lever l hypothèse χ primitif dans le théorème 1.1, et de montrer que le caractère χ vérifiant L(f, χ, 1) 0 peut être supposé distinct de 1 et ψ. Le membre de droite de (6) est lié [8, Prop. 17] à la fonction dilogarithme G 1,2 associée à X 1 (), définie par Goncharov [13, Def. 9.1, p. 390]. Le théorème 1.1 peut donc être vu comme la première étape d un travail reliant la valeur en 2 des fonctions L des formes modulaires de poids 2 d une part, et le dilogarithme associé à X 1 () d autre part, dans l esprit de la conjecture de Zagier pour les courbes elliptiques. Une idée de Merel (voir [8, Thm. 93]) permet d exprimer le membre de droite de (6) comme combinaison linéaire explicite de symboles modulaires associés à f. Les coefficients de cette combinaison linéaire sont essentiellement les périodes de la forme différentielle η(u χ, u ψχ ). Lorsque f est la forme primitive BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

5 218 BRUAULT (F.) associée à une courbe elliptique E définie sur Q, on peut alors obtenir une formule pour L(E, 2) en divisant les deux membres de (6) par la période réelle de E. Ces deux résultats feront l objet de publications ultérieures. Le théorème 1.1 permet d apporter une réponse à la question suivante, soulevée par Schappacher et Scholl, concernant l image de l application régulateur r [23, 1.1.3]. otons K le sous-groupe de K 2 (F ) engendré par les symboles {u, v} avec u, v O ( Y 1 () ), et posons (7) K := ( K Z Q) ( K 2 (X 1 ()) Z Q ). otons V l espace d arrivée de l application régulateur (4). Question 1.3. Le groupe r (K ) engendre-t-il l espace vectoriel réel V? Théorème 1.4. Lorsque = p est premier, le groupe r p (K p ) engendre V p. Remarque 1.5. otons T End C (S 2 (Γ 1 ())) l algèbre de Hecke, engendrée par les opérateurs de Hecke T n (n 1) et les opérateurs diamants. ous proposons les deux problèmes suivants, variantes de la question de Schappacher et Scholl : 1) Le groupe r (K ) engendre-t-il V comme T Z R-module? 2) Existe-t-il γ K tel que r (γ) engendre V comme T Z R-module? otre travail s articule de la manière suivante. Les sections 2, 3 et 5 sont essentiellement des rappels sur des notions classiques : fonction de Green, séries d Eisenstein et unités modulaires. La section 4, consacrée au calcul d une intégrale par la méthode de Rankin-Selberg, constitue le cœur de la démonstration du théorème 1.1. Dans la section 6, nous construisons des éléments dans le groupe K 2 (X 1 ()) Z Q à partir de certaines unités modulaires de X 1 (). Enfin, les sections 7 et 8 contiennent respectivement la preuve des théorèmes 1.1 et 1.4. En terminant cette introduction, je souhaite remercier chaleureusement Loïc Merel et Jörg Wildeshaus pour leurs encouragements et conseils quant à la rédaction de cet article. tome n o 2

6 THÉORÈME DE BEILISO EXPLICITE Fonction de Green sur une courbe Soit X une surface de Riemann compacte, connexe, non vide. Une forme volume sur X est une 2-forme différentielle réelle de classe C sur X, partout non nulle et d intégrale 1 (voir [18, II, 1], [17, p. 329]). Fixons une forme volume vol X sur X. Soient X = {(x, x) x X} la diagonale de X X et C(X) le corps des fonctions méromorphes sur X. Le diviseur d une fonction méromophe f C(X) sera noté (8) (f) = x X ord x (f) x. Le support de f, noté Supp(f), est l ensemble des zéros et des pôles de f, ainsi (9) Supp(f) = { x X ord x (f) 0 }. ous rappelons maintenant les propriétés de la fonction de Green associée à X. Cette fonction joue le rôle de hauteur archimédienne en géométrie d Arakelov [18, chap. II]. Proposition 2.1 (Arakelov [2]). Il existe une unique fonction (10) G X : X X X R, appelée fonction de Green associée à X (et à vol X ), de classe C et vérifiant les trois conditions suivantes. 1) Pour tout x X, nous avons (11) y y G X (x, y) = iπ vol X ( y X {x} ). 2) Pour tout x X et pour toute coordonnée holomorphe locale z(y) au point x vérifiant z(x) = 0, la fonction (12) y G X (x, y) log z(y), définie sur un voisinage épointé de x dans X, s étend en une fonction de classe C sur un voisinage de x dans X. 3) Pour tout x X, nous avons (13) G X (x, y) vol X = 0. y X Démonstration. L existence de G X est démontrée par Arakelov [2, 1 2]. Coleman [18, II, 4] en a également donné une preuve. L unicité de G X résulte quant à elle facilement des propriétés 1), 2) et 3). ous mentionnons maintenant, sans les démontrer, quelques propriétés supplémentaires de la fonction de Green. BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

7 220 BRUAULT (F.) 4) La fonction G X est symétrique : nous avons (14) G X (x, y) = G X (y, x) (x, y X, x y). 5) La fonction G X a une singularité logarithmique le long de X. Cela signifie que pour tout x 0 X et pour toute coordonnée locale holomorphe z(x) au point x 0, la fonction (15) (x, y) G X (x, y) log z(x) z(y) s étend en une fonction de classe C sur un voisinage de (x 0, x 0 ) dans X X. 6) Pour toute fonction méromorphe f C(X), il existe une constante C f R telle que (16) log f(y) = Cf + ( ) ord x (f) G X (x, y) y X Supp(f), x Supp(f) ous avons en outre C f = X log f vol X. 7) En utilisant le langage des courants, nous pouvons condenser les propriétés 1) et 2) de la fonction G X en une seule équation : pour tout x X, nous avons 1 (17) iπ G X(x, ) = vol X δ x, où δ x désigne le courant d évaluation en x. 3. Séries d Eisenstein Dans cette section, nous suivons de près l exposition remarquable de Siegel [26, p. 1 73]. Le lecteur pourra y trouver les démonstrations que nous avons omises. ous allons introduire certaines séries d Eisenstein, fonctions analytiquesréelles sur le demi-plan de Poincaré H, invariantes sous l action d un sousgroupe de congruence de SL 2 (Z). Soit 1 un entier. Définition 3.1. Pour (u, v) (Z/Z) 2, z H et s C, Re(s) > 1, posons (18) E u,v (z, s) = m u () n v () Im(z) s mz + n 2s, où le symbole indique que l on exclut le terme éventuel (m, n) = (0, 0). tome n o 2

8 THÉORÈME DE BEILISO EXPLICITE 221 ous aurons également besoin de certaines combinaisons linéaires des séries E u,v. Les séries suivantes sont un cas très particulier de fonctions zêta d Epstein. Définition 3.2. Pour (a, b) (Z/Z) 2, z H et s C, Re(s) > 1, posons (19) ζ a,b (z, s) = Par définition, nous avons (20) ζ a,b = (m,n) Z 2 e (u,v) (Z/Z) 2 e 2iπ 2iπ (ma+nb) Im(z) s mz + n 2s (au+bv) E u,v. D autre part, la transformée de Fourier inverse donne (21) E u,v = 1 2 (au+bv) ζ a,b. (a,b) (Z/Z) 2 e 2iπ Pour (a, b) (Z/Z) 2 et z H fixé, la fonction s ζ a,b (z, s) admet un prolongement méromorphe au plan complexe [26, th. 3, p. 69]. Lorsque (a, b) = (0, 0), le prolongement a un unique pôle en s = 1 ; ce pôle est simple et de résidu égal à π. Lorsque (a, b) (0, 0), le prolongement est holomorphe sur C. otation 3.3. Pour z H, posons Å (22) ζa,b(z) lim ζ a,b (z, s) π ã si (a, b) = (0, 0), = s 1 s 1 ζ a,b (z, 1) si (a, b) (0, 0). D après (21), les fonctions s E u,v (z, s) admettent également un prolongement méromorphe au plan complexe. Elles possèdent un unique pôle en s = 1 ; ce pôle est simple et de résidu égal à π/ 2. En accord avec la notation 3.3, nous posons (23) Å Eu,v(z) = lim E u,v (z, s) s 1 ã π 2 (s 1) ( (u, v) (Z/Z) 2, z H ). Passons maintenant aux deux formules-limite de Kronecker. Ces formules donnent une expression de ζa,b (z). Pour z H, nous poserons y = Im(z). La première formule-limite [26, th. 1, p. 17] s écrit (24) ζ 0,0(z) = 2π ( γ log 2 log y 2 log η(z) ) (z H), où γ désigne la constante d Euler et (25) η(z) = e iπz 12 (1 e 2iπnz ) (z H). n=1 BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

9 222 BRUAULT (F.) La deuxième formule-limite de Kronecker [26, th. 2, p. 40] s écrit de la façon suivante. Soit (a, b) (Z/Z) 2 avec (a, b) (0, 0). Choisissons un couple de représentants (ã, b) de (a, b) dans Z 2. Alors (26) ζ a,b(z) = 2π2 b 2 2 Çã å y 2π log ϑ bz, z, où nous avons posé, pour w C et z H, (27) ϑ(w, z) = e iπz 6 (e iπw e iπw ) (1 e 2iπ(w+nz) )(1 e 2iπ(w nz) ). Les séries d Eisenstein E u,v vérifient la propriété de modularité suivante n=1 (28) E u,v (gz, s) = E (u,v)g (z, s) ( (u, v) (Z/Z) 2, g SL 2 (Z) ). où (u, v)g désigne le produit du vecteur ligne (u, v) par la matrice g. On déduit de (28) (29) E u,v(gz) = E (u,v)g (z) ( (u, v) (Z/Z) 2, g SL 2 (Z) ). En particulier, les séries Eu,v(z) (et donc les séries ζ a,b ) sont invariantes par la transformation z z + et admettent un développement de Fourier (non holomorphe) en la variable e 2iπz. Ce développement de Fourier se déduit des formules-limite de Kronecker. Pour z H et α Q, posons q = e 2iπz et q α = e 2iαπz. Pour tout entier r 1, notons σ(r) la somme des diviseurs positifs de r. ous avons alors (30) ζ0,0(z) = π2 y ( 3 π log y + 2π σ(r) ) γ log 2 + r (qr + q r ) (z H). Écrivons ensuite le développement de Fourier de ζa,0, avec a Z/Z, a 0. otons ζ = e 2iπ. ous avons alors, pour,z H (31) ζa,0(z) = π2 y ( 3 2π log 1 ζ ζa da + π + ) ζ da (q r + q r ). d Écrivons enfin le développement de Fourier de ζa,b, avec a, b Z/Z et b 0. otons B 2 (X) = X 2 X le deuxième polynôme de Bernoulli, et définissons une fonction 1-périodique B 2 sur R par ( ) (32) B 2 (x) = B 2 x x (x R), r=1 r=1 d r tome n o 2

10 THÉORÈME DE BEILISO EXPLICITE 223 où x désigne le plus grand entier x. Alors la quantité B 2 ( b/) ne dépend pas du représentant b de b dans Z et nous avons Ç å b (33) ζa,b(z) = 2π 2 B 2 y + π α r q r + αr q r (z H), r=1 où les coefficients α r sont donnés par la formule (34) α r = ζ da d d r r/d b () + ζ da d d r r/d b () (r 1). Définition 3.4. Pour toute fonction l : Z/Z C, nous définissons les séries d Eisenstein E l et El par (35) E l = l(v)e 0,v et El = l(v)e0,v. v Z/Z Les propriétés suivantes des séries E l et E l v Z/Z nous seront utiles. 1) Les séries E l et El, vues comme fonctions sur H, sont invariantes sous l action du groupe Γ 1 (). Si M est un diviseur de et l M est une fonction de Z/MZ dans C, il en va de même des séries E lm et El M, puisque Γ 1 () Γ 1 (M). En particulier, toutes ces séries induisent des fonctions sur la courbe modulaire Y 1 ()(C) := Γ 1 ()\H. De plus, ces fonctions admettent des singularités au plus logarithmiques en les pointes de X 1 ()(C). 2) Les applications l E l et l E l sont C-linéaires. otation 3.5. La transformée de Fourier l : Z/Z C de l est définie par (36) l(b) = l(v) e 2iπbv (b Z/Z). v Z/Z ous considérerons également l et l comme des fonctions -périodiques définies sur Z. Le développement de Fourier de El se déduit aisément de celui des séries ζ a,b. Proposition 3.6. Soit l : Z/Z C une fonction de somme nulle. La série d Eisenstein El admet le développement de Fourier ( (37) El l(n) ) (z) = n 2 y + π 1 ( 2 d ( l(d) ) + l( d) ) (q r + q r ). r n Z n 0 r=1 d r BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

11 224 BRUAULT (F.) Démonstration. ous avons El (z) = l(v)e0,v(z) v Z/Z = v Z/Z = 1 2 l(v) 1 b Z/Z 2 (a,b) (Z/Z) 2 ( l(b) a Z/Z e 2iπbv ζ a,b (z) ) ζa,b(z). Puisque l est de somme nulle, nous avons l(0) = 0 et le terme correspondant à b = 0 dans la somme ci-dessus disparaît. ous déduisons de (33) que pour b Z/Z, b 0, nous avons a Z/Z Il en résulte E l (z) = 2π2 Ç å b ζa,b(z) = 2π 2 B 2 y + π ( b Z/Z Ç b l(b)b 2 å ) y+ π 2 r=1 r=1 1 ( d + ) d (q r + q r ). r d r d r d b () d b () 1 ( d ( l(d)+ l( d) ) ) (q r +q r ). r La fonction B 2 est donnée par la série de Fourier suivante, qui converge normalement sur R [9, (1.56), p. 14] : ous en déduisons aisément B 2 (x) = 1 2π 2 b Z/Z ce qui achève de montrer (37). n Z n 0 e 2iπnx n 2 l(b)b 2 ( b ) = π 2 n Z n 0 d r (x R). l(n) n 2, Il est amusant de constater que le développement de Fourier de la série d Eisenstein El fait intervenir naturellement la transformée de Fourier de l. 4. Calcul d une intégrale par la méthode de Rankin-Selberg L espace S 2 (Γ 1 ()) des formes paraboliques de poids 2 pour le groupe Γ 1 () s identifie canoniquement à l espace Ω 1 (X 1 ()(C)) des 1-formes différentielles tome n o 2

12 THÉORÈME DE BEILISO EXPLICITE 225 holomorphes sur la surface de Riemann compacte X 1 ()(C), au moyen de l application f ω f := 2iπf(z)dz. Dans cette section, nous calculons l intégrale (38) Eχ ω f E χ, X 1()(C) lorsque f est une forme primitive (propre pour l algèbre de Hecke, nouvelle et normalisée), et χ (resp. χ ) est un caractère de Dirichlet pair modulo (resp. modulo un diviseur M de ). Il n est pas difficile de montrer que l intégrale (38) converge absolument, en utilisant la propriété de singularités au plus logarithmiques des fonctions Eχ et E χ. Rappelons que la série L associée à une forme parabolique f S 2 (Γ 1 ()), avec f(z) = n=1 a ne 2iπnz, est définie par (39) L(f, s) = n=1 a n (Re(s) n s > 3 ). 2 Cette fonction admet un prolongement holomorphe au plan complexe. otation 4.1. Pour tout caractère de Dirichlet χ modulo m 1, la série L de f tordue par χ est définie par (40) L(f, χ, s) = n=1 où par convention χ(n) = 0 lorsque (n, m) > 1. a n χ(n) (Re(s) n s > 3 ), 2 Cette fonction admet aussi un prolongement holomorphe au plan complexe. Théorème 4.2. Soit f S 2 (Γ 1 ()) une forme primitive, de caractère ψ. Soient χ un caractère pair modulo et χ un caractère pair modulo un diviseur M de. ous avons (41) Eχ ω f E χ = iπ ϕ() M L(f, 2)L(f, χ, 1) si ψ = χ χ, X 1()(C) 0 sinon, où χ désigne le caractère de Dirichlet modulo induit par χ. ous allons reformuler le théorème 4.2 en utilisant la forme modulaire universelle [21]. BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

13 226 BRUAULT (F.) Rappelons que l algèbre de Hecke T End C S 2 (Γ 1 ()) est le sous-anneau engendré par tous les opérateurs de Hecke T n (n 1) et les opérateurs diamants d (d (Z/Z) ). ous avons un isomorphisme canonique [21, lemma 9] T C = Hom C (S 2 (Γ 1 ()), C), T ( f a 1 (T f) ), où a 1 (.) désigne le premier coefficient de Fourier d une forme modulaire. La série L (éventuellement tordue) de l algèbre de Hecke est définie par (42) L(T, s) = T n 1 n, s L(T, χ, s) = T n χ(n) (Re(s) n s > 3 ). 2 n=1 Elle est à valeurs dans T C et admet un prolongement holomorphe au plan complexe. Via l isomorphisme (42), on a L(T, s), f = L(f, s) et L(T, χ, s), f = L(f, χ, s) pour tout f S 2 (Γ 1 ()). La fonction L(T, s) s interprète aussi comme la fonction L de la forme modulaire universelle Ω définie par (43) Ω = 2iπ T n e 2iπnz dz Ω 1( X 1 ()(C) ) Z T. n=1 n=1 Pour tout caractère de Dirichlet ψ modulo, notons (44) T ψ = { T T C T d = ψ(d) T pour tout d (Z/Z) }. la composante ψ-isotypique de T C. ous avons une décomposition canonique de T C en produit de sous-algèbres (45) T C = ψ T ψ, le produit étant étendu aux caractères de Dirichlet ψ pairs modulo. Les projections de L(T, s) et L(T, χ, s) sur T ψ seront notées respectivement L(T ψ, s) et L(T ψ, χ, s). ous nous proposons de démontrer le résultat suivant, qui entraîne le théorème 4.2. Théorème 4.3. Soient χ un caractère de Dirichlet pair modulo et χ un caractère de Dirichlet pair modulo un diviseur M de. En posant ψ = χ χ, nous avons (46) X 1()(C) E χ Ω E χ ϕ() = iπ M L(Tψ, 2)L(T ψ, χ, 1). tome n o 2

14 THÉORÈME DE BEILISO EXPLICITE 227 Démonstration. ous pouvons distinguer deux grandes étapes. La première, de nature globale, utilise la méthode de Rankin-Selberg et exprime l intégrale (46) en termes d une convolution de séries de Dirichlet, cf. (54). Pour une introduction à la méthode de Rankin-Selberg, voir [28, 3. B]. La seconde étape, de nature locale, exprime la série de Dirichlet précédente comme un produit eulérien (lemme 4.4). Il est à noter que jusqu au bout du calcul, nous tiendrons compte des facteurs locaux aux mauvaises places, c est-à-dire aux nombres premiers divisant. otons I le membre de gauche de (46). Montrons que I appartient à T ψ. Les séries d Eisenstein E χ et E χ vérifient, avec d (Z/Z) et z H, (47) Eχ( ) d z = χ(d)e χ (z), E χ ( ) d z = χ (d)e (z). χ Si nous effectuons le changement de variables z d z dans l intégrale I, nous obtenons I = χ(d)χ (d) Eχ d Ω E χ, X 1()(C) où d Ω désigne l image réciproque de la forme différentielle Ω par l automorphisme d. L isomorphisme (42) étant compatible à l action des opérateurs diamants, nous avons d Ω = Ω d, où d agit dans le membre de droite par multiplication sur le facteur T du produit tensoriel. Il en résulte I d = χ(d)χ (d)i = ψ(d)i pour tout d (Z/Z), d où I T ψ. Dans l intégrale I, nous pouvons donc remplacer Ω par sa composante de caractère ψ (48) Ω ψ Ω 1( X 1 ()(C) ) C T ψ, Remarquons que d Ω ψ = ψ(d) Ω ψ pour d (Z/Z), c est-à-dire Ω ψ S 2 (Γ 1 (), ψ) C T ψ, où S 2 (Γ 1 (), ψ) désigne le sous-espace des formes de caractère ψ. Pour calculer I, nous pouvons considérer l intégrale étendue au domaine Γ 1 ()\H. ous allons remplacer Eχ par une somme indexée par Γ \Γ 0 (), où Γ est le sous-groupe de SL 2 (Z) formé des matrices ( ±1 k 0 ±1) avec k Z. La fonction Eχ est définie en appliquant le procédé (23) à la fonction E χ. Remarquons que le résidu en s = 1 de la fonction s E χ (z, s) est indépendant de z. Or Ω ψ E χ = d ( E χ Ωψ) = 0, Y 1()(C) Y 1()(C) BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

15 228 BRUAULT (F.) d après la formule de Stokes. Pour calculer I, nous pouvons donc remplacer Eχ par E χ (., s), puis faire s = 1 : I = ( I(s) ) Ç å s=1 = E χ (., s) Ω ψ E χ. Y 1()(C) Le caractère analytique de la fonction I(s) pour s 1, et la possibilité d intervertir le signe et l opération (.) s=1, résultent du fait qu en chaque pointe de X 1 ()(C), la fonction z E χ (z, s) possède un développement de Fourier qui converge uniformément sur tout compact par rapport à s. Maintenant, nous avons χ(n)y s E χ (z, s) = mz + n 2s v (Z/Z) χ(v)e 0,v (z, s) = m 0 () (n,)=1 En introduisant le p.g.c.d. d = (m, n), nous obtenons E χ (z, s) = Or nous avons une bijection d 1 (d,)=1 = d 1 (d,)=1 m 0 () (n,)=1 (m,n)=d (µ,ν)=1 dµ 0 () (dν,)=1 = L(χ, 2s) (µ,ν)=1 µ 0 () (ν,)=1 χ(n)y s mz + n 2s χ(d) d 2s χ(ν)y s µz + ν 2s Γ \Γ 0 () = { (µ, ν) = 1 µ 0 () } / ± 1, χ(ν)y s µz + ν 2s s=1 [( )] a b [ (c, d) ]. c d Puisque 1 agit sans point fixe sur l ensemble des couples (µ, ν) ci-dessus, il vient E χ (z, s) = 2L(χ, 2s) χ(γ) Im(γz) s, γ Γ \Γ 0() où nous avons posé χ(γ) = χ(d) pour γ = ( a b c d ) Γ0 (). Pour z H, notons z = x + iy et posons (49) Ω ψ dx dy E = F (z), χ y 2 tome n o 2

16 THÉORÈME DE BEILISO EXPLICITE 229 avec F : H T ψ de classe C. La forme différentielle Ω ψ E est de caractère χ χ = ψ χ, tandis que dx dy/y2 est invariante sous l action de SL 2 (R). ous avons donc (50) F (γz) = χ(γ)f (z) (γ Γ 0 (), z H). ous en déduisons I(s) = 2L(χ, 2s) = 2L(χ, 2s) Γ 1()\H γ Γ \Γ 0() Γ 1()\H γ Γ \Γ 0() χ(γ) Im(γz) s F (z) Im(γz) s F (γz) dx dy y 2 dx dy y 2. L espace S 2 (Γ 1 ()) étant trivial pour = 1 ou 2, nous pouvons supposer 3 ; par suite le morphisme Γ 1 ()\H Γ 0 ()\H est fini, de degré 1 2ϕ(). Par conséquent I(s) = ϕ()l(χ, 2s) Im(γz) s dx dy F (γz) y 2 = ϕ()l(χ, 2s) Γ 0()\H γ Γ \Γ 0() Γ \H Im(z) s F (z) dx dy y 2 La dernière égalité est le point-clé de la méthode de Rankin-Selberg. Développons maintenant F en série de Fourier (51) F (x + iy) = m Z Fm (y)e 2iπmx. Un calcul simple utilisant la définition de Ω ψ et E χ, ainsi que le développement de Fourier (37), donne (52) (53) F 0 (y) = 16iπ3 M y2 c n e 4πny (y > 0), n=1 avec c n = Tn ψ dχ (d) T ψ (n 1), d n où nous notons Tn ψ l image de T n dans T ψ pour tout n 1. oter que dans l unique cas M = 1, la formule (37) ne s applique pas à f = χ, mais (30) permet quand même de mener le calcul, aboutissant au même résultat. Il vient BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

17 230 BRUAULT (F.) I(s) = ϕ()l(χ, 2s) = ϕ()l(χ, 2s) = 16iπ3 ϕ() M L(χ, 2s) y s m Z y s F0 (y) dy y 2 F m (y)e 2iπmx c n y s e 4πny dy. n=1 Puisque 0 y s e 4πny dy = Γ(s + 1)/(4πn) s+1, nous obtenons (54) I(s) = 16iπ3 ϕ() M 0 Γ(s + 1) (4π) s+1 L(χ, 2s) c n n, s+1 n=1 dx dy y 2 les coefficients c n étant donnés par (53). ous voici arrivés au terme de la première étape du calcul. Lemme 4.4 (une convolution de séries de Dirichlet). Soient ψ un caractère de Dirichlet modulo et χ 1, χ 2 deux caractères de Dirichlet arbitraires. Posons (55) σ χ1,χ 2 (n) = (n) dχ 1 (d)χ 2 (n 1). d d n ous avons alors pour s C, Re(s) > 5 2 (56) Tn ψ σχ 1,χ 2 (n) n s = L(Tψ, χ 2, s) L(T ψ, χ 1, s 1), L(ψχ 1 χ 2, 2s 2) n=1 où nous avons posé L(ψχ 1 χ 2, s) = n=1 ψ(n)χ 1 (n)χ 2 (n)/n s. Démonstration. ous avons pour tout ɛ > 0 les estimations T n = O(n 1 2 +ɛ ) et σ χ1,χ 2 (n) = O(n 1+ɛ ), ce qui montre la convergence absolue de la série du membre de gauche de (56) pour Re(s) > 5 2. La fonction arithmétique σ χ 1,χ 2 est convolution de deux fonctions multiplicatives. Elle est donc faiblement multiplicative i.e. vérifie σ χ1,χ 2 (mn) = σ χ1,χ 2 (m)σ χ1,χ 2 (n) ( (m, n) = 1 ). Il en va de même de la fonction n Tn ψ 1/n s. Il suit que le membre de gauche de (56) admet l expression en produit eulérien ( ) (57) T ψ p σχ 1,χ 2 (p a ) a p as. p premier a=0 tome n o 2

18 THÉORÈME DE BEILISO EXPLICITE 231 D autre part, nous avons formellement (58) L p (T ψ, X) := T ψ p 1 a Xa = 1 Tp ψ X + pψ(p) X 2 Tψ [[X]], a=0 où 1 désigne l élément unité de T ψ. ous pouvons calculer σ χ1,χ 2 (p a ) grâce à la multiplicativité de χ 1 et χ 2. ous trouvons χ 2 (p) a+1 (pχ 1 (p)) a+1 si χ 1 (p) 0 ou χ 2 (p) 0; σ χ1,χ 2 (p a χ 2 (p) pχ 1 (p) ) = 1 si χ 1 (p) = χ 2 (p) = 0 et a = 0; 0 si χ 1 (p) = χ 2 (p) = 0 et a 1. Il en résulte que, pour p premier tel que χ 1 (p) 0 ou χ 2 (p) 0, le facteur local en p du produit eulérien (57) est donné par χ 2 (p) χ 2 (p) pχ 1 (p) 1 1 T ψ p χ 2 (p)p s + ψ(p)χ 2 (p) 2 p 1 2s pχ 1 (p) χ 2 (p) pχ 1 (p) 1, 1 Tp ψ χ 1 (p)p 1 s + ψ(p)χ 1 (p) 2 p 3 2s soit après simplifications ( (59) 1 ψ(p)χ1 (p)χ 2 (p) p 2 2s) ( L p T ψ, χ 2 (p)p s) ( L p T ψ, χ 1 (p)p 1 s), et ce dernier résultat est encore valable lorsque χ 1 (p) = χ 2 (p) = 0. Pour tout caractère de Dirichlet ɛ, nous avons ( (60) L p T ψ, ɛ(p)p s) = L(T ψ (, ɛ, s) Re(s) > 3 2). p premier En prenant le produit sur tous les nombres premiers à partir de l expression (59), nous obtenons le résultat souhaité. Suite et fin de la démonstration du théorème 4.3. Reprenons l égalité (54). Utilisons le lemme 4.4 avec χ 1 = χ (modulo M) et χ 2 = 1 (modulo 1). Il vient I(s) = 16iπ3 ϕ() M = 16iπ3 ϕ() M Γ(s + 1) (4π) s+1 L(χ,, s + 1) L(T ψ, χ, s) 2s)L(Tψ L(ψχ, 2s) Γ(s + 1) (4π) s+1 L(Tψ, s + 1) L(T ψ, χ, s), puisque L(ψχ, s) = L(ψχ, s) = L(χ, s). La fonction s 1 2 s (2π) s Γ(s)L(T, s) BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

19 232 BRUAULT (F.) admettant un prolongement holomorphe au plan complexe, il en va de même de la fonction s I(s). En évaluant en s = 1, il vient finalement I = I(1) = iπ ϕ() M L(Tψ, 2)L(T ψ, χ, 1). Cela achève la démonstration du théorème 4.3. Remarque 4.5. Il n y a pas de raison a priori de se limiter à la torsion par un caractère dans le théorème 4.3. La formule (46) reste-t-elle valable si l on remplace χ par une application paire quelconque de Z/MZ dans C? 5. Unités modulaires En vue d obtenir une version explicite du théorème de Beilinson, il est nécessaire d établir un lien précis entre les séries d Eisenstein introduites dans la section 3 et les unités modulaires. Les résultats que nous présentons ici sont classiques [16]. Soit P l ensemble des pointes de la courbe modulaire X 1 ()(C), de sorte que X 1 ()(C) = Y 1 ()(C) P. Par définition, une unité modulaire est une fonction méromorphe u C(X 1 ()) vérifiant Supp(u) P (par abus de langage, nous dirons que u est à support dans P ). Le groupe des unités modulaires sera noté O ( Y 1 ()(C) ). otons Div 0 (P ) le groupe des diviseurs de degré 0 sur P. Le théorème de Manin-Drinfel d [12] énonce que l application naturelle O ( Y 1 ()(C) ) Q Div 0 (P ) Q, u 1 (u) 1 est surjective. ous en déduisons une suite exacte (61) 0 C C O ( Y 1 ()(C) ) C Div 0 (P ) C 0. L ensemble P est décrit par P = Γ 1 ()\P 1 (Q). Par définition, la pointe infinie P est la classe de P 1 (Q). ous choisissons le modèle de X 1 () sur Q tel que cette pointe soit définie sur Q [10, 9.3.6]. Le groupe Γ opère par multiplication à droite sur SL 2 (Z), et nous avons une bijection [( )] = SL 2 (Z)/Γ P 1 a b (Q), a c d c Soit E l ensemble des éléments d ordre du groupe additif (Z/Z) 2. On dispose d une bijection E = Γ1 ()\ SL 2 (Z) faisant correspondre à x E la classe d une matrice ( ) a b c d SL2 (Z) telle que (c, d) x (mod ). On en déduit les identifications suivantes (62) P = Γ1 ()\P 1 (Q) = Γ 1 ()\ SL 2 (Z)/Γ = E /Γ. tome n o 2

20 THÉORÈME DE BEILISO EXPLICITE 233 otation 5.1. Pour tout (u, v) E, nous notons [u, v] P l image par la bijection (62) de la classe de (u, v) dans E /Γ. Lemme 5.2. Pour toute application l : Z/Z C de somme nulle, la série d Eisenstein El induit une fonction Y 1()(C) C de classe C, qui vérifie El = 0. Démonstration. ous avons vu dans la section 3 que El : H C est de classe C et induit une fonction sur Y 1 ()(C). Montrons que cette dernière fonction est de classe C. L identité (37) nous permet d écrire El = E 1 + E 2, où E 1 (resp. E 2 ) est une fonction holomorphe (resp. antiholomorphe) sur H. otons π : H Y 1 ()(C) la projection naturelle. Soit z 0 H. D après [7, Ex. i), p. 75], nous pouvons trouver une coordonnée locale holomorphe u (resp. v) au point z 0 H (resp. π(z 0 ) Y 1 ()(C)), de telle sorte que la fonction π soit donnée au voisinage de z 0 par v = π(u) = u n, où n est un entier 1 (l indice de ramification de π en z 0 ). Dans ces coordonnées, nous avons donc (63) E l (v) = E 1 (u) + E 2 (u). Soit ζ n = e 2iπ n. ous avons E 1 (uζ n ) + E 2 (uζ n ) = E 1 (u) + E 2 (u) d après l équation (63). Par conséquent, la fonction u E 1 (uζ n ) E 1 (u) = E 2 (uζ n ) E 2 (u) est holomorphe et antiholomorphe, donc constante au voisinage de 0. Cette constante vaut E 1 (0) E 1 (0) = 0, d où E 1 (uζ n ) = E 1 (u) et E 2 (uζ n ) = E 2 (u). Donc E 1 (resp. E 2 ) induit une fonction holomorphe (resp. antiholomorphe) de v. D après (63), la fonction El est alors de classe C sur un voisinage de π(z 0 ) dans Y 1 ()(C) et vérifie El = 0 sur ce voisinage. Toute unité modulaire u O ( Y 1 ()(C) ) induit une fonction holomorphe sur H et ne s annulant pas. Cette fonction est invariante par z z +1 et admet donc un développement de Fourier (64) u(z) = a n q n (z H, q = e 2iπz ) n=n 0 avec a n0 0, de sorte que n 0 = ord (u). ous définissons alors (65) û( ) := a n0, et nous dirons que u est normalisée lorsque û( ) = 1. Par C-linéarité, les définitions de (u), log u et û( ) s étendent au cas où u appartient au groupe O ( Y 1 ()(C) ) C. Remarquons que l application u û( ) scinde la suite exacte (61). BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

21 234 BRUAULT (F.) Proposition 5.3. Soit l : Z/Z C une fonction de somme nulle. Il existe une unique unité modulaire u l O ( Y 1 ()(C) ) C vérifiant (66) log u l = 1 π E l et u l ( ) = 1 C C. L ordre de u l en une pointe P = [u, v] P est donné par 1 (67) ord P (u l ) = (u, ) 2 l(au + bv) B2 (a,b) (Z/Z) De plus, l application l u l ainsi définie est C-linéaire. Ç å b. Démonstration. Soit P = [u, v] P une pointe, avec (u, v) E, et g = ( ) α β γ δ SL2 (Z) une matrice telle que (γ, δ) (u, v) (mod ). D après (29), nous avons El (gz) = l(w)e0,w(gz) w Z/Z = w Z/Z = = 1 w Z/Z l(w)e uw,vw(z) l(w) 1 2 (a,b) (Z/Z) 2 2 (a,b) (Z/Z) 2 l(au + bv) ζ a,b(z). e 2iπ (auw+bvw) ζa,b(z) Puisque l(0) = 0, nous pouvons omettre le terme (a, b) = (0, 0) dans la somme précédente. D après les développements de Fourier (31) et (33), nous voyons que El (gz) admet un développement de Fourier de la forme (68) El (gz) = K P y + α g,0 + α g,r q r + βg,r q r, où K P, α g,r et β g,r sont des nombres complexes (K P ne dépend pas du choix de la matrice g). La constante K P est donnée par r=1 (69) K P = 2π2 2 2 l(au ( b ) + bv) B2. (a,b) (Z/Z) Un paramètre local en la pointe P P est donné par (70) q P = q (u,) = e 2iπ(u,) z. Fixons une forme volume vol X1() sur X 1 ()(C) et notons G X1() la fonction de Green associée, définie dans la section 2. otons π : H Y 1 ()(C) la tome n o 2

22 THÉORÈME DE BEILISO EXPLICITE 235 projection naturelle. D après (12) et (70), nous avons l estimation (71) G X1()( P, π(gz) ) = log qp + O y (1) 2π(u, ) = y + O y (1) (z H). Définissons une fonction φ sur Y 1 ()(C) par (72) φ = E l + 2π P P K P (u, ) G X 1()(P,.). D après le lemme 5.2, la fonction φ est de classe C. D après (12), (68) et (71), la fonction φ s étend en une fonction de classe C sur X 1 ()(C). ous avons sur Y 1 ()(C) (et donc sur X 1 ()(C)) φ = E l + 2π = i 2 P P P P K P (u, ) iπ vol X 1() K P (u, ) vol X 1(). D après la formule de Stokes X φ = 1()(C) X 1()(C) d( φ) = 0. Comme vol X1() est d intégrale 1, nous en déduisons K P (73) (u, ) = 0. P P Il en résulte φ = 0, c est-à-dire que φ est constante sur X 1 ()(C). D après la suite exacte scindée (61) et (73), il existe une unique unité modulaire u l O (Y 1 ()(C)) C telle que (74) div u l = 2π 2 P P K P (u, ) [P ] et u l( ) = 1 C C. D après (16), il existe une constante C C telle que (75) log u l = C K P 2π 2 (u, ) G X 1()(P, ). P P ous déduisons de (72) et (75) l existence d une constante C C telle que (76) log u l = C + E l π Pour déterminer C, considérons les développements de Fourier des deux membres de (76). D après la définition (65) de u l ( ), le terme constant du développement de Fourier de log u l vaut log u l ( ), c est-à-dire 0. Or, le terme constant du développement de Fourier (37) de El est nul. ous avons donc C = 0. L identité (67) résulte de la définition de u l. D après cette même BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

23 236 BRUAULT (F.) identité, l application l div u l est C-linéaire. Or, u l n est autre que l image de div u l par l application linéaire Div 0 (P ) C O (Y 1 ()(C)) C scindant la suite exacte (61). Donc l u l est C-linéaire. ous appliquons maintenant la proposition 5.3 dans le cas où l est un caractère de Dirichlet χ pair modulo. ous convenons d étendre χ par 0 en une application de Z/Z dans C. La somme de Gauß de χ est définie par (77) τ(χ) = χ(v)e 2iπv. v Z/Z La condition que χ soit de somme nulle équivaut à ce que χ soit non trivial. Dans ce cas, l unité modulaire u χ est donc bien définie. La proposition 5.3 peut être précisée de la manière suivante. Proposition 5.4. Pour tout caractère de Dirichlet χ modulo, pair et non trivial, le diviseur de u χ est donné par L(χ, 2) (78) (u χ ) = π 2 v (Z/Z) /±1 χ(v) [0, v]. Démonstration. Calculons ord P (u χ ) pour P = [u, v] P. ous avons Ç å 1 b ord P (u χ ) = (u, ) 2 χ(au + bv) B 2 (a,b) (Z/Z) 1 = (u, ) (a,b) (Z/Z) 2 w (Z/Z) χ(w)e 2iπ(au+bv)w Ç å b B 2. Or nous avons a Z/Z e 2iπauw = 0 si u 0. Il en résulte ord P (u χ ) = 0 si u 0. Supposons maintenant u = 0, c est-à-dire P = [0, v] avec v (Z/Z). ous obtenons ord P (u χ ) = 1 Ç å χ(w)e 2iπbvw b B 2 b Z/Z w (Z/Z) = 1 Ç å b χ(bv) B 2 b Z/Z L(χ, 2) = χ(v) π 2, comme dans la démonstration de la proposition 3.6. Il en résulte (78). tome n o 2

24 THÉORÈME DE BEILISO EXPLICITE 237 Remarque 5.5. Pour tout v (Z/Z) /±1, la pointe [0, v] n est autre que l image de la pointe par l opérateur diamant v. Elle est donc définie sur Q. De manière générale, le groupe Aut(C/Q) agit sur P par la règle suivante [23, 3.0.2] (79) [u, v] σ = [ɛ(σ) 1 ( u, v] (u, v) E, σ Aut(C/Q) ), où ɛ : Aut(C/Q) (Z/Z) est le caractère cyclotomique, défini par σ(e 2iπ 2iπɛ(σ) ) = e. ous allons maintenant étudier le corps de définition et le corps des coefficients de l unité modulaire u χ. Pour cela, nous aurons besoin de la définition suivante. otons O ( Y 1 () ) le groupe des unités de l anneau des fonctions régulières de Y 1 (). Il est naturellement inclus dans O ( Y 1 ()(C) ). Pour tout sous-corps K de C, désignons par Y 1 () K l extension des scalaires de Y 1 () à K. Définition 5.6. Soient u O ( Y 1 ()(C) ) Z C et K, L deux sous-corps de C. ous dirons que u est définie sur K et à coefficients dans L lorsque u O (Y 1 () K ) Z L O ( Y 1 ()(C) ) Z C. Lemme 5.7. Pour toute fonction de somme nulle l : Z/Z C, l unité modulaire u l est définie sur Q et à coefficients dans Q( l), le corps engendré par les valeurs de l. Démonstration. Posons L = Q( l). otons Div 0 Q P le sous-groupe de Div 0 P formé des diviseurs qui sont globalement invariants par Aut(C/Q). ous avons un diagramme commutatif (80) 0 Q L O ( Y 1 () ) L Div 0 Q P L 0 0 C L O ( Y 1 ()(C) ) L Div 0 P L 0, où les flèches verticales sont injectives et les lignes sont exactes (l exactitude à droite de la ligne du haut résulte du théorème Hilbert 90). L application u û( ) scinde de manière compatible les deux suites exactes du diagramme (80). D après (67), nous avons ord P (u l ) L pour toute pointe P P. Soit σ Aut(C/Q). Le changement de variables a = ɛ(σ)a dans la formule (67) montre que ord P σ(u l ) = ord P (u l ) (P P, σ Aut(C/Q)). BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

25 238 BRUAULT (F.) En conséquence D = div u l Div 0 Q P L et u l n est autre que l image de D par l une des deux compositions du diagramme commutatif Div 0 Q P L O ( Y 1 () ) L Div 0 P L O ( Y 1 ()(C) ) L. Par suite, nous avons u l O ( Y 1 () ) L. 6. K 2 de la courbe modulaire X 1 () Le groupe de K-théorie de Quillen K 2 (X 1 ()) associé à la courbe X 1 () admet, après tensorisation par Q, la description explicite suivante. otons F = Q(X 1 ()) le corps des fonctions de X 1 (). L application symbole modéré (81) K 2 (F ) =( P ) P Q(P ), P X 1()(Q) où Q(P ) désigne le corps de définition de P, est définie par (82) P : K 2 (F ) Q(P ), {f, g} ( 1) ord P (f) ord P (g) ( f ord P (g) /g ord P (f) ) (P ). La localisation en K-théorie algébrique entraîne alors un isomorphisme [11] (83) K 2 (X 1 ()) Q = Ker( Q). Étant données deux unités modulaires u, v O ( Y 1 () ), nous pouvons former le symbole de Milnor {u, v} K 2 (F ). Dans la proposition suivante, nous donnons une condition suffisante sur u et v pour que {u, v} appartienne à K 2 (X 1 ()) Q. otons D X 1 ()(Q) l orbite de la pointe infinie sous l action des opérateurs diamants. Rappelons qu une unité modulaire u est normalisée lorsque le développement de Fourier de u s écrit u(z) = e 2iπmz + n>m a ne 2iπnz avec m Z. Proposition 6.1. Soient u, v O ( Y 1 () ) des unités modulaires à support dans D et normalisées. Alors le symbole modéré de l élément 2{u, v} K 2 (F ) est trivial. En particulier, on a {u, v} K 2 (X 1 ()) Q. Démonstration. Il suffit d établir P {u, v} = ±1 en tout point P D. Lorsque P =, c est évident puisque u et v sont supposées normalisées. D autre part, nous avons [0,λ] {u, v} = { λ u, λ v } ( λ (Z/Z) / ± 1 ). tome n o 2

26 THÉORÈME DE BEILISO EXPLICITE 239 Les unités modulaires λ u et λ v sont à supports dans D. Il nous suffit donc de montrer l assertion suivante : pour toute unité modulaire normalisée u, l unité modulaire u λ := λ u est plus ou moins normalisée i.e. vérifie û λ ( ) = ±1. Considérons le diviseur de u comme une fonction paire de (Z/Z) dans C, et décomposons cette fonction suivant les caractères de Dirichlet (pairs) modulo (84) (u) = a χ l χ avec l χ := χ(v) [0, v]. χ v (Z/Z) /±1 Puisque le diviseur de u est de degré 0, la somme porte sur les caractères non triviaux. D après la proposition 5.4 et puisque L(χ, 2) 0 pour tout caractère de Dirichlet χ, nous pouvons écrire (85) (u) = χ 1 a χ (u χ ) (a χ C). Dans le groupe O ( Y 1 () ) C noté multiplicativement, nous avons donc (86) u = C u χ a χ (C Q C). χ 1 Puisque les unités modulaires u et u χ sont normalisées, on a C = 1 et (87) u λ = ( u χ,λ a χ uχ,λ = λ ) u χ. χ 1 Le noyau du morphisme naturel Q Q C étant réduit à {±1}, il suffit de montrer que u χ,λ est normalisée. Puisque (u χ,λ ) = λ (u χ ) = χ(λ) (u χ ), nous pouvons écrire (88) u χ,λ = C χ,λ u χ χ(λ) (C χ,λ Q C). Mais alors, pour λ, µ (Z/Z) / ± 1, on a d une part (89) u χ,λµ = C χ,λµ u χ χ(λµ) et d autre part (90) u χ,λµ = µ u χ,λ = C χ,λ C χ,µ u χ χ(λ) χ(µ), ce qui entraîne C χ,λµ = C χ,λ C χ,µ. L application λ C χ,λ est donc un homomorphisme de groupes. Puisque Q C est un groupe sans torsion, on en déduit C χ,λ = 1, ce qui montre que u χ,λ = u χ χ(λ) est normalisée. BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

27 240 BRUAULT (F.) 7. Démonstration du théorème 1.1 Donnons-nous une forme primitive f S 2 (Γ 1 (), ψ) et un caractère χ modulo, pair, primitif et distinct de 1 et ψ. Les unités modulaires u χ et u ψχ sont normalisées, et à support dans D d après la proposition 5.4. Par conséquent, la proposition 6.1 s applique et {u χ, u ψχ } appartient à K 2 (X 1 ()) C. Le régulateur associé à cet élément s exprime à l aide d une intégrale de Rankin-Selberg, comme le montre le calcul suivant. ( r {uχ, u ψχ } ), f = η(u χ, u ψχ ) ω f = X 1()(C) X 1()(C) ( log uχ d arg u ψχ log u ψχ d arg u χ ) ωf. Pour toute fonction rationnelle u 0, on a Ç å log u log u d arg u = d Im(log u) = d = 1 Å du 2i 2i u du ã u Ç å log u + log u d log u = d Re log u) = d( = 1 Å du 2 2 u + du ã u et par suite d arg u ω f = 1 du 2i u ω f = id ( ) log u ω f. Pour toutes fonctions rationnelles u, v 0, une intégration par parties et la formule de Stokes donnent log u d ( ) log v ω f = log v d ( ) log u ω f. X 1()(C) Il vient donc ( r {uχ, u ψχ } ), f = 2i = 2i = 2i π 2 X 1()(C) X 1()(C) X 1()(C) X 1()(C) log u ψχ d ( log u χ ω f ) log u ψχ ω f log u χ E ψχ ω f E χ. Le caractère χ étant primitif, nous avons χ = τ(χ)χ, d où E χ = τ(χ)e χ. On utilise alors le théorème 4.2 avec M =, ce qui donne ( r {uχ, u ψχ } ), f = 2i π 2 Eψχ ω f E χ τ(χ) X 1()(C) = 2ϕ() L(f, 2)L(f, χ, 1). πτ(χ) tome n o 2

28 THÉORÈME DE BEILISO EXPLICITE 241 Cela montre (6) et achève la démonstration du théorème Question de Schappacher et Scholl Schappacher et Scholl ont soulevé le problème suivant [23, 1.1.3] concernant l image de l application régulateur r définie en (4). Rappelons que F = Q(X 1 ()) désigne le corps des fonctions de X 1 (). otons K le sous-groupe de K 2 (F ) engendré par les symboles {u, v} avec u, v O ( Y 1 () ) et posons (91) K := ( K Q) ( K 2 (X 1 ()) Q ), où l intersection est définie via (83). De manière informelle, K est formé des éléments de K 2 (X 1 ()) Q que l on peut écrire en termes de symboles de Milnor associés à des unités modulaires de niveau. otons V l espace d arrivée de r. Question 1.3. Le groupe r (K ) engendre-t-il l espace vectoriel réel V? Théorème 1.4. Lorsque = p est premier, le groupe r p (K p ) engendre V p. Démonstration. Rappelons succintement la définition des symboles de Manin [20]. Pour tous points α, β P 1 (Q), notons {α, β} le chemin géodésique reliant α à β dans le demi-plan de Poincaré. Pour tout x E, choisissons une matrice g x = ( ) a b c d SL2 (Z) telle que (c, d) x (mod ), et notons ξ(x) l image dans X 1 ()(C) du chemin {g x 0, g x } (elle ne dépend pas du choix de la matrice g x ). Le cycle ξ(x) est appelé symbole de Manin associé à x. D après [20, 1.6], les symboles de Manin engendrent le groupe d homologie relative H 1 (X 1 ()(C), P, Z). Ils vérifient les relations de Manin (92) ξ(x) + ξ(xσ) = 0 et ξ(x) + ξ(xτ) + ξ(xτ 2 ) = 0 (x E ), avec σ = ( ) ( et τ = 0 1 1), matrices d ordres respectifs 2 et 3 dans PSL 2 (Z). Supposons maintenant = p premier. L ensemble des pointes de X 1 (p)(c) s écrit (93) P p = { [0, λ], λ (Z/pZ) / ± 1 } { [λ, 0], λ (Z/pZ) / ± 1 }. L involution d Atkin-Lehner W p : z 1/(pz) sur X 1 (p)(c) échange les pointes [0, λ] et [λ, 0]. Pour tout λ (Z/pZ) / ± 1, notons u λ O (Y 1 (p)) Q l unique unité modulaire vérifiant (94) div u λ = [0, λ] [0, 1] et û λ ( ) = 1, BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

29 242 BRUAULT (F.) ce qui est possible d après le théorème de Manin-Drinfel d [12] ou bien la proposition 5.4. D après la proposition 6.1, nous avons ( {u λ, u µ } K 2 X1 (p) ) ( Q λ, µ (Z/pZ) / ± 1 ). En particulier {u λ, u µ } K p. otons 1 p le caractère trivial modulo p. Soient χ, χ 1 p deux caractères pairs modulo p. Par linéarité et d après (78), nous avons la formule suivante dans V p R C r p ( {uχ, u χ } ) = L(χ, 2)L(χ, 2) π 4 λ,µ (Z/pZ) /±1 χ(λ)χ (µ)r p ( {uλ, u µ } ). ( Puisque r p {uχ, u χ } ) r p (K p ) C, il suffit de montrer que l espace vectoriel complexe V engendré par les r p {uχ, u χ } ) est égal à V p R C. Les ( unités modulaires u χ étant propres pour l action des opérateurs diamants, il en va de même des symboles {u χ, u χ }. L application régulateur étant compatible aux diamants, il suit que l espace V est stable sous l action de ces opérateurs. Il suffit donc de montrer que pour tout caractère ψ modulo p, les composantes ψ-isotypiques de V et V p R C sont égales. Or nous avons (V p R C) ψ = S 2 (Γ 1 (p), ψ), et puisque p est premier, l espace S 2 (Γ 1 (p), ψ) est engendré par les formes primitives de caractère ψ. Pour toute telle forme f, nous avons d après le théorème 1.1 rp ( {uχ, u ψχ } ), f = 2(p 1) L(f, 2)L(f, χ, 1) pπ τ(χ) (χ 1 p, ψ). Pour toute forme primitive f, on a L(f, 2) 0. L endomorphisme de S 2 (Γ 1 (p), ψ) associant à une forme primitive f la forme L(f, 2)f est donc un isomorphisme. On est finalement ramenés au problème suivant : montrer que les formes linéaires f L(f, χ, 1), avec χ caractère pair modulo p et χ 1 p, ψ, engendrent le dual de S 2 (Γ 1 (p), ψ). otons H ψ = H 1 (X 1 (p)(c), P p, ψ) la composante ψ-isotypique du groupe d homologie relative H 1 (X 1 (p)(c), P p, C). otons également H + 1 (X 1(p)(C),.) le sous-espace invariant par la conjugaison complexe agissant sur X 1 (p)(c). L intégration induit un isomorphisme (95) S 2 ( Γ1 (p), ψ ) = H + 1 ( X1 (p)(c), ψ ). L image de la forme linéaire f L(f, χ, 1) par cet isomorphisme s exprime en termes de symboles de Manin. Un calcul classique [20, th. 3.9 et 4.2.b)] donne que la forme linéaire f L(f, χ, 1) correspond au cycle (96) θ χ = τ(χ) ß v ψ p p, (χ 1 p, ψ), v (Z/pZ) χ(v) tome n o 2

30 THÉORÈME DE BEILISO EXPLICITE 243 où l on note c ψ la projection d un cycle c sur la composante ψ-isotypique. ous avons W p {v/p, } = ξ(1, v), d où (97) W p θ χ = τ(χ) p ξ(1, χ)ψ avec ξ(1, χ) := χ(v)ξ(1, v). v (Z/pZ) otons A ψ le sous-espace de H + 1 (X 1(p)(C), ψ) engendré par les cycles ξ(1, χ) ψ, avec χ 1 p, ψ. Il suffit de montrer A ψ = H + 1 (X 1(p)(C), ψ). D après le théorème de Manin, l espace H ψ est engendré par les cycles ξ(x) ψ, où x E p. Puisque ξ(λx) ψ = ψ(λ)ξ(x) ψ pour tout λ (Z/pZ), il suit que H ψ est engendré par les cycles ξ(0, 1) ψ et ξ(1, v) ψ, avec v Z/pZ. D après la première relation de Manin ξ(1, 0) = ξ(0, 1), et H ψ est encore engendré par les ξ(1, v) ψ, avec v Z/pZ. Le bord de ξ(1, 0) ψ étant non nul (par un calcul direct), et la conjugaison complexe envoyant ξ(1, v) sur ξ(1, v), il suit que H 1 + (X 1(p)(C), ψ) est contenu dans le sous-espace de H ψ engendré par les cycles ξ(1, v) ψ + ξ(1, v) ψ, avec v (Z/pZ). Or, nous avons la formule ξ(1, χ) ψ = (χ caractère modulo p). v (Z/pZ) χ(v)ξ(1, v) ψ Par transformée de Fourier inverse, l espace H 1 + (X 1(p)(C), ψ) est contenu dans le sous-espace de H ψ engendré par A ψ, ξ(1, 1 p ) ψ et ξ(1, ψ) ψ. Pour nous débarasser de ces deux derniers cycles, nous utilisons la première relation de Manin : ξ(1, 1 p ) ψ = 1 ψ(λ)ξ(λ, λv) p 1 v (Z/pZ) λ (Z/pZ) = 1 p 1 = 1 p 1 v (Z/pZ) w (Z/pZ) ψ(λ)ξ(λv, λ) λ (Z/pZ) µ (Z/pZ) ψ(µw)ξ(µ, µw) = ξ(1, ψ) ψ. ous devons maintenant distinguer deux cas. Si ψ = 1 p, alors ξ(1, 1 p ) ψ = 0 et l on a bien A ψ = H 1 + (X 1(p)(C), ψ). Supposons maintenant ψ 1 p. ous savons que H 1 + (X 1(p)(C), ψ) est contenu dans le sous-espace de H ψ engendré par A ψ et ξ(1, 1 p ) ψ. Mais le calcul du bord donne ξ(1, 1 p ) ψ = ψ(λ)[λ, 0] 0, λ (Z/pZ) ce qui entraîne A ψ = H + 1 (X 1(p)(C), ψ). Remarque 8.1. La question 1.3 admet une généralisation naturelle pour tout sous-groupe de congruence Γ SL 2 (Z) tel que la courbe modulaire associée à Γ soit définie sur Q. Pour Γ = Γ 0 (p), avec p premier tel que le genre BULLETI DE LA SOCIÉTÉ MATHÉMATIQUE DE FRACE

31 244 BRUAULT (F.) de X 0 (p) est non nul, l analogue du théorème 1.4 est faux [23, (i)]. On voit donc que les propriétés d engendrement des groupes K 2 associés aux courbes modulaires X 0 () et X 1 () diffèrent sensiblement. En particulier, étant donnée une courbe elliptique E sur Q de conducteur, il semble plus naturel de paramétrer E par X 1 () pour obtenir des informations sur la valeur spéciale L(E, 2). Le théorème 1.4 suggère également la question suivante. Soit X 1 () Z un modèle propre et régulier de X 1 () sur Z. Un tel modèle existe d après la résolution des singularités [1], [19], [3]. On définit un sous-groupe K 2 (X 1 ()) Z de K 2 (X 1 ()) par (98) K 2 (X 1 ()) Z = Image ( K 2(X 1 () Z ) K 2 (X 1 ()) ). D après [24, rem. p. 13], ce sous-groupe ne dépend pas du choix du modèle (propre et régulier) X 1 () Z. L inclusion K 2 (X 1 ()) Z K 2 (X 1 ()) identifie alors K 2 (X 1 ()) Z Q à un sous-espace vectoriel de K 2 (X 1 ()) Q. Conjecturalement [11], l espace vectoriel K 2 (X 1 ()) Z Q est de dimension finie égale à g 1 () := genre(x 1 ()). D autre part, Schappacher et Scholl ont démontré [23, (iii)] que K K 2 (X 1 ()) Z Q. Par souci de simplicité, supposons maintenant = p premier impair. Au cours de la démonstration du théorème 1.4, nous avons construit des éléments {u λ, u µ } K p pour λ, µ (Z/pZ) / ± 1. Par antisymétrie, ces éléments sont en nombre 1 8 (p 1)(p 3). D autre part, nous avons l estimation g 1(p) 1 24 p2 lorsque p tend vers l infini [10, 9.1.6]. Ceci impose des relations (conjecturales) entre les symboles {u λ, u µ }. Est-il possible de les expliciter? BIBLIOGRAPHIE [1] S. S. Abhyankar «Resolution of singularities of arithmetical surfaces», in Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, 1965, p [2] S. J. Arakelov «An intersection theory for divisors on an arithmetic surface», Izv. Akad. auk SSSR Ser. Mat. 38 (1974), p , traduction de l article original russe. [3] M. Artin «Lipman s proof of resolution of singularities for surfaces», in Arithmetic geometry (Storrs, Conn., 1984), Springer, 1986, p [4] A. A. Beĭlinson «Higher regulators and values of L-functions», in Current problems in mathematics, Vol. 24, Itogi auki i Tekhniki, Akad. auk SSSR Vsesoyuz. Inst. auchn. i Tekhn. Inform., 1984, p tome n o 2

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

TIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES

TIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES Bulletin de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES Bernard Host & Alejandro Maass Tome 135 Fascicule 3 2007 SOCIÉTÉ MATHÉMATIQUE DE FRANCE Publié avec le concours du

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Résumé du cours d algèbre 1, 2013-2014. Sandra Rozensztajn. UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr

Résumé du cours d algèbre 1, 2013-2014. Sandra Rozensztajn. UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr Résumé du cours d algèbre 1, 2013-2014 Sandra Rozensztajn UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr CHAPITRE 0 Relations d équivalence et classes d équivalence 1. Relation d équivalence Définition

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

La Longue Marche à travers la théorie de Galois, Part Ib, 26-37

La Longue Marche à travers la théorie de Galois, Part Ib, 26-37 La Longue Marche à travers la théorie de Galois, Part Ib, 26-37 26. Groupes de Teichmüller profinis (Discrétification et prédiscrétification) Soit π un groupe profini à lacets de type g, ν, T le Ẑ-module

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

par François Martin & Emmanuel Royer

par François Martin & Emmanuel Royer Séminaires & Congrès 12, 2005, p. 1 117 FORMES MODULAIRES ET PÉRIODES par François Martin & Emmanuel Royer Résumé. L objet de ce cours est de présenter la théorie des formes modulaires et certains de ses

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

RAPHAËL ROUQUIER. 1. Introduction

RAPHAËL ROUQUIER. 1. Introduction CATÉGORIES DÉRIVÉES ET GÉOMÉTRIE ALGÉBRIQUE Trois exposés à la semaine «Géométrie algébrique complexe» au CIRM, Luminy, décembre 2003 1. Introduction On étudie dans un premier temps les propriétés internes

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues

L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Préambule.................................... xv Bibliographie... xxi I L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Introduction...................................

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Théorie de la mesure. S. Nicolay

Théorie de la mesure. S. Nicolay Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

1 Première section: La construction générale

1 Première section: La construction générale AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Points de Weierstrass d une surface de Riemann compacte

Points de Weierstrass d une surface de Riemann compacte 16 Le journal de maths des élèves, Volume 1 (1994), No. 2 Points de Weierstrass d une surface de Riemann compacte Sandrine Leroy Introduction Nous allons nous intéresser ici à des points très remarquables

Plus en détail

Fonctions holomorphes

Fonctions holomorphes Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE

VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE 12. Compléments sur les modules 12.1. Théorème de Zorn et conséquences. Soient A un anneau commutatif

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Cours d arithmétique Première partie

Cours d arithmétique Première partie Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail