TD7. ENS Cachan M1 Hadamard Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières."

Transcription

1 Analyse fonctionnelle A. Leclaire ENS Cachan M Hadamard TD7 Exercice Sous-espaces fermés de C ([,] formé de fonctions régulières. Soit F un sous-espace vectoriel fermé de C ([,] muni de la convergence uniforme. On suppose que tous les éléments de F sont dans C ([,]. En utilisant le théorème du graphe fermé, montrer qu il existe C > telle que f F, f C f. 2 En déduire que la boule unité fermée de F (pour est compacte. 3 Que peut-on en conclure? Exercice 2 Espaces complets ou non Dans cet exercice, K désigne un compact de R d, Ω désigne un ouvert de R d. On introduit la suite exhaustive de compacts { K j = x Ω x j et d(x, Ω c }. j On a ainsi K j K j+ et Ω = K j. Pour f C k (Ω, on note p j,k (f = sup α f (x. x K j α k Est-ce que C ([,] muni de la norme f = f (x dx est complet? 2 Est-ce que C c (R muni de la norme uniforme est complet? 3 Est-ce que C (Ω est complet pour la distance d(f,д = j ( 2 j min, p j, (f д? 4 Est-ce que C k (Ω est complet pour la distance δ k (f,д = j ( 2 j min, p j,k (f д? 5 On prend Ω = ],[. Est-ce que C (],[ est complet pour la distance d? Exercice 3 Condition de continuité Soient E et F deux espaces de Banach réels. Soit T : E F linéaire. On suppose que f F, f T E. Montrer que T est continue. /8

2 Exercice 4 Lemme des noyaux Soit E un e.v.n. réel. Soient f, f 2,..., f k,д E. On suppose que On considère k Ker(f i Ker(д. i= T : E R k+ x (д(x, f (x,..., f k (x. Séparer (au sens de Hahn-Banach Im(T de (,,..., dans R k+. En déduire que д Vect(f,..., f n. Exercice 5 (l l En utilisant le théorème de Hahn-Banach, construire f (l qui ne peut pas être représentée par une fonction l (au sens où il n existe pas de x = (x n l telle que f (y = x n y n. Exercice 6 Contre-exemple au théorème de Cauchy-Peano-Arzela en dimension infinie Montrer que u,v R, u v u v. 2 On note { } C = u = (u n R N lim u n =, n et on rappelle que C muni de u = sup n u n est un espace de Banach. Soit a = (a n C tel que n, a n >. On définit la fonction f : C C u = (u n f (u = ( u n + a n. Enfin, on note (E le problème différentiel suivant (E { x (t = f (x (t, t >, x ( =. a Vérifier que f est uniformément continue sur C. b Montrer qu il n existe pas de solution locale x C ([,η[,c de (E. (Raisonner par l absurde. 2/8

3 Correction : Exercice Sous-espaces fermés de C ([,] formé de fonctions régulières. Notons E = C ([,]. Il s agit de montrer que T : f f est continue de F dans E (F étant muni de la norme induite par celle de E. Pour cela, on va utiliser le théorème du graphe fermé ; on rappelle que son utilisation est légitime car E est un espace de Banach et F aussi puisqu il est fermé dans E. Soient donc (f n,t (f n une suite de points du graphe de T qui converge vers (f,д dans F E. Autrement dit, on a f n f uniformément et f n д uniformément. Par le théorème d interversion de la dérivation et de la limite uniforme, on a nécessairement д = f. Donc (f,д = (f,t f est bien dans le graphe det. Ainsi,T a un graphe fermé, et on en déduit quet est continue, ce qui revient à dire qu il existe C > telle que f F, f C f. 2 Notons { A = f F } f la boule unité fermée de F. On remarque que pour tout x [,], et toute f A, f (x. De plus, d après la question, toutes les fonctions de A sont lipschitziennes de rapport C, et donc A est uniformément équicontinue. Comme [, ] est compact, on peut appliquer le théorème d Arzela-Ascoli qui nous donne que A est relativement compacte dans E. Comme A est fermée (c est la boule unité fermée de F, et F est fermé dans E, on obtient que A est compacte. Ainsi, F est un espace vectoriel normé dont la boule unité fermée est compacte. 3 Par le théorème de Riesz, on en déduit que la dimension de F est finie. Exercice 2 Espaces complets ou non Non, C ([,] n est pas complet pour la norme. Considérons en effet la suite de fonctions définie par [ ] si x, 2 [ ] f n (x = n(x 2 si x 2, 2 + n. [ ] si x 2 + n, On remarque que les f n sont bien continues sur [,] (faire un dessin, et de plus, en notant f = [,/2], on a f n (x f (x dx = /2+/n /2 = /n n n y dy = n n 2n 2 = 2n. ( ( n x dx 2 Pour ε > fixé, en prenant N > ε, on a donc pour tous p,q N, 3/8 f p f q f p f + f f q = 2p + 2q 2N + 2N = N < ε,

4 ce qui prouve que (f n est de Cauchy dans (C ([,],. Mais alors, (f n ne peut pas converger dans (C ([,],. En effet, par l asburde supposons que (f n converge vers д dans (C ([,],. Avec ce qui précède, on aurait alors f (x д(x dx = et donc f (x = д(x pour presque tous x. En particulier, cela donne que pour presque tous x [,/2], д(x =, et donc par continuité de д, on obtient que д(x = pour tous x [,/2]. De même, on obtient д(x = pour tous x [/2,]. On a donc une contradiction pour x = /2. Remarquons que l on peut aussi répondre à la question en utilisant E = L ([,]. En effet, la question est de savoir si F = C ([,] est complet en tant que sous-espace normé de E. Comme E = L ([,] est complet, il suffit de savoir si F est fermé ou non dans E. Or on sait que F est dense dans E (cf. cours d intégration ; s il était fermé on aurait donc E = F, ce qui n est pas le cas car il existe des fonctions intégrables sur [,] qui ne sont pas égales presque partout à une fonction continue (pour détailler ce point, on peut reprendre largument au dessus. Cependant, rappelons que C ([,] est complet pour la norme uniforme. En effet, soit (f n une suite de Cauchy dans (C ([,],. Pour tout x [,], (f n (x est une suite de Cauchy dans K, donc converge vers un élément que l on note f (x. En fait, (f n converge uniformément vers f sur [,]. En effet, soit ε >. Comme (f n est de Cauchy dans C ([,], il existe N N tel que n,m N, x [,], f n (x f m (x ε. En passant à la limite quand m, on obtient n N, x [,], f n (x f (x ε. Cela prouve que f n f c est-à-dire que (f n converge uniformément vers f. Comme une limite uniforme de fonctions continues est continue, on en déduit que f C([, ]. Ainsi, (f n converge vers f dans (C ([,],. 2 Non. Pour n N, introduisons les fonctions continues χ n (x = x <n + n x n+ (n + x. (χ n est paire, vaut sur [,n], sur [n +,+ [ et est affine sur [n,n + ]. Considérons alors f n (x = e x χ n (x. Ainsi, (f n est une suite de fonctions continues à support compact sur R. De plus, (f n converge uniformément vers f : x e x. En effet, f (x f n (x = e x ( χ n (x, et comme Supp( χ n = ], n] [n,+ [ et que χ n =, on a f f n e n qui tend bien vers zéro quand n. En particulier, (f n vérifie bien le critère de Cauchy pour la norme uniforme. Mais comme elle converge uniformément vers f qui n est pas à support compact, elle ne converge pas dans C c (R. 4/8

5 En fait, C c (R est un sous-espace de C b (R dont l adhérence (pour la norme uniforme est exactement l ensemble des fonctions continues qui tendent vers zéro à l infini. (Le montrer est une autre façon de répondre à la question puisqu un sous-espace complet d un complet est nécessairement fermé. 3 Oui. Remarquons qu une suite (f n est de Cauchy dans (C (Ω,d ssi j, sup p j, (f m f n, ( m,n N N (ce qui se reformule en disant que pour tout j, (f n K j est de Cauchy dans C (K j. En effet, supposons (f n de Cauchy dans (C (Ω,d et soit j. Soit ε < 2 j. On sait qu il existe N tel que En particulier, pour m,n N, on a et donc nécessairement, Cela prouve que m,n N, d(f m, f n < ε. ( 2 j min, p j, (f m f n p j, (f m f n < ε. < ε sup p j, (f m f n < ε, m,n N et on a bien prouvé (. Réciproquement, supposons que (f n vérifie (, et montrons que (f n est de Cauchy dans (C (Ω,d. Fixons ε >. Comme 2 j <, il existe J tel que j >J 2 j < ε 2. De plus, grâce à (, on obtient que pour tout j =,..., J, il existe N j tel que sup p j, (f m f n < ε m,n N j 2. En prenant N = max j J N j, on en déduit que pour m,n N, on a j {,..., J }, sup p j, (f m f n < ε m,n N 2. Ainsi, pour m,n N, d(f m, f n < ε 2 + J j= 2 j p j, (f m f n < ε 2 + ε 2 J j= 2 j < ε 2 + ε 2 = ε. Cela prouve que (f n est de Cauchy pour la distance d. De même, on peut montrer que (f n converge vers f dans C (Ω si et seulement si pour tout j, (f n K j converge vers f Kj dans C (K j, ce qui revient à dire que (f n converge vers f uniformément sur les compacts (car un compact K quelconque de Ω peut être inclus dans un des K j. Supposons alors (f n de Cauchy pour d. Alors, grâce à (, on voit que pour tout j, (f n K j est de Cauchy dans C (K j. Comme C (K j est complet, il existe donc f j C (K j tel que (f n K j 5/8

6 converge vers f j. Comme K j K j+, la restriction à K j de f j+ est égale à f j, et donc on peut définir une fonction f sur Ω en posant f (x = f j (x si x K j. On a donc immédiatement que pour tout j, (f n K j converge vers f Kj dans C (K j. De plus, f est bien continue sur Ω ; en effet, si x Ω, il existe j tel que x K j et alors K j est un voisinage de x sur lequel f coïncide avec la fonction continue f j, donc f est bien continue en x. 4 Oui. Comme à la question précédente, on montrerait que (f n converge vers f dans (C k (Ω,δ k si pour tout j, p j,k (f n f n, ce qui revient à dire que pour tout j et tout multi-indice α tel que α k, ( α f n K j converge vers α f Kj dans C (K j. De même, (f n est de Cauchy dans (C k (Ω,δ k si pour tout j, sup p j,k (f m f n, m,n N N ce qui revient à dire que pour tout j et tout multi-indice α tel que α k, ( α f n K j est de Cauchy dans C (K j. Ainsi, supposons (f n de Cauchy dans (C k (Ω,δ k. Fixons α tel que α k. Pour tout j, ( α f n K j est de Cauchy dans C (K j. Autrement dit, ( α f n est de Cauchy dans (C (Ω,d. Avec la question précédente, on en déduit que ( α f n converge dans (C (Ω,d vers une fonction f α. Ainsi, on a montré que pour tout multi-indice α tel que α k, ( α f n converge uniformément sur les compacts vers une fonction f α C (Ω. Par interversion de la limite uniforme et de la dérivation, on en conclut qu il existe une fonction f C k (Ω telle que pour tout α tel que α k, ( α f n converge uniformément sur les compats vers α f. Autrement dit, (f n converge vers f dans C k (Ω. 5 Dans cette question, on considère le sous-espace F = C (],[ de l espace métrique E = C (],[ muni de la distance d. Comme E est complet, il suffit pour conclure de voir si F est fermé ou non dans E. Pour cela, considérons pour ε > la fonction f ε : x x 2 + ε. Comme est de classe C sur R +, on voit que f ε F. De plus, par continuité de, on obtient que lorsque ε, f ε converge simplement vers f : x x. En fait, la convergence est uniforme car f ε (x f (x = x 2 + ε x 2 = ε x 2 + ε + x 2 ε ε = ε. Ainsi, quand ε, f ε tend vers f dans E. Mais f F (car f n est pas dérivable en zéro, ce qui prouve que F n est pas fermé dans E. Exercice 3 Condition de continuité On utilise le théorème du graphe fermé. On note G(T le graphe de T. Soit (x n,tx n une suite d éléments de G(T qui converge vers (x,y dans E F. Montrons que y = Tx. Remarquons que pour toute f F, l hypothèse donne la continuité de f T et donc on a f (Tx n f (Tx, 6/8

7 et d autre part, on a directement f (Tx n = f (y par continuité de f. On en déduit que f F, f (Tx = f (y. À l aide du théorème de Hahn-Banach géométrique, on en déduit que Tx = y. Ainsi, le graphe de T est fermé, et on en conclut que T est continu. Exercice 4 Lemme des noyaux L hypothèse sur les noyaux donne que e = (,,..., R k+ n est pas dans Im(T. De plus Im(T est fermé (car c est un sous-espace vectoriel de R k+. Le théorème de Hahn-Banach géométrique assure que l on peut séparer strictement le convexe compact {e} et le convexe fermé Im(T, c est-à-dire qu il existe une forme linéaire non identiquement nulle h sur R k+ et α R telles que x E, h(t (x < α < h(e. Comme l image de h T est un sous-espace vectoriel de R, on en déduit que x E, h(t (x = et h(e. Décomposons h dans la base canonique de (R k+ : (t,...,t k R k+, h(t = k µ i t i. i= La condition h(e assure que µ. De plus, h T = donne que pour tout x E, µ д(x + k µ i f i (x =, i= et donc д = k i= µ i µ f i. Exercice 5 (l l On note F l le sous-espace des suites convergentes. On définit la forme linéaire f : F K par On remarque que x = (x n F, f (x = lim x n. x F, f (x x, donc f est continue sur F. Par le théorème de Hahn-Banach, on peut la prolonger en une forme linéaire continue sur l, que l on note encore f. Supposons que f ainsi construite se représente par une suite l, c est-à-dire qu il existe a = (a n l telle que x l, f (x = a n x n. En appliquant cette égalité à la suite dont tous les termes sont nuls sauf le k-ème qui vaut, on obtient que k, a k =, 7/8

8 d où l on tire que f =. C est absurde car f n est pas nulle sur F (l image de la suite constante égale à vaut. Exercice 6 Contre-exemple au théorème de Cauchy-Peano-Arzela en dimension infinie Elever à la puissance 4 par exemple. 2a On en déduit que Donc n N, u n + a n v n + a n u n v n. f (u f (v u v, d où l uniforme continuité de f. b Supposons qu il existe une solution x : [,η[ C régulière du problème (E. On pose x (t = (x n (t. Alors x n vérifie { x n (t = x n (t + a n, < t < η, x n ( =. Et t >, x n (t > x n (t >. Comme t >, x n (t xn (t + a n =, on en déduit que, si t >, t = t x n (s xn (s + a n ds. Alors x n (t = t t a n, n et t [,η[. Si t, lim n x n (t = t 2 4 > ce qui contredit x (t C. 8/8

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h

Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h - Le seul document autorisé est un résumé manuscrit du cours de trois pages maximum. - Les téléphones portables et

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux

Plus en détail

IV. Espaces L p. + tx 1. (1 t)x 0

IV. Espaces L p. + tx 1. (1 t)x 0 cours 13, le lundi 7 mars 2011 IV. spaces L p IV.1. Convexité Quand deux points x 0, x 1 R sont donnés, on peut parcourir le segment [x 0, x 1 ] qui les joint en posant pour tout t [0, 1] x t = (1 t)x

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

TD3. Exercice 1 Un cas particulier du théorème de Cauchy-Lipschitz. f (s,y(s))ds.

TD3. Exercice 1 Un cas particulier du théorème de Cauchy-Lipschitz. f (s,y(s))ds. Analyse fonctionnelle A. Leclaire - L. Magnis ENS Cachan M1 Hadamard 2015-2016 TD3 Exercice 1 Un cas particulier du théorème de Cauchy-Lipschitz Soient I un intervalle de, E un espace de Banach et f :

Plus en détail

Préparation à l agrégation Année 2015/2016. Analyse Fonctionnelle. Arthur Leclaire

Préparation à l agrégation Année 2015/2016. Analyse Fonctionnelle. Arthur Leclaire ENS Cachan Mathématiques Préparation à l agrégation Année 2015/2016 Analyse Fonctionnelle Arthur Leclaire Références [B] H. Brézis. Analyse Fonctionnelle. Dunod, 1999. [CLF] A. Chambert-Loir, S. Fermigier,

Plus en détail

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R

TOPOLOGIE. une partie X d'un métrique est dite bornée ssi il existe une boule contenant X ; définition : diamètre : diam(x)=min{ r R TOPOLOGIE 1) DISTANCE, ESPACES MÉTRIQUES a : distances : d'après le cours de M. Nicolas Tosel professeur en MP* au Lycée du Parc, Lyon Année 2004 2005 une distance est une application d de E dans R + telle

Plus en détail

Espaces métriques complets. Espaces de Banach

Espaces métriques complets. Espaces de Banach Chapitre 5 Espaces métriques complets. Espaces de Banach La droite réelle est complète, car toute suite numérique de Cauchy converge. Cette propriété n est plus vraie pour le corps des nombres rationneles,

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Cours d Analyse Réelle 4M003

Cours d Analyse Réelle 4M003 Cours d Analyse Réelle 4M003 Jean SAINT RAYMOND Université Pierre et Marie Curie Avant-propos Ce texte a été rédigé pour servir de support écrit à un cours de Master 1 de l Université Pierre-et-Marie Curie.

Plus en détail

et Transversalité par Pierre Vogel

et Transversalité par Pierre Vogel Université Paris 7 Denis Diderot Institut de Mathématiques de Jussieu Géométrie des Variétés et Transversalité par Pierre Vogel Introduction Ce cours est destiné à l étude des variétés différentiables

Plus en détail

208. Espaces vectoriels normés. Applications linéaires continues. Exemples.

208. Espaces vectoriels normés. Applications linéaires continues. Exemples. 208. Espaces vectoriels normés. Applications linéaires continues. Exemples. Pierre Lissy May 29, 2010 Dans totue la suite, E désigne un espace vectoriel sur R ou C. 1 Norme. Espace vectoriel normé 1.1

Plus en détail

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < +

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < + Chapitre 6 Les espaces L p 6.1 Définitions et premières propriétés 6.1.1 Les espaces L p, avec 1 p < + Soient (E, T,m) un espace mesuré, 1 p < + et f M = M(E, T) (c est-à-dire f : E R, mesurable). On remarque

Plus en détail

Cours d analyse 1ère année. Rhodes Rémi

Cours d analyse 1ère année. Rhodes Rémi Cours d analyse 1ère année Rhodes Rémi 10 décembre 2008 2 Table des matières 1 Propriétés des nombres réels 5 1.1 Sous-ensembles remarquables de R........................ 5 1.2 Relations d ordre..................................

Plus en détail

Un peu de topologie. Espaces métriques. Documents disponibles sur www.math.polytechnique.fr/ laszlo. Enseignants :

Un peu de topologie. Espaces métriques. Documents disponibles sur www.math.polytechnique.fr/ laszlo. Enseignants : Documents disponibles sur www.math.polytechnique.fr/ laszlo Un peu de topologie Enseignants : F. Golse (golse@math.polytechnique.fr), Y. Laszlo (laszlo@math.polytechnique.fr), C. Viterbo (viterbo@math.polytechnique.fr)

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Plan du cours. Espaces métriques. Espaces vectoriels normés

Plan du cours. Espaces métriques. Espaces vectoriels normés L3 Maths, 1 er semestre 20112012 Espaces métriques Plan du cours On suppose connues les propriétés élémentaires des nombres réels et des espaces vectoriels et, uniquement pour les exemples, quelques propriétés

Plus en détail

Définition d une norme

Définition d une norme Définition d une norme Définition E est un K-ev. L application N : E R + est une norme sur E ssi 1. x E, N(x) = 0 x = 0. 2. k K, x E, N(k.x) = k N(x). 3. x, y E, N(x + y) N(x) + N(y) Notation N,. Propriété

Plus en détail

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé LICENCE DE MATHÉMATIQUES FONDAMENTALES Calcul Différentiel et Équations Différentielles D. Azé Université Paul Sabatier Toulouse 2008 Table des matières 1 Généralités sur les espaces normés 3 1.1 Espaces

Plus en détail

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition

Plus en détail

1 Espaces vectoriels normés

1 Espaces vectoriels normés Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS MI4 1 Espaces vectoriels normés 1.1 Définitions Soit E un espace vectoriel sur R. Topologie des espaces vectoriels de dimension finie Définition

Plus en détail

LICENCE DE MATHÉMATIQUES PURES

LICENCE DE MATHÉMATIQUES PURES LICENCE DE MATHÉMATIQUES PURES Topologie Générale Philippe Charpentier Université Bordeaux I Année universitaire 2000-01 PHILIPPE CHARPENTIER UNIVERSITÉ BORDEAUX I LABORATOIRE DE MATHÉMATIQUES PURES 351,

Plus en détail

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle Chapitre 3 FORMULATION VARIATIONNELLE DES PROBLÈMES ELLIPTIQUES Exercice 3.. Si f est une fonction continue sur [, ], montrer que l équation différentielle { d 2 u = f pour < x < dx 2 (3.) u() = u() =.

Plus en détail

Espaces vectoriels normés MP

Espaces vectoriels normés MP Espaces vectoriels normés MP 27 décembre 2012 Faites des dessins Table des matières 1 Espaces vectoriels normés 3 1.1 Normes, espaces normés................................. 3 1.2 Normes dans les espaces

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

Exercices de Khôlles de Mathématiques, premier trimestre

Exercices de Khôlles de Mathématiques, premier trimestre Exercices de Khôlles de Mathématiques, premier trimestre Lycée Louis le Grand, Paris, France Igor Kortchemski MP*2-2006/2007 Table des matières 1 Semaine 1 - Équivalents, développements asymptotiques,

Plus en détail

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24)

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24) Espaces de Sobolev Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002 medp-sobolevtex (2001nov24) Sauf mention explicite du contraire, toutes les fonctions considérées seront à valeurs réelles

Plus en détail

208 - Espaces vectoriels normés, applications linéaires continues. Exemples

208 - Espaces vectoriels normés, applications linéaires continues. Exemples 208 - Espaces vectoriels normés, applications linéaires continues. Exemples On se xe un corps K = R ou C. Tous les espaces vectoriels considérés auront K comme corps de base. 1 Généralités Remarque. Tout

Plus en détail

Unicité et minimalité des solutions d une équation de Ginzburg-Landau.

Unicité et minimalité des solutions d une équation de Ginzburg-Landau. Unicité et minimalité des solutions d une équation de Ginzburg-Landau. Gilles arbou.m.l.a Ecole Normale Supérieure de achan 61, avenue du Président Wilson 9435 achan edex Résumé. - On étudie les solutions

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé Intégration et probabilités NS Paris, 23-24 TD 5 Théorèmes de Fubini, calculs Corrigé xercices à préparer du TD 4 xercice. (Partiel 27 Soit (,,µ un espace mesuré et f : + une fonction mesurable.. On suppose

Plus en détail

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Chapitre 5 ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Exercice 5.2.1 A l aide de l approche variationnelle démontrer l existence et l unicité de la solution de { u + u = f dans (5.1) u = 0 sur où est

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Semestre d accueil, le 30 mars 2006 MODÈLES DE DYNAMIQUE DES POPULATIONS N désigne l effectif d une population isolée. dn(t) dt MODÈLE DE MALTHUS (1766-1834) dn(t)

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Analyse Fonctionnelle. Vincent GUEDJ

Analyse Fonctionnelle. Vincent GUEDJ Analyse Fonctionnelle Vincent GUEDJ Résumé Ce texte rassemble des notes de cours et des exercices portant sur la première moitié du module Analyse fonctionnelle qui intervient au premier semestre du Master

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Agrégation de Mathématiques Exercices d algèbre linéaire

Agrégation de Mathématiques Exercices d algèbre linéaire Agrégation de Mathématiques Exercices d algèbre linéaire P. HUBERT La plupart des exercices ci-dessous se trouvent dans les livres suivants : - E. Leichtnam, X. Schaeur, Exercices corrigés de mathématiques

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Analyse fonctionnelle

Analyse fonctionnelle Analyse fonctionnelle Pierron Théo ENS Ker Lann 2 Table des matières 1 Espaces vectoriels normés 1 1.1 Rappels.............................. 1 1.2 Fonctions continues sur un compact............... 3 1.3

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Analyse II. Cours de deuxième année. donné à l Ecole normale supérieure de Lyon. année universitaire 2003-2004

Analyse II. Cours de deuxième année. donné à l Ecole normale supérieure de Lyon. année universitaire 2003-2004 Analyse II Cours de deuxième année donné à l Ecole normale supérieure de Lyon année universitaire 2003-2004 Cédric Villani Unité de Mathématiques Pures et Appliquées Ecole normale supérieure de Lyon 46

Plus en détail

Espaces vectoriel normés

Espaces vectoriel normés Espaces vectoriel normés 1) Normes a) Dé nition : K R ou C. Une norme sur un K-ev E est une application E! R x 7! kxk véri ant : i) 8 x 2 E; kxk 0 et kxk 0, x 0 (vecteur nul). ii) 8 x 2 E; 8 2 K kxk jj

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Formes bilinéaires, produits scalaires Pour s entraîner...

Formes bilinéaires, produits scalaires Pour s entraîner... Formes bilinéaires, produits scalaires Pour s entraîner... I Savoir reconnaître un produit scalaire Les applications ci-dessous sont-elles des formes bilinéaires? Si oui sont-elles symétriques? Définies?

Plus en détail

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin.

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin. Exo7 Espaces vectoriels Fiche amendée par David Chataur et Arnaud Bodin. Définition, sous-espaces Exercice Montrer que les ensembles ci-dessous sont des espaces vectoriels (sur R) : E = { f : [,] R } :

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

1.1.1 Cas le plus général d espace topologique

1.1.1 Cas le plus général d espace topologique Chapitre 1 Topologie 1.1 Espaces topologiques 1.1.1 Cas le plus général d espace topologique Définition 1 (Topologie) Une topologie T sur l ensemble X est une partie T P (X) vérifiant : L ensemble vide

Plus en détail

CONVEXITÉ ET APPLICATIONS. Rozenn Texier-Picard picard@bretagne.ens-cachan.fr. ENS Cachan Bretagne / Université Rennes 1

CONVEXITÉ ET APPLICATIONS. Rozenn Texier-Picard picard@bretagne.ens-cachan.fr. ENS Cachan Bretagne / Université Rennes 1 CONVEXITÉ ET APPLICATIONS cours rédigé par Rozenn Texier-Picard picard@bretagne.ens-cachan.fr Préparation à l Agrégation ENS Cachan Bretagne / Université Rennes 1 1 2 INTRODUCTION Bien que la notion de

Plus en détail

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES CHAPITRE SUITES RÉELLES ET COMPLEXES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autres sciences. Nous verrons dans ce cours et les travaux

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

Université Lille I 2010-2011. Feuille 1

Université Lille I 2010-2011. Feuille 1 Université Lille I 00-0 Feuille Dans la suite D est un domaine de C, muni d une pseudo-métrique infinitésimale définie par un poids ρ. On note d la pseudo-distance induite. Exercice. On suppose ici que

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Cours d Analyse Semestre 1. Stéphane Attal

Cours d Analyse Semestre 1. Stéphane Attal Cours d Analyse Semestre 1 Stéphane Attal 2 Contents 1 Les nombres réels 5 1.1 Les ensembles usuels de nombres................ 5 1.2 Ensembles ordonnés........................ 6 1.3 Le corps des nombres

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Géométrie Exercice 1. Unicité du centre et du rayon d une boule Soit E un evn non nul et a, a E, r, r > 0 tels que B(a, r) = B(a, r ). Montrer que a = a et r = r. Exercice 2.

Plus en détail

Les espaces vectoriels Partie 1

Les espaces vectoriels Partie 1 Les espaces vectoriels Partie 1 MPSI Prytanée National Militaire Pascal Delahaye 1 er février 2016 1 Définition d un Espace Vectoriel Soit ( K,+, ) un corps commutatif (le programme impose K = R ou C).

Plus en détail

Autour de Perron, Frobenius et Markov

Autour de Perron, Frobenius et Markov Université Claude Bernard Lyon 1-2007/2008 Préparation Capes - Algèbre et Géométrie - Devoir à rendre le 12 février 2008 - Autour de Perron Frobenius et Markov Rappels et notations On note M mn (K) le

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Exercice 1. [Échauffement sur quelques inclusions] 2. Soient p, q [1, ]. Quelle inclusion y a-t-il entre L p et L q? Cette inclusion est-elle

Exercice 1. [Échauffement sur quelques inclusions] 2. Soient p, q [1, ]. Quelle inclusion y a-t-il entre L p et L q? Cette inclusion est-elle ENS de Lyon TD 1 21/09/2015 M1 - Analyse Avancée Exercice 1. [Échauffement sur quelques inclusions] 1. Soient p, q [1, ]. Quelle inclusion y a-t-il entre l p et l q? Cette inclusion est-elle continue?

Plus en détail

Espaces vectoriels normés Classe de Spéciales MP. par Emmanuel AMIOT. 29 septembre 2014

Espaces vectoriels normés Classe de Spéciales MP. par Emmanuel AMIOT. 29 septembre 2014 Espaces vectoriels normés Classe de Spéciales MP par Emmanuel AMIOT 29 septembre 2014 Introduction Pendant pas mal de siècles, les notions de proximité, de limite étaient fondées plus sur l intuition que

Plus en détail

2 Ensembles convexes. 2.1 Définition et premières propriétés

2 Ensembles convexes. 2.1 Définition et premières propriétés 2 Ensembles convexes Les chapitres 2 et 3 présentent les éléments d analyse convexe qui nous seront utiles pour étudier les problèmes d optimisation et les algorithmes qui les résolvent. Le chapitre 2

Plus en détail

Les Mathématiques pour l Agrégation. C. Antonini J.-F. Quint P. Borgnat J. Bérard E. Lebeau E. Souche A. Chateau O. Teytaud

Les Mathématiques pour l Agrégation. C. Antonini J.-F. Quint P. Borgnat J. Bérard E. Lebeau E. Souche A. Chateau O. Teytaud Les Mathématiques pour l Agrégation C. Antonini J.-F. Quint P. Borgnat J. Bérard E. Lebeau E. Souche A. Chateau O. Teytaud 14 février 2002 Table des matières 1 Fonctions holomorphes 2 1.1 Cadre..................................

Plus en détail

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin Enoncés : M. Quéffelec Corrections : A. Bodin Exo7 Topologie générale Exercice 1 1. Rappeler les définitions d une borne supérieure (inférieure) d un ensemble de nombres réels. Si A et B sont deux ensembles

Plus en détail

TD1. A. Leclaire, P. Roussillon ENS Paris-Saclay M1 Hadamard

TD1. A. Leclaire, P. Roussillon ENS Paris-Saclay M1 Hadamard Analyse A. Leclaire, P. Roussillon ENS Paris-Saclay M1 Hadamard 2017-2018 TD1 Exercice 1 Autour de la continuité Soient E, F, G trois espaces topologiques et f : E F, д : F G. 1) Démontrer que f est continue

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Suites de Cauchy et théorème du point fixe de Banach

Suites de Cauchy et théorème du point fixe de Banach ACCUEIL Suites de Cauchy et théorème du point fixe de Banach Frédéric Élie, novembre 2012 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

202 - Exemples de parties denses et applications

202 - Exemples de parties denses et applications 202 - Exemples de parties denses et applications 1 Généralités et premiers exemples 1.1 Parties denses On xe un espace métrique (X, d). Dénition 1. Soit D X. On dit que D est dense dans X si D = X. Exemple.

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES OFM FRANÇAISES MATHÉMATIQUES ENVOI NO. 3 CORRIGÉ 1 Exercices du groupe B Exercice 1. Soit n 1 un entier tel que le quotient de 2 n par n est une puissance

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

1 Séancs du 14/21.11.08

1 Séancs du 14/21.11.08 1 1 Séancs du 14/21.11.08 1.1 Le rayon spectral Le spectre d un opérateur (ici, élément d une algèbre stellaire) est un compact non vide. La compacité est immédiate, car, pour z > u, u zi peut être inversé

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Corrigés d exercices pour le TD 5

Corrigés d exercices pour le TD 5 Corrigés d exercices pour le TD 5 Compacts? Les ensembles suivants sont-ils compacts? Justifier la réponse. 1. Z, dans l espace métrique R muni de la distance discrète. 2. {0, 1}, dans l espace métrique

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Euler 2D dans des domaines non réguliers

Euler 2D dans des domaines non réguliers Christophe Lacave Université de Paris Diderot (Paris VII), France partiellement en collaboration avec David Gérard-Varet (Paris VII) Math Horizon, Paris, 13 Décembre 2011 1 / 42 Plan de l exposé 1 Solution

Plus en détail

Mathématiques des modèles multi-échelles. Frédéric Legoll et Mathieu Lewin

Mathématiques des modèles multi-échelles. Frédéric Legoll et Mathieu Lewin Mathématiques des modèles multi-échelles Frédéric Legoll et Mathieu Lewin Mars 213 Table des matières Introduction v 1 Rappels et compléments d analyse 1 1.1 Applications linéaires...........................

Plus en détail

Le théorème du sandwich au jambon

Le théorème du sandwich au jambon Le théorème du sandwich au jambon Florian Bouguet & Paul Schneider Ecole Normale Supérieure de Cachan - Antenne de Bretagne Travaux encadrés par Antoine Chambert-Loir Université de Rennes 1 1 2 Table des

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

1 Définition, existence, unicité.

1 Définition, existence, unicité. Université Denis Diderot Paris 7 Espérance conditionnelle Ces rappels et compléments de cours sont inspirés de [1], [2], [3]. Il va de soi que pour une bonne connaissance des notions qui suivent, il est

Plus en détail

Espaces Vectoriels Normés et Topologie

Espaces Vectoriels Normés et Topologie Cycle Préparatoire Polytechnique ème année Espaces Vectoriels Normés et Topologie Polycopié de cours Rédigé par Yannick Privat Bureau 31 - Institut Élie Cartan Nancy (Mathématiques) - Université Henri

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites Analyse fonctionnelle A. Leclaire ENS Cachan M1 Hadamard 2016-2017 TD9 Exercice 1 Opérateurs compacts et extraction de sous-suites Soient E,F deux espaces de Banach. On note B la boule unité fermée de

Plus en détail

Formulaire de maths - Analyse dans R n

Formulaire de maths - Analyse dans R n Formulaire de maths - Analyse dans R n Nom Théorème ou formule Espaces vectoriels normés Norme sur E Application qui vérifie les propriétés de : séparation : homogénéité : inégalité triangulaire : Normes

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail