avec w ij poids liant le neurone j au neurone i vec w.vec xi = 0 vec xi vec xi

Dimension: px
Commencer à balayer dès la page:

Download "avec w ij poids liant le neurone j au neurone i vec w.vec xi = 0 vec xi vec xi"

Transcription

1 Exemple pour un perceptrion à deux classes (1 unité de sortie) -> 1/-1 Si w i x 0 la réponse est 1 Si w i x 0 la réponse est -1 Donc la discrimination se fait pour des entrés (les x ). Cet hyperplan a pour équation w x =0 On a autant d'hyperplan que d'unité de sortie. avec w i poids liant le neurone au neurone i w i x =0 cela correspond à un hyperplan dans l'espace Algorithme d'apprentissage : De manière duale, on peut voir l'hyperplan w x =0 dans l'espace des poids chaque motif représenté correspond alors à un hyperplan dans l'espace des poids x1 x2 x3 Espace des poids solution x4 En considérant pour simplifier =0, x i est perpendiculaire à l'hyperplan w x i =0 L'apprentissage consiste à modifier les w i pour que le réseau réponde correctement selon les x i. Si on considère 1) w x i 0 pour une classe 2) w x i 0 pour l'autre x i indique la portion du plan qui correspond à la solution dans le cas 1) et l'opposé de cette direction dans le cas 2) vec w.vec xi = 0 vec xi vec xi Plus précisément, la règle d'apprentissage est : w i t1=w i t d i t x i t x t Géométriquement, cette règle correspond à un chemin dans l'espace des poids qui conduit dans la zone solution. En effet, on se déplace de la valeur d i x i x Selon le signe de la correction on se déplace dans une des deux directions possibles :

2 Déplacement de chaque pas d apprentissage x1 x3 x2 Zone solution L'un des intérêt de la règle de Widrow Hoff est qu'elle permet un positionnement optimal de la séparation des classes. Espace des entrées Règle du perceptron Règle de Widrow-Hoff Avec Widrow Hoff, on généralise mieux qu'avec la règle du perceptron Widrow Hoff nous donne le meilleur hyperplan = hyperplan médian. Généralisation : La généralisation correspond à la capacité d'un réseau de neurones à bien répondre (bien classer) pour des motifs qui n'ont pas été appris. Cela permet de mettre au point le système sur la base d'un nombre réduit d'exemples. Les limites du perceptron : Elles ont été soulignées en 1969 par Minsky 1 Paport, et sont liés au fait que le perceptron ne peut faire que des séparations linéaires. -> Problème du XOR, qui n'est pas linéairement séparable.

3 Le perceptron Multicouches Capacités On a montré qu'un perceptron à deux couches d'unité cachées (c'est à dire deux ensembles de poids modifiables) peut résoudre tous les problèmes de classification. On surmonte ainsi le problème de la séparabilité linéaire du perceptron simple Structure : Poids modifiables Couche d entrée Couche cachée Couche de la sortie Les unités des couches cachées ont des fonctions d'activation non linéaires (fonction seuil, sigmoïde, etc...) Régions de décision : Chaque hyperplan correspond à une unité cachée L'unité de sortie réalise un ET de ses entrées L'aout d'une couche supplémentaire permet de former des régions de décision complexes et de séparer les régions imbriquées.

4 ET (1) (2) (1) OU (3) (3) ET (2) Problèmes : Un premier problème concernant le perceptron multicouche est lié à l'architecture : Quelles connexions entre les différentes couches? Combien de couches? Combien d'unités de couche? Un deuxième problème concerne l'apprentissage. Quand on a une seule couche, on peut appliquer la règle de Widrow Hoff, ou du perceptron. Mais quelle règle appliquer sur les unités de la couche cachée? Problème de la sortie désirée. On ne connaît à priori pas la valeur de la sortie désirée pour les couches cachées. C'est le problème du "Gredit Assignement" c'est à dire comment récupérer pour chaque connexion le signal d'erreur qui n'a été mesuré que sur la couche de sortie. Pour cela, on variable aléatoire utiliser l'algorithme de la rétro-propagation du gradient pour l'apprentissage La rétro-propagation du gradient : Cet algorithme permet d'effectuer l'apprentissage des réseaux multicouches, et le principe est de rétro-propager l'erreur de sortie sur les couches liés.

5 (3) Apprentissage (2) Calcul de l erreur sur la couche de sortie (1) Information Neurone utilisé : Le neurone utilisé est de même structure que le neurone du perceptron, il diffère seulement par sa fonction d'activation qui n'est plus linéaire à seuil, mais non linéaire et dérivable. Par exemple : f x= 1 1e kx Structure du réseau : Une couche d'entrée Une couche de sortie Une ou plusieurs couches cachées Chaque neurone d'une couche est connecté à tous les neurones de la couche suivante. Les poids sur les connexions sont des nombres réels quelconques. Apprentissage : On dispose d'un ensemble de couples (entrées/sortie désirée) A la fin de l'apprentissage, il faut que les poids aient été modifiées de telle sorte que la présentation des entrées engendre les réponses correctes du réseau. A chaque étape, une entrée est proposée au réseau La sortie réelle est calculée de proche en proche de l'entrée vers la sortie. C'est la phase de propagation en avant aussi appelée relaxation. On calcule l'erreur : c'est la somme quadratique des erreurs de chaque cellule.

6 Cette erreur est ensuite rétro-propagé provoquant la modification successive des poids de la couche de sortie vers la couche d'entrée. On répète ce processus pour chaque exemple. Quand l'erreur est inférieure à un certain seuil, on dit que le réseau a convergé. Erreur Seuil d erreur fini fin Temps (présentation de couple E/S) de l apprentissage L'apprentissage consiste à minimiser l'erreur quadratique commise sur l'ensemble des exemples. L'erreur quadratique est considéré comme une fonction des poids, sa minimisation par étapes variable aléatoire correspondre à une descente de son gradient. Ep indique la direction de la pente maximale au point calculé. On procède itérativement usqu'à atteindre le point le plus bas. Soit un ensemble P de pairs de vecteurs (X i Y i ) qui soit muni d'une application, tel que Y = X avec Y R n et X R n Le problème est d'apprendre au réseau à réaliser cette application. En réalité le réseau ne réalise qu'une approximation : Y = X On applique en entrée X = x 1,..., x n t Pour une unité de la couche cachée c, la fonction d'entrée a pour expression e p= w i x pi i et la sortie de la couche cachée vaut alors s p = f e p Sur la cellule de sortie, on a On cherche à minimiser l'erreur quadratique E p w= 1 2 y pk s pk 2 la présentation d'un motif p. s pk = f e pk = f w k s p k L'erreur quadratique sur l'ensemble des exemples : E w= p E p w = somme des carrés des erreurs des unités k de la couche de sortie pour Dans la pratique, on ne modifie pas les poids en fonction de E, mais plutôt étape par étape en fonction du E p (w) obtenu à chaque étape. Une descente de gradient correspond à la modification des poids suivant la formule : w t1=w t w E p w ) gradient de l'erreur

7 Soit wt1=w t E pw w t ) dérivée de l'erreur par rapport au poids qui nous intéresse est le pas d'austement, aussi appelé "taux/vitesse d'apprentissage" Il faut donc calculer E p w w Pour la couche de sortie, on cherche donc Or E p w w k Donc = E pw e pk e pk w k w E k s p k p = =s w k w p k E p w = E p w s w k e p pk E p w w k E p = 1 2 k Y pk s pk = 1 2 Y pk f k e pk Donc Donc E p e pk = Y pk s pk f k e pk E p w k = Y pk s pk f ' e k s p pour la couche de sortie w k t1=w k t Y pk s pk f ' e pk s p Pour la couche cachée : E p = f w e p x pi d k w k i k w t1=w t f ' e p x pi d k w k k

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Chapitre 6 Apprentissage des réseaux de neurones et régularisation

Chapitre 6 Apprentissage des réseaux de neurones et régularisation Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Druais Cédric École Polytechnique de Montréal. Résumé

Druais Cédric École Polytechnique de Montréal. Résumé Étude de load balancing par un réseau de neurones de types HME (Hierarchical Mixture of s). Druais Cédric École Polytechnique de Montréal Résumé Cet article tente d introduire le principe de load balancing

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées : a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN

Plus en détail

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Optimisation de la compression fractale D images basée sur les réseaux de neurones Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A aoued@hotmail.com

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

FOSMOR Fooo Optical Sheet Music Recognition

FOSMOR Fooo Optical Sheet Music Recognition Fooo Optical Sheet Music Recognition Rapport de Projet Soutenance nale, le 26 Mai 2009 Félix Flx Abecassis (abecas_e) Christopher Vjeux Chedeau (chedea_c) Vladimir Vizigrou Nachbaur (nachba_v ) Alban Banban

Plus en détail

Apprentissage Statistique

Apprentissage Statistique Apprentissage Statistique Master DAC - Université Paris 6, patrick.gallinari@lip6.fr, http://www-connex.lip6.fr/~gallinar/ Année 2014-2015 Partie 1 Introduction Apprentissage Automatique Problématique

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Poteaux Adrien XLIM-DMI, UMR-CNRS 6172 Université de Limoges Soutenance de thèse 15 octobre

Plus en détail

Chapitre 1 : Introduction aux bases de données

Chapitre 1 : Introduction aux bases de données Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données

Plus en détail

Remerciements : Avant tout, louange à Dieu le tout puissant de m avoir aidé et permis d achever ce modeste travail.

Remerciements : Avant tout, louange à Dieu le tout puissant de m avoir aidé et permis d achever ce modeste travail. العالي التعلیم وزارة والبحث العلمي BADJI MOKHTAR ANNABA UNIVERSITY UNIVERSITE BADJI MOKHTAR ANNABA جامعة باجي مختار عنابة Faculté: Sciences de l'ingénieur Année : 2010 Département: Electronique MEMOIRE

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

1 Année LMD-STSM Algorithmique et Programmation. Série de TD 2

1 Année LMD-STSM Algorithmique et Programmation. Série de TD 2 Série de TD 2 Exercice 2.1 Quel résultat produit le programme suivant? Var val, double : entier ; Val := 231 ; Double := Val * 2 ; Ecrire (Val) ; Ecrire (Double) ;. Exercice 2.2 Ecrire un programme qui

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones

Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Abdeljelil Farhat Unité de recherche EAS-Mahdia Faculté des sciences économiques

Plus en détail

Régime de retraite patronal-syndical (Québec) de l'association internationale des machinistes (A.I.M.)

Régime de retraite patronal-syndical (Québec) de l'association internationale des machinistes (A.I.M.) Régime de retraite patronal-syndical (Québec) de l'association internationale des machinistes (A.I.M.) 2002 Pourquoi la planification de la retraite est-elle importante? Peu importe vos projets pour la

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Traumatisme crânien ou traumatisme cranio-cérébral Trouble de santé neurologique Aide-mémoire

Traumatisme crânien ou traumatisme cranio-cérébral Trouble de santé neurologique Aide-mémoire Définition La notion de traumatisme crânien ou traumatisme crânio-cérébral (TCC) couvre les traumatismes du neurocrâne (partie haute du crâne contenant le cerveau) et du cerveau. La Société de l'assurance

Plus en détail

Les algorithmes de fouille de données

Les algorithmes de fouille de données Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités

Plus en détail

InfraCenter Introduction

InfraCenter Introduction Peregrine InfraCenter Introduction DICW-43-FR03 InfraCenter Copyright 2003 Peregrine Systems, Inc. Tous droits réservés. Les informations contenues dans ce document sont la propriété de Peregrine Systems,

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Diagramme de classes

Diagramme de classes Diagramme de classes Un diagramme de classes décrit les classes et leurs relations (associations, généralisation/spécialisation, ). classe association méthodes attributs héritage Diagramme de classes :

Plus en détail

Chapitre V : La gestion de la mémoire. Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping

Chapitre V : La gestion de la mémoire. Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping Chapitre V : La gestion de la mémoire Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping Introduction Plusieurs dizaines de processus doivent se partager

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Introduire un nouveau type de maille ou un nouvel élément de référence

Introduire un nouveau type de maille ou un nouvel élément de référence Titre : Introduire un nouveau type de maille ou un nouvel [...] Date : 05/10/2012 Page : 1/11 Introduire un nouveau type de maille ou un nouvel élément de référence Résumé : Ce document décrit ce qu il

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

L'EPS à l'école primaire aucune modification des programmes

L'EPS à l'école primaire aucune modification des programmes L'EPS à l'école primaire aucune modification des programmes Les 3 objectifs sont poursuivis aussi bien à l'école maternelle, qu'à l école primaire MATERNELLE * Favoriser la construction des actions motrices

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

modélisation solide et dessin technique

modélisation solide et dessin technique CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir

Plus en détail

1.5 0.5 -0.5 -1.5 0 20 40 60 80 100 120. (VM(t i ),Q(t i+j ),VM(t i+j ))

1.5 0.5 -0.5 -1.5 0 20 40 60 80 100 120. (VM(t i ),Q(t i+j ),VM(t i+j )) La logique oue dans les PME/PMI Application au dosage de l'eau dans les bétons P.Y. Glorennec INSA de Rennes/IRISA glorenne@irisa.fr C. Hérault Hydrostop christophe@hydrostop.fr V. Hulin Hydrostop vincent@hydrostop.fr

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons

Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Utiliser Access ou Excel pour gérer vos données

Utiliser Access ou Excel pour gérer vos données Page 1 of 5 Microsoft Office Access Utiliser Access ou Excel pour gérer vos données S'applique à : Microsoft Office Access 2007 Masquer tout Les programmes de feuilles de calcul automatisées, tels que

Plus en détail

Ebauche Rapport finale

Ebauche Rapport finale Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.

Plus en détail

APPLICATION DE RESEAUX DE NEURONES ARTIFICIELS A LA RECONNAISSANCE AUTOMATIQUE DE CARACTERES MANUSCRITS

APPLICATION DE RESEAUX DE NEURONES ARTIFICIELS A LA RECONNAISSANCE AUTOMATIQUE DE CARACTERES MANUSCRITS Faculté Polytechnique de Mons Dissertation originale présentée pour l obtention du grade de Docteur en Sciences Appliquées par Bernard GOSSELIN APPLICATION DE RESEAUX DE NEURONES ARTIFICIELS A LA RECONNAISSANCE

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Les Réseaux sans fils : IEEE 802.11. F. Nolot

Les Réseaux sans fils : IEEE 802.11. F. Nolot Les Réseaux sans fils : IEEE 802.11 F. Nolot 1 Les Réseaux sans fils : IEEE 802.11 Historique F. Nolot 2 Historique 1er norme publiée en 1997 Débit jusque 2 Mb/s En 1998, norme 802.11b, commercialement

Plus en détail

Travaux pratiques avec RapidMiner

Travaux pratiques avec RapidMiner Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

EXAMEN PROFESSIONNEL D'ADJOINT TECHNIQUE DE 1 ère CLASSE 2009

EXAMEN PROFESSIONNEL D'ADJOINT TECHNIQUE DE 1 ère CLASSE 2009 CONSIGNES EXAMEN PROFESSIONNEL D'ADJOINT TECHNIQUE DE 1 ère CLASSE 2009 Répondez directement sur le dossier. Eviter de raturer lorsque vous indiquez une réponse ; dans le doute, celle-ci sera considérée

Plus en détail

Rapport de projet tutoré

Rapport de projet tutoré Cité Descartes 5, bd Descartes Champs sur Marne 77454 MARNE LA VALLEE Ecole d'ingénieur IMAC 9 cours du Danube 77600 Serris Ecole d'ingénieur IMAC 2ème année Interactive Music Sensation Année Universitaire

Plus en détail

INSTRUCTIONS COMPLÉTES

INSTRUCTIONS COMPLÉTES INSTRUCTIONS COMPLÉTES Le Service de plans du Canada, un organisme fédéral-provincial, favorise le transfert de technologie au moyen de feuillets, de croquis et de plans de construction qui montrent comment

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

Reaper : utilisations avancées

Reaper : utilisations avancées Reaper : utilisations avancées Reaper dispose de ressources qui, sans être cachées, ne sont pas toujours faciles à trouver, d'autant plus que souvent on n'imagine même pas que ces choses soient possible!...

Plus en détail

Guide de la documentation des produits BusinessObjects XI

Guide de la documentation des produits BusinessObjects XI Guide de la documentation des produits XI Vous trouverez la dernière version de ce guide et de tous les guides PDF sur le site http://support.businessobjects.com/documentation. Quelques uns de ces guides

Plus en détail

Charte européenne pour la qualité des stages et des apprentissages

Charte européenne pour la qualité des stages et des apprentissages Charte européenne pour la qualité des stages et des apprentissages www.qualityinternships.eu Préambule Etant donné que:! la passage des jeunes des études au marché de l'emploi devient de plus en plus compliqué

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos. Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière

Plus en détail

TEXT MINING. 10.6.2003 1 von 7

TEXT MINING. 10.6.2003 1 von 7 TEXT MINING 10.6.2003 1 von 7 A LA RECHERCHE D'UNE AIGUILLE DANS UNE BOTTE DE FOIN Alors que le Data Mining recherche des modèles cachés dans de grandes quantités de données, le Text Mining se concentre

Plus en détail

L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux

L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux L'INTÉRÊT COMPOSÉ 2.1 Généralités Un capital est placé à intérêts composés lorsque les produits pendant la période sont ajoutés au capital pour constituer un nouveau capital qui, à son tour, portera intérêt.

Plus en détail

Préparée au Laboratoire d'analyse et d'architecture des Systèmes du CNRS. Spécialité : Systèmes Automatiques. Par CLAUDIA VICTORIA ISAZA NARVAEZ

Préparée au Laboratoire d'analyse et d'architecture des Systèmes du CNRS. Spécialité : Systèmes Automatiques. Par CLAUDIA VICTORIA ISAZA NARVAEZ Année 2007 THÈSE Préparée au Laboratoire d'analyse et d'architecture des Systèmes du CNRS En vue de l'obtention du titre de Docteur de l'université de Toulouse, délivré par l Institut National des Sciences

Plus en détail

Guide abrégé ME301-2

Guide abrégé ME301-2 Guide abrégé ME301-2 Version 1.0, mai 2013 Conseil pratique 1. Enregistrer les numéros importants N série xxxxxx +xx xx xx xx xx N série xxxxxx Numéro de série situé sur l appareil. Numéro GSM et numéro

Plus en détail

LE TABLEUR OPENOFFICE CALC : CONTRÔLES DE FORMULAIRES ACCÈS AUX BASES DE DONNÉES

LE TABLEUR OPENOFFICE CALC : CONTRÔLES DE FORMULAIRES ACCÈS AUX BASES DE DONNÉES LE TABLEUR OPENOFFICE CALC : CONTRÔLES DE FORMULAIRES ACCÈS AUX BASES DE DONNÉES 1. Les bases de données dans OpenOffice CALC Dans OpenOffice Calc une base de données désigne simplement un tableau de valeurs.

Plus en détail

McAfee Security-as-a-Service

McAfee Security-as-a-Service Guide Solutions de dépannage McAfee Security-as-a-Service Pour epolicy Orchestrator 4.6.0 Ce guide fournit des informations supplémentaires concernant l'installation et l'utilisation de l'extension McAfee

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation

Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation Réglage de la largeur d'une fenêtre de Parzen dans le cadre d'un apprentissage actif : une évaluation Vincent Lemaire, R&D France Telecom 2 avenue Pierre Marzin, 2300 Lannion France email : vincent.lemaire@orange-ftgroup.com

Plus en détail

COURS EN LIGNE DU CCHST Manuel du facilitateur/de l administrateur

COURS EN LIGNE DU CCHST Manuel du facilitateur/de l administrateur COURS EN LIGNE DU CCHST Manuel du facilitateur/de l administrateur Préparé par En partenariat avec CCHST Centre canadien d'hygiène et de sécurité au travail VUBIZ Fournisseur de services de formation Dernière

Plus en détail

Fiche FOCUS. Les téléprocédures. Payer les autres impôts (entreprises DGE)

Fiche FOCUS. Les téléprocédures. Payer les autres impôts (entreprises DGE) Fiche FOCUS Les téléprocédures Payer les autres impôts (entreprises DGE) Dernière mise à jour : avril 2015 Table des matières 1. Présentation...3 1.1. Objet de la fiche...3 1.2. A qui s'adresse cette procédure?...3

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Installation de IBM SPSS Modeler Server Adapter

Installation de IBM SPSS Modeler Server Adapter Installation de IBM SPSS Modeler Server Adapter Table des matières Avis aux lecteurs canadiens...... v IBM SPSS Modeler Server Installation de l'adaptateur............ 1 A propos de l'installation de

Plus en détail

Microsoft Dynamics AX 2012 Une nouvelle génération de système ERP

Microsoft Dynamics AX 2012 Une nouvelle génération de système ERP Microsoft Dynamics AX 2012 Une nouvelle génération de système ERP Microsoft Dynamics AX 2012 n'est pas seulement la dernière version d'un excellent produit. Cette solution représente en fait un véritable

Plus en détail

Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique

Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique Mémoire Maxime Latulippe Maîtrise en informatique Maître ès sciences (M.Sc.) Québec, Canada Maxime

Plus en détail

Filière Informatique de gestion. Facturation par APDRG : prédiction des recettes des cas non codés

Filière Informatique de gestion. Facturation par APDRG : prédiction des recettes des cas non codés Travail de diplôme 2007 Filière Informatique de gestion Facturation par APDRG : prédiction des recettes des cas non codés PrediRec Etudiant : Mathieu Giotta Professeur : Henning Mueller www.hevs.ch SIMAV

Plus en détail

DÉVELOPPEMENT INFONUAGIQUE - meilleures pratiques

DÉVELOPPEMENT INFONUAGIQUE - meilleures pratiques livre blanc DÉVELOPPEMENT INFONUAGIQUE MEILLEURES PRATIQUES ET APPLICATIONS DE SOUTIEN DÉVELOPPEMENT INFONUAGIQUE - MEILLEURES PRATIQUES 1 Les solutions infonuagiques sont de plus en plus présentes sur

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

TDB-SSI LES EXTENSIONS

TDB-SSI LES EXTENSIONS TDB-SSI LES EXTENSIONS U n i v e r s i t é d e l a M é d i t e r r a n é e F a c u l t é d e M é d e c i n e Projet TDB-SSI Documentation du Tableau de Bord de Sécurité des Systèmes d Information Marseille,

Plus en détail

6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses

6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses 6. Hachage Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses PLAN Définition Fonctions de Hachage Méthodes de résolution de collisions Estimation

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

Date de diffusion : Rédigé par : Version : Mars 2008 APEM 1.4. Sig-Artisanat : Guide de l'utilisateur 2 / 24

Date de diffusion : Rédigé par : Version : Mars 2008 APEM 1.4. Sig-Artisanat : Guide de l'utilisateur 2 / 24 Guide Utilisateur Titre du projet : Sig-Artisanat Type de document : Guide utilisateur Cadre : Constat : Les Chambres de Métiers doivent avoir une vision prospective de l'artisanat sur leur territoire.

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

Méthodes d apprentissage statistique «Machine Learning»

Méthodes d apprentissage statistique «Machine Learning» Méthodes d apprentissage statistique «Machine Learning» Fabrice TAILLIEU, Sébastien DELUCINGE, Rémi BELLINA Le marché de l assurance a rarement été marqué par un environnement aussi difficile qu au cours

Plus en détail