Théorie de la mesure et intégration. J.C. Pardo

Dimension: px
Commencer à balayer dès la page:

Download "Théorie de la mesure et intégration. J.C. Pardo"

Transcription

1 Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement intégrble (c est-à-dire intégrble pour tout compct). ) Montrer que f est mesurble. b) Montrer que fdλ ne tend ps vers une limite qund A tend vers + entrîne [,A] f dλ = +. Exo. 73 Soit (f n, n IN) une suite de fonctions positives intégrbles pour une mesure positive µ sur un ensemble X. On suppose que f n converge µ presque prtout vers une fonction f. ) Posons g n = inf k n f k pour tout n. Montrer que g n est intégrble et que l suite g n converge µ-presque prtout vers f. b) On suppose de plus qu il existe une constnte M telle que f n dµ M, pour tout n. Que peut-on dire de l intégrle de f? Montrer, à l ide d un exemple, que l on n ps necessirement fdµ = lim f n dµ. n + c) On suppose en plus des hypothèse du (b) que fdµ = lim n + f n dµ. Montrer que f f n dµ, converge vers. d) Montrer, à l ide d un exemple, que le résultt du (c) n est ps vlble si les f n ne sont ps positives. 1

2 Exo. 74 En utilisnt le théorème de Lebesgue, clculer 1 nx lim n 1 + n 4 x dx. 4 Peut-on ppliquer l même méthode pour clculer 1 nx lim n 1 + n 2 x dx? 4 Clculer s vleur. 75 Soit (f n, n IN) une suite de fonctions integrbles telle que f n+1 f n dµ < +. n Montrer que sup n f n est intégrble et que l suite f n converge p.p. vers une fonction f intégrble vérifint fdµ = lim f n dµ. n Rppel: On note L 1 (X, µ) l ensemble des fonctions intégrbles de X dns pour l mesure µ. Exo. 76 Soit (f n, n IN) une suite de Cuchy dns L 1 (X, µ). Montrer qu il existe une sous suite (f nk, k IN) qui converge p.p (et dns L 1 ) vers l limite f de (f n ) dns L 1. En déduire que l suite (f n ) de fonctions intégrbles convergent pour l semi-norme f dµ, on peut extrire une sous suite qui converge p.p. vers f. Donner un exemple de suite de fonctions intégrbles (f n ) telle que f n dµ converge vers, qund n, mis telle que (f n ) ne tende ps vers presque prtout. Exo. 77 Soit f : et pour h, nous définissons l fonction f h (x) = f(x h). ) Soit f une fonction continue à support compct. Montrer que f h (x) f(x) dx, qund h. b) Montrer l même propriété pour une fonction g intégrble (on dmettr que l ensemble des fonctions continues à support compct est dense dns L 1 ()). c) A-t-on l même propriété si f L p () pour l semi-norme de L p (), c est-à-dire ( 1/p f p = f dx) p. Exo. 78 Soit f une fonction intégrble. On note: ˆf(y) = e ixy f(x)dx, pour y. 2

3 Montrer que ˆf, trnsformée de Fourier de f, est une fonction continue bornée sur. Exo. 79 Avec les nottions de l exercice précédent, montrer le lemme de Riemmn- Lebesgue: Si f est integrble, ˆf tend vers à línfini. Exo 8 Soit f une fonction intégrble, ou seulement loclement intégrble sur, pour l mesure de Lebesgue. ) Montrer que f(t)dt tend vers qund x tend vers, à l ide du théorème [o,x] de convergence dominée de Lebesgue. b) On suppose que f est continue sur. Montrer que n f(t)dt tend vers une [o,1/n] limite qund n tend vers +, et determiner l limite. c) Existe-t-il une limite à l expression n f(t)dt qund n tend vers +, lorsque [o,1/n] f est seulement loclement intégrble. Exo 81 Soit f une ppliction continue sur, existe-t-il une impliction entre: ) f est intégrble sur, pour l mesure de Lebesgue. b) f tend vers une limite qund x tend vers ±. Que peut on dire, si f est une ppliction uniformément continue sur. Exo 82 Soit f une fonction dérivble sur. ) Montrer que s dérivée f est une fonction mesurble pour l mesure de Lebesgue. b) On suppose que f est continue et intégrble sur, pour l mesure de Lebesgue. Montrer que f tend vers une limite qund x tend vers ±. Exo. 83 Soit f une fonction définie sur, de clsse C 1 pour \{}. On suppose que f dmet une limit à droite, et une à guche, en, et que s dérivée f est loclement intégrble. ) Si φ est une fonction de clsse C 1 sur, et à support compct, clculer: f(x)φ (x)dx. b) Clculer: ln x φ (x)dx. c) Donner un exemple de une fonction dérivble sur [ 1, 1] \ {}, dont l dérivée n est ps une fonction intégrble pour l mesure de Lebesgue sur [ 1, 1]. 3

4 Exo. 84 Pour (x 1, x 2 ) pprtennt à 2 \{}, on note E(x 1, x 2 ) = ln(x 2 1+x 2 2). Montrer que l fonction E est une fonction loclement intégrble dns 2. Mintennt, on définit f(x 1, x 2 ) = 1/(x 1 + ix 2 ). Montrer que f est une fonction loclement intégrble dns 2. Exo. 85 (Utilise le lemme de Riemmn-Lebesgue). Soit φ une fonction définie sur, intégrble pour l mesure de Lebesgue, telle que (φ(v) φ())/v soit borné u voisinge de l origine. ) Montre que sin(v) φ(v) πφ(), qund. v On pourr utiliser les fonctions φ 1 (x) = φ() si x [ 1, 1], sinon et φ 2 = φ φ 1 et dmettre le lemme de Riemmn-Lebesgue. b) Soit f L 1 (). On suppose qu il existe u u voisinge duquel, le quotient (f(u + h) f(u))/h soit borné. Montrer que 1 ( ) f(u) = lim e iux e itx f(t)dt dx. 2π Conclusion concernnt une fonction intégrble et dérivble. Exo. 86 Soit f une fonction monotone (croissnte), définie sur le segment [, b] de. ) Montrer que f est limite uniforme d une suite de fonctions étgées. b) En déduire que toute fonction monotone, définie sur un segment [, b] de, est mesurble. Conclusion pour une fonction monotone, définie sur. Exo. 87 Seconde formule de l moyenne. Soit f une fonction définie sur le segment [, b] de, pr: f(x) = g(x)h(x), où g est une fonction positive décroissnte, et h est une fonction intégrble sur [, b]. Alors il existe c [, b] tel que: b f(x)dx = g() c h(x)dx. On demontrer que l propriété est vrie si g est une fonction en esclier, positive décroissnte, pour en deduire ensuite l seconde formule de l moyenne. Exo. 88 Lemme d Abel. Soit f une fonction définie sur [, [, pr:f(x) = g(x)h(x), où g est une fonction positive décroissnte tendnt vers à l infini, et h est une fonction intégrble sur tout segment [, b] de + telle qu il existe une constnte σ >, verifint pour tous, b + : b σ,b = h(x)dx σ. Alors f(x)dx est convergente, et f(x)dx est mjoré en module pr σg(a). A Exo. 89 Lemme d Abel pour les séries. Soit u n = n b n le terme générl d une série, 4

5 où n est une suite décroissnte, tendnt vers, et où b n est une suite telle qu il existe σ vérifint: Alors l série (u n ) est convergente et b n + b n b n+p σ, n, p IN. u n + u n u n+p + σu n, n IN. C est un cs prticulier de l exercice précédent en prennt: g = n n 1I [n,n+1[, et h = n b n 1I [n,n+1[. Exo. 9 Soit f une fonction définie sur [, 1], à vleurs réelles, mesurble, bornée en dehors d un ensemble de mesure nulle. On note: { f = inf M + : f(x) M p.p. }. ) Montrer que {x : f(x) > f } est de mesure nulle. b) Montrer que l suite ( 1 converge vers f qund n. ) 1/n f n dλ Exo. 91 Soient (X, T, µ) un espce mesuré, et f une fonction intégrble. ) Montrer que pour tout ɛ >, il existe A T de mesure finie, tel que: { } sup f(x) : x A <, et f(x) dµ ɛ. X\A Utiliser les ensembles A n = {x : 2 n f(x) 2 n }, n IN. b) Montrer que pour tout ɛ >, il existe δ > tel que, B T vérifint µ(b) δ, on f(x) dµ ɛ. c) Soit f une fonction intégrble de dns. Montrer que l ppliction est uniformément continue sur. x x B f(t)dt, 5

6 Exo. 92 Soit I n = n ( 1 + x n) n e 2x dx. Montrer l convergence de l suite I n, en utilisnt le théorème de convergence monotone, et donner l limite. Exo. 93 On note f l fonction définie sur 2 pr f(t, x) = t t 2 x 2. On remrque (sns preuve) qu il s git d une fonction de clsse C à vleurs positives. ) Pour t réel quelconque montrer que l fonction x f(t, x) est intégrble sur (pour l mesure de Lebesgue) et donner l vleur de F (t) = f(t, x)dx. b) Pour t réel quelconque montrer que l fonction x f (t, x) est intégrble sur t (pour l mesure de Lebesque). c) Pour étudier l continuité de l fonction F (indépendemment de l vleur explicitée en ()), peut-on utiliser le théorème de continuité des intégrles dépendnt d un prmètre? (Dns l ffirmtive on montrer que toutes les hypothèse de ce théorème sont vérifiées, dns l négtive on préciser l ou les hypothèse qui ne le sont ps). d) Même question que l précédente en remplçnt continuité pr dérivbilité. Exo. 94 Pour x et θ réels on pose, si cel un sens ϕ(x, θ) = ln(1 2x sin(θ) + x 2 ). ) Montrer que, pour tout x réel, l fonction θ ϕ(x, θ) est définie presque prtout et intégrble sur [ π, π] (u sens de Lebesgue). b) On définit F de dns pr F (x) = π π ϕ(x, θ)dθ. Montre que l fonction F est pire, continue sur et vérifie, pour x > 1, 4π ln(x 1) F (x) 4π ln(x + 1). c) Montrer que l fonction F est deux fois dérivble sur \ { 1, 1} et donner une expresion de F et F à l ide d intégrles. d) On fixe x différent de 1, et 1, évluer ϕ θ suivnte xf (x) + F (x) =. et 2 ϕ θ 2 et en déduire l reltion 6

7 e) Donner l vleur de F (x) pour tout x. Exo 95. Le but de cet exercice est l étude de l fonction F définie pr F (t) = + sin(tx) (1 + x) x dx. ) Montrer que l fonction F est bien définie sur tout. b) Montrer que F est continue et bornée sur. c) Pour t donner une reltion simple lint F (t) et G(t) = + sin(u) (t + u) u du. d) Montrer que F est indéfiniment dérivble sur. e) Montrer que, pour t G(t) peut ussi s écrire G(t) = + 1 cos(u) f(t, u)du, u où f est une frction rtionnelle en t et u que l on expliciter. f) Montrer que lorsque t tend vers pr vleurs positives G(t) une limite finie strictemente positive. g) Montrer que lorsque t tend vers pr vleurs positives F (t) dmet un équivlent du type A t. L fonction F est-elle dérivble en? h) Montrer que, lorsque t tend vers +, F (t) dmet un équivlent du type B/ t. 7

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

M42. Compléments d analyse (résumé).

M42. Compléments d analyse (résumé). Université d Evry-Val-d Essonne. Année 2008-09 D. Feyel M42. Compléments d analyse (résumé). Table. I. Rappels sur les suites. Limites supérieure et inférieure. II. Topologie élémentaire. III. Fonctions

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Intégration et probabilités (cours + exercices corrigés) L3 MASS, Université de Nice-Sophia Antipolis 2009-2010. Sylvain Rubenthaler

Intégration et probabilités (cours + exercices corrigés) L3 MASS, Université de Nice-Sophia Antipolis 2009-2010. Sylvain Rubenthaler Intégration et probabilités (cours + exercices corrigés) L3 MASS, Université de Nice-Sophia Antipolis 9- Sylvain ubenthaler Table des matières Introduction iii Dénombrement (rappels). Ensembles dénombrables...............................

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Consignes d été en Mathématiques

Consignes d été en Mathématiques MPSI-PCSI Consignes d été 4-5 Classes préparatoires MPSI-PCSI, Lycée Châtelet, Douai Rentrée de Septembre 5 Consignes d été en Mathématiques Vous trouverez dans ce document trois rubriques :. Le mot du

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA COURS METHODES MATHEMATIQUES POUR L INGENIEUR MAM 3, Polytech Lyon Ionel Sorin CIUPERCA Le cours s adresse en principal à des élèves des écoles d ingénieurs, filière modélisation mathématique. Une partie

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Exercices de mathématiques MPSI et PCSI

Exercices de mathématiques MPSI et PCSI Exercices de mathématiques MPSI et PCSI par Abdellah BECHATA www.mathematiques.ht.st Table des matières Généralités sur les fonctions 2 2 Continuité 3 3 Dérivabilité 4 4 Fonctions de classes C k 5 5 Bijections

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Cours de Mathématiques. BTS Bio-analyses et contrôles

Cours de Mathématiques. BTS Bio-analyses et contrôles Cours de Mathématiques BTS Bio-analyses et contrôles 1ère année Ph Griffiths 1 2008/2009 Lycée Alexis de Tocqueville F-06130 Grasse 1. Philippe.Griffiths@ac-nice.fr ii Lycée Alexis de Tocqueville Table

Plus en détail

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009 Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques TS Lycée Henri IV Tble des mtières I Les nombres complexes 7 Rcines n ième d un nombre complexe non nul 7. Définition.................................................... 7.2 Représenttion

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

THÉORIE DE LA MESURE ET INTÉGRATION

THÉORIE DE LA MESURE ET INTÉGRATION Université Pierre et Marie Curie Licence de Mathématiques Années 2004-2005-2006 LM 363 THÉORIE DE LA MESURE ET INTÉGRATION Cours de P. MAZET Edition 2004-2005-2006 Table des matières Table des matières

Plus en détail

Cours Intégration MA62. Université de Reims

Cours Intégration MA62. Université de Reims Cours Intégration MA62 Frédéric Hérau Université de Reims mai 2006 Table des matières Introduction 2 1 Préliminaires et Rappels 3 1.1 La droite achevée R............................... 3 1.2 Rappels sur

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

THÉORIE DE LA MESURE ET DE L INTÉGRATION.

THÉORIE DE LA MESURE ET DE L INTÉGRATION. THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

Examen du cours de Mesures de risque en finance

Examen du cours de Mesures de risque en finance Examen du cours de Mesures de risque en finance Mercredi 15 Décembre 21 (9h-11h) Seul document autorisé: une feuille A4 manuscrite recto-verso. Important : rédiger sur une même copie les exercices 1 et

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Probabilités Approfondies

Probabilités Approfondies Université Pierre et Marie Curie Master de Mathématique 2005-2006 Probabilités Approfondies Polycopié: J. Lacroix & P. Priouret, Cours: J. Lacroix 1 Université Pierre et Marie Curie Master de Mathématiques

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

TD : Arbres Binaires de Recherche (A.B.R.)

TD : Arbres Binaires de Recherche (A.B.R.) TD : Arres Binires de eherhe (A.B..) Olivier ynud rynud@isim.fr http ://www.isim.fr/rynud ésumé Dns e Td nous proposons trois exeries. Le premier est onsré à l implémenttion du T.D.A. Ensemles dynmiques

Plus en détail