Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé."

Transcription

1 TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction de votre copie. Vous n oublierez pas de rendre le sujet avec votre copie. Bon courage. Durée : 3 h Le barème est noté sur 20 points. Exercice 1 : Probabilités (5 points) Lorsque le taux de calcium dans une bouteille d eau minérale dépasse 65 mg par litre, on dit que l eau de cette bouteille est calcaire. On estime que, dans un stock important de bouteilles, 7,5% des bouteilles contiennent de l eau calcaire. Partie A : Sauf indication contraire dans une question, on donnera les résultats arrondis à 10 3 près. On prélève au hasard 40 bouteilles dans le stock pour vérifier le taux de calcium. Le stock est assez important pour qu on assimile ce prélèvement à un tirage avec remise. Soit X la variable aléatoire égale au nombre de bouteilles de ce prélèvement qui contiennent de l eau calcaire. Partie non demandée 1. Donner la loi suivie par X. (sans explication) Il s agit ici de la répétition de 40 épreuves de Bernoulli dont le succès est «la bouteille contient de l eau calcaire» de probabilité 0,075. (voir dans l énoncé «dans un stock important de bouteilles, 7,5% des bouteilles contiennent de l eau calcaire») X étant le nombre de bouteilles de ce prélèvement qui contiennent de l eau calcaire, X est donc le nombre de succès. X suit donc la loi binomiale de paramètres 40 (n=40) et 0,075 (p = 0,075) 2. a) Calculer la probabilité de prélever que des bouteilles contenant de l eau non calcaire. Si on prélève que des bouteilles ayant de l eau non calcaire, cela signifie qu il y a «zéro» bouteille contenant de l eau calcaire On cherche donc p(x = 0) = 0, ,044 La probabilité de prélever que des bouteilles contenant de l eau non calcaire est d environ 0,044 b) En déduire la probabilité de prélever au moins une bouteille contenant de l eau calcaire. On cherche donc p( X 1) = 1 p( X = 0) = 1 0, ,956 La probabilité de prélever au moins une bouteille contenant de l eau calcaire est d environ 0,956

2 Partie B : On note Y la variable aléatoire qui, à chaque bouteille prélevée au hasard associe le taux de calcium (en mg) de l eau qu elle contient. On suppose que Y suit la loi normale d espérance 50,6 et d écart type Quelle est la probabilité d avoir un taux de calcium égal à 50,6 mg? p (Y = 50,6) = 0 car X suit une loi à densité. 2. Calculer p (Y > 65). Interpréter ce résultat. Celui-ci est-il cohérent avec les données du problème? Expliquer. Y suit la loi normale N (50,6 ; 10 2) donc p (Y> 65) = 0,5 p (50,6< Y <65) 0,075 Partie C : Ceci signifie que la probabilité d avoir un taux de calcium supérieur à 65 mg est d environ 0,075, c est-à-dire que la probabilité d avoir une bouteille qui contient une eau calcaire est d environ 0,075. Ceci est cohérent avec l hypothèse donnée : «dans un stock important de bouteilles, 7,5% des bouteilles contiennent de l eau calcaire». L eau minérale provient de deux sources S 1 et S 2. La probabilité que l eau soit calcaire est 0,064 pour les bouteilles provenant de la source S 1 et 0,10 pour les bouteilles provenant de la source S 2. La source S 1 fournit 70% de la production totale des bouteilles d eau et la source S 2 le reste de la production. On prélève au hasard une bouteille d eau parmi la production totale d une journée. Toutes les bouteilles d eau ont la même probabilité d être tirées. 1. Calculer la probabilité que l eau contenue dans la bouteille soit calcaire. On détaillera le raisonnement et on donnera la valeur exacte de cette probabilité. 0,064 C 0,7 S 1 0,936 C 0,3 0,10 C S 2 0,90 C S 1 et S 2 forment une partition de l univers donc d après la formule des probabilités totales, on a p ( C) = p ( S 1 C) + p ( S 2 C) = p ( S 1 ) p S 1 (C) + p ( S 2 ) p S 2 (C) = 0,7 0, ,3 0,10 = 0, ,03 = 0,0748 La probabilité que l eau contenue dans la bouteille soit calcaire est de 0,0748

3 2. On a analysé une bouteille d eau et il s avère qu elle contient de l eau calcaire. Quelle est la probabilité que elle provienne de la source S 2? On cherche donc ici : p C (S 2 ) p C (S 2 ) = p(c S 2) p(c) = p ( S 2) p S 2 (C) 0,3 0,10 = p( C) 0,0748 = 0,03 0,0748 = = 75 0, On a analysé une bouteille d eau et il s avère qu elle contient de l eau calcaire. La probabilité qu elle provienne de la source S 2 est égale à environ 0, 401

4 Exercice 2 : ( 6,5 points) Partie A : QCM sans justification (3 points) : les questions sont indépendantes. Pour chaque question, trois réponses sont proposées, une seule est exacte. Le candidatportera dans la dernière colonne, sans justification, la lettre correspondant à la réponsechoisie. Il est attribué 0,75 point si la réponse est exacte, 0,25 point est enlevé pour une réponse inexacte et aucun point n est enlevé pour une absence de réponse. Soit une fonction f définie sur IR et dont voici la représentation graphique dans un repère orthogonal. B Réponse A Réponse B Réponse C Parmi les représentations graphiques données ci-contre, quelle est celle d une primitive de f sur IR? Soit la suite (u n ) définie pour tout entier n par : u n = 5 0,25 n Soit S n = u 0 + u u n alors S n = 20 3 (1 0,25n+1 ) Réponse A S n = 4 3 (5 1,25n+1 ) Réponse B S n = 20 3 (1 0,25n ) Réponse C A Voici des courbes représentant les fonctions de densité de variables aléatoires qui suivent une loi normale N (μ, σ 2 ) μ > 1 et σ > 1 μ > 1 et σ>1 μ > 1 et σ = 1 B Réponse A Réponse B Réponse C Pour tout réel x, e 2x + 3e x 4 s écrit aussi : e x (e x + 3 4) Réponse A e 2x+ 3x 4 Réponse B ( e x + 4) (e x 1) Réponse C C

5 Explications : Pour la question 1 : Soit une fonction f définie sur IR et dont voici la représentation graphique dans un repère orthogonal. B Réponse A Réponse B Réponse C Parmi les représentations graphiques données ci-contre, quelle est celle d une primitive de f sur IR? x.. + Signe de f(x) donc de F (x) Variation de F Pour la question 2 : Soit la suite (u n ) définie pour tout entier n par : u n = 5 0,25 n Soit S n = u 0 + u u n alors S n = 20 3 (1 0,25n+1 ) Réponse A S n = 4 3 (5 1,25n+1 ) Réponse B S n = 20 3 (1 0,25n ) Réponse C A S n = u 0 + u u n S n = 20 3 (1 0,25n+1 ) = , , ,25 n = 5 (1 + 0,25+ 0, ,25 n ) Or si b est différent de1, ce qui est le cas ici avec b = 0,25, on a 1+b+ b b n = On a donc : S n = 5 1 bn+ 1 1 b 1 1 0,25n+ 1 0,25 = 5 1 0,25n+ 1 0,75 = 5 1 0,25n = ( 1 0,25n+1 )

6 Partie : Donner du sens à des informations et savoir les utiliser (3,5 points) On considère la fonction f définie sur [0 ; + [ par f(x) = Soit C f sa représentation graphique dans un repère orthogonal. Un élève a tracéc f sur sa calculatrice et émet des conjectures : a) la fonction f semble croissante sur [0 ; + [ b) la fonction f semble concave sur [0 ; + [ 10x 20 (x+2) 3. Il cherche à les valider ou non et se souvient alors que l on a parlé des fonctions suivantes : f (dérivée de f) f (dérivée seconde de f) F ( uneprimitive de f sur [0 ; + [ ) Il utilise alors un logiciel de calcul formel pour trouver ces diverses fonctions. Voici ce qu il a obtenu : Rappels: «factor» signifie que le logiciel a donné la forme factorisée et «integrer» signifie «donner une primitive» En utilisant des données précédentes, répondre aux questions ci-dessous : Pour étudier la convexité de f Pour étudier les variations de f on utilise le signe de f ( x ) f ( x ) x f ( x ) F ( x ) on utilise le signe de f ( x ) x f ( x ) f ( x ) F ( x ) Compléter alors le tableau ci-dessous (sans justification) et terminer le raisonnement. Il s agit d étudier le signe de f (x) avec f (x) = 60(x 6) (x+2) 5 x Signe de f (x) 0 + Variation de f Convexité de f f est concave sur [0 ; 6] f est convexe sur [6 ; + [ Compléter alors le tableau ci-dessous (sans justification) et terminer le raisonnement. Il s agit d étudier le signe de f (x) avec f (x) = 20(x 4) (x+2) 5 x Signe de + 0 f (x) Variation de f 2,5 5 54

7 D autre part, avec le solveur de la calculatrice, il a obtenu : Pour retrouver ce résultat : on utilise : f ( x ) f ( x ) f ( x ) x F ( x ) Retrouver alors ce résultat 5 2 f (x)dx = F(5) F(2)= ( 10 5 ( 5+2) 2 ) ( 10 2 ( 2+2) 2 ) = = = = Interpréter graphiquement ce calcul, en justifiant La fonction f est continue et positive sur [2 ; 5] ( voir signe de f(x) ci-dessous) donc l aire du domaine limitée par C f., l axe des abscisses, les droites d équations respectives x=2 et x=5 est égale à 45 unités d aire. 196 Signe de f(x) avec f(x) = 10x 20 (x+2) 3 sur [ 0 ; + [ x Signe de 10x Signe de (x+2) 3 + signe de f(x) + 0

8 Exercice 3: Suites (5 points) Pour effectuer un achat, Corinne a emprunté une somme de 1000 à la banque au taux d intérêts composés de 1% par mois. Chaque mois, elle rembourse ce crédit par un virement mensuel de 30 à la fin du mois. On note u n le montant restant dû après son n-ième remboursement. On a donc u 0 = Expliquer pourquoi, pour tout entier naturel n, u n+1 = 1,01u n 30 u n est le montant restant dû après son n-ième remboursement. Pour calculer le montant restant le mois suivant, il faut tenir compte du taux d intérêts composés de 1% par mois ce qui se traduit par : 1,01u n De plus, comme chaque mois, elle rembourse ce crédit par un virement mensuel de 30 à la fin du mois : on peut enlever 30 à 1,01u n. On en déduit donc que : pour tout entier naturel n, u n+1 = 1,01u n Soit la suite (v n ) définie pour tout entier naturel n par : v n = u n 3000 a) Montrer que la suite (v n ) est une suite géométrique. Préciser sa raison et son premier terme. Pour tout n v n = u n 3000 donc v n+1 = u n Or u n+1 = 1,01u n 30 donc v n+1 = (1,01u n 30) 3000 = 1,01u n 3030 Première méthode : v n+1 = 1,01u n 3030 = 1,01 ( u n 3000) Comme v n = u n 3000, on en déduit que : v n+1 = 1,01v n Seconde méthode : v n+1 = 1,01u n 3030 Or v n = u n 3000 donc u n = v n On en déduit : v n+1 = 1,01(v n +3000) 3030 = 1,01v n = 1,01v n On a donc prouvé que pour tout entier naturel n,v n+1 = 1,01v n Donc ( v n ) est une suite géométrique de raison 1,01 De plus son premier terme est : v 0 = u = = 2000 b) Déterminer alors l expression de v n en fonction de n ( v n ) est une suite géométrique de raison 1,01 (b =1,01) et de premier terme v 0 = 2000 donc pour tout n, on a : v n = v 0 b n = ,01 n

9 c) En déduire que, pour tout entier naturel n, u n = ,01 n On sait que pour tout entier n,v n = u n 3000 donc u n = v n Or d après la question précédente, on a v n = v 0 b n = ,01 n Donc, pour tout n, u n = ,01 n 3. Etudier la limite de la suite(u n ). Cette limite a-t-elle un sens pour la situation concrète étudiée? Expliquer. 1,01 > 1 donc lim1,01 n = + n + d où lim( ,01 n ) = n + Variables : n est un entier naturel U est un réel Initialisation: n prend la valeur 0 U prend la valeur 1000 Traitement :Tant que U 0 n prend la valeur n+1 U prend la valeur 1,01 U 30 Fin de Tant que Sortie : donc lim( ,01 n ) = n + Afficher n On en déduit que la suite (u n ) tend donc vers Ceci signifierait qu à long terme, le montant à rembourser est négatif, ce qui n a pas de sens. Le remboursement se terminera bien un jour! 4. On souhaite trouver, grâce à un algorithme, le plus petit entier n tel que u n soit strictement négatif. On peut construire cet algorithme en utilisant soit la définition par récurrence de la suite(u n ) (celle donnée dans l énoncé de départ) soit en utilisant l expression de u n trouvée dans la question 2c), d où deux algorithmes dont la structure est donnée ci-dessous. A vous de choisir l un des deux et de le compléter. Algorithme 1 Variables : n est un entier naturel Initialisation: n prend la valeur 0 Traitement : Tant que ,01 n 0 n prend la valeur n+1 Fin de Tant que Sortie : Algorithme 2 Afficher n

10 Algorithme 1 avec une calculatrice Casio Algorithme 2 avec une calculatrice Casio Algorithme 1 avec une calculatrice TI : 0 N : 1000 U : While U 0 : N + 1 N : 1.01U 30 U : End : DISP N Algorithme 2 avec une calculatrice TI : 0 N : While ,01^N 0 : N + 1 N : End : DISP N 5. On admet que l algorithme donne comme valeur finale : n = 41. Calculer alors u 40, le montant qu il reste à rembourser après le 40 ème remboursement. u n = ,01 n donc u 40 = , ,273 Le montant qu il reste à rembourser après le 40 ème remboursement est égal à environ 22,27 Calculer alors le montant total des remboursements et en déduire le total des intérêts versés. Corinne aura donc remboursé au total : ,27 soit 1222,27 ce qui faitun total d intérêts versés de 222,27

11 Exercice 4 : Fonctions et économie (3,5 points) Le but de cet exercice est de déterminer le bénéfice maximum réalisable pour la vente d un produit fabriqué par une entreprise. Le coût marginal de fabrication de ce produit est modélisé par la fonction Cm définie sur [1 ; 20] par : Cm(q) = 4 + (0,2q 2 2q) e 0,2q, où q est exprimé en tonnes et Cm(q) en milliers d euros. 1. Soit la fonction C T définie [1 ; 20] par C T (q) = 4q q 2 e 0,2q Montrer que C T est une primitive de C m sur [1 ; 20]. Montrer que C T est une primitive de C m sur [1 ; 20] revient à montrer que : la dérivée de C T est égale à C m. On calcule donc C T ( q ) avec C T (q) = 4q q 2 e 0,2q C T = w uv donc C T = w (u v + uv ) w(q)= 4q w (q)= 4 u(q) = q 2 u (q) = 2 q v(q) =e 0,2q v (q) = 0,2e 0,2q On a donc pour tout q de [1 ; 20]: C T (q) = 4 (2q e 0,2q + q 2 ( 0,2e 0,2q )) C T (q) = 4 2qe 0,2q + 0,2 q 2 e 0,2q C T (q) = 4 + ( 2q+ 0,2q 2 ) e 0,2q C T (q) = 4 + ( 0,2q 2 2q) e 0,2q C T (q) = C m (q) doncc T est une primitive de C m sur [1 ; 20] 2. La fonction coût moyen, notée C M est la fonction définie sur [1 ;20] par C M (q)= C T (q) q On admet que C M (q)= 4 qe 0,2q En utilisant votre calculatrice, conjecturer pour quelle production mensuelle q 0 l entreprise admet un coût moyen minimal. Quel est ce coût? Pour cette production q 0, quelle est la valeur du coût marginal? Quelle remarque pouvez-vous faire?. puis avec ZOOM AUTO Il semble donc que l entreprise admet un coût moyen minimal lorsqu elle produit 5 tonnes de ce produit et ce coût moyen minimal est d environ 2,1606. De plus Cm(5) = 4 + (0, ) e 0,2 5 = 4 + ( 0, ) e 1 = 4 5e 1 2,1606. Les valeurs approchées trouvées ci-dessus pour le coût moyen et le coût marginal sont les mêmes.

12 On peut conjecturer que lorsque le coût moyen est minimal, le coût moyen et le coût marginal sont égaux mais cela reste à prouver! (Hors bac blanc : si vous avez fini et qu il vous reste du temps : Résoudre l équation C M (q)= C m (q) ) C M (q) = C m (q) 4 qe 0,2q = 4 + ( 0,2q 2 2q) e 0,2q et q [1 ;20] Or 4 qe 0,2q = 4 + ( 0,2q 2 2q) e 0,2q qe 0,2q = ( 0,2q 2 2q) e 0,2q e 0,2q ( q 0,2q 2 + 2q) = 0 e 0,2q ( q 0,2q 2 ) = 0 or e 0,2q 0 donc qe 0,2q ( 0,2q 2 2q) e 0,2q = 0 e 0,2q ( q ( 0,2q 2 2q) ) = 0 4 qe 0,2q = 4 + ( 0,2q 2 2q) e 0,2q = C m (q) q 0,2q 2 = 0 q ( 1 0,2q) = 0 q = 0 ou 1 0,2q = 0 q = 0 ou q = 5 Comme q appartient à [1 ;20], on a : C M (q)= C m (q) q = 5 On peut le vérifier à la calculatrice : 3. Toute trace de recherche, même incomplète, d initiative, même non fructueuse, sera prise en compte dans l évaluation. On suppose que l entreprise vend toute sa production mensuelle. Chaque tonne du produit est vendu On désigne par R(q) la recette mensuelle obtenue pour la vente de q tonnes de produit et par B(q) le bénéfice mensuel en millier d euros Les représentations graphiques des fonctions recette et coût total sont données ci-dessous.

13 a) Exprimer en fonction de q le bénéfice B(q), puis justifier que l entreprise est rentable. B(q) = R(q) C T (q) = = 4q (4q q 2 e 0,2q ) = q 2 e 0,2q Orq 2 est strictement positif sur [1 ;20] et e 0,2q est aussi strictement positif Donc pour tout q de [1 ;20] B(q) > 0 ce qui signifie que l entreprise est rentable Remarque :graphiquement, on peut le conjecturer car la courbe de la recette est au dessus de celle du coût total. b) Estimer,graphiquement, en précisant votre démarche, le bénéfice maximal que l on peut espérer sur le mois étudié. Soient M le point d abscisse q du segment représentant la recette et N le point de même abscisse q de la courbe représentant le coût total. On cherche pour quelle valeur de q l écart entre ces deux points M et N est le plus grand, c est-à-dire tel que y M y N est le plus grand Il semble que cela se produise lorsque q est voisin de 10 et le bénéfice maximal serait voisin de

14 Remarque : on pouvait aussi conjecturer cette réponse en utilisant la calculatrice et en trouvant le maximum de B sur [1 ; 20]

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015 Durée : 4 heures [ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 015 A. P. M. E. P. EXERCICE 1 7 points Une usine produit de l eau minérale en bouteilles. Lorsque le taux de calcium dans une bouteille

Plus en détail

Bac Blanc n 2 de Mathématiques du Lundi 8 Avril 2013 Calculatrice autorisée - Aucun document n'est autorisé.

Bac Blanc n 2 de Mathématiques du Lundi 8 Avril 2013 Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Nom : Bac Blanc n 2 de Mathématiques du Lundi 8 Avril 2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction de votre

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Correction du baccalauréat STMG Centres étrangers 17 juin 2014

Correction du baccalauréat STMG Centres étrangers 17 juin 2014 orrection du baccalauréat STMG entres étrangers 17 juin 2014 EXERIE 1 4 points On considère une fonction f définie sur l intervalle [ 5 ; 3] dont la représentation graphique f est donnée ci-dessous. Soit

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

Bac ES La Réunion juin 2009

Bac ES La Réunion juin 2009 Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire

Chapitre 4. Fonction exponentielle. 4.1 Activité. Sommaire Chapitre 4 Fonction exponentielle Sommaire 4.1 Activité............................................. 37 4. Fonctions exponentielles de base q (q > 0)........................ 39 4..1 Définition.........................................

Plus en détail

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6

BACCALAURÉAT BLANC. 21 février 2013 MATHÉMATIQUES. Série : STG. DURÉE DE L ÉPREUVE : 3 heures. Ce sujet comporte 6 pages, numérotées de 1 à 6 BACCALAURÉAT BLANC 21 février 2013 MATHÉMATIQUES Série : STG DURÉE DE L ÉPREUVE : 3 heures Ce sujet comporte 6 pages, numérotées de 1 à 6 L utilisation d une calculatrice est autorisée, mais aucun prêt

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Série ST2S BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Série ST2S Durée de l épreuve : 2 heures Coefficient : 3 Une feuille de papier millimétré est fournie au candidat Les calculatrices électroniques de

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné.

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. Eercice / 5 points Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 0 % de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique.

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction

Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction EXERCICE 1 8 points La société Bonbon.com commercialise des confiseries. On utilise une feuille de calcul d un tableur pour observer l évolution

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

Baccalauréat ES Amérique du Sud 16 novembre 2011

Baccalauréat ES Amérique du Sud 16 novembre 2011 Baccalauréat ES Amérique du Sud 16 novembre 2011 L utilisation d une calculatrice est autorisée. EXERCICE 1 Commun à tous les candidats 4 points Soit u une fonction définie et dérivable sur l intervalle

Plus en détail

Baccalauréat ES La Réunion 19 juin 2009

Baccalauréat ES La Réunion 19 juin 2009 Baccalauréat ES La Réunion 9 juin 9 EXERCICE points Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces réponses est exacte. Aucune

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Baccalauréat STG Mercatique Pondichéry 21 avril 2010

Baccalauréat STG Mercatique Pondichéry 21 avril 2010 Baccalauréat STG Mercatique Pondichéry 21 avril 2010 La calculatrice (conforme à la circulaire N 99-186 du 16-11-99) est autorisée. Le candidat est invité à faire figurer sur la copie toute trace de recherche,

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Durée : 2 heures EXERCICE 1 Les parties 1 et 2 sont indépendantes. 8 points Le tableau ci-dessous indique les dépenses de santé des soins hospitaliers

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Correction Bac blanc mai 2013

Correction Bac blanc mai 2013 Correction Bac blanc mai 2013 Exercice 1 Commun à tous les candidats. 4 points (1 point par bonne réponse) 1. La fonction F définie sur R par F (x) = e x2 est une primitive de la fonction f définie par

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Première Maths FONCTIONS DE LA FORME f+g ET kf I- FONCTION DE RÉFÉRENCE Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Elle est

Plus en détail

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1.

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1. Chapitre 1 Rappels sur les fonctions Continuité Sommaire 1.1 Rappels sur les fonctions.... 1 1.1.1 Fonctions de référence.... 1 1.1. Fonction trinôme....... 1 1. Continuité............. 4 1..1 Activités............

Plus en détail

TES Spécialité Mathématiques Eléments de correction du D.S n 1 du Vendredi 12 Octobre 2012

TES Spécialité Mathématiques Eléments de correction du D.S n 1 du Vendredi 12 Octobre 2012 TES Spécialité Mathématiques Eléments de correction du D.S n 1 du Vendredi 12 Octobre 2012 Durée : 1 h 15 Calculatrice autorisée - Aucun autre document n'est autorisé Le barème est noté sur 30 pts. Vous

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2014

Baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Brevet de technicien supérieur Comptabilité et gestion des organisations

Brevet de technicien supérieur Comptabilité et gestion des organisations Comptabilité et gestion des organisations Lycée Cassini Exercice 1 11 points A. Étude d une fonction Soit f la fonction définie sur l intervalle [1 ; 14] par x+ 1 ln x f (x)=. x 1. a. Démontrer que. pour

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004.

Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004. Mathématiques, série ES Exemples d exercices, série ES Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004. 20 novembre

Plus en détail

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs MATHEMATIQUES BTS1 2013-201 Corrigés des devoirs CC 23 /09/2013 page2 CC 18/10/2013 page DV 25/11/2013 page 6 BTS Blanc 13/12/2013 page 8 CC 07/01/201 page 12 CC 0/02/201 page 1 BTS Blanc 27/02/201 page

Plus en détail

Tableau d amortissement et suite géométrique

Tableau d amortissement et suite géométrique Tableau d amortissement et suite géométrique ENONCE : Afin d être plus compétitive, une entreprise décide d emprunter 100 000 pour investir dans de nouvelles machines. Elle souhaite rembourser en 3 ans

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban Exercice 1 : 5 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Baccalauréat STMG Polynésie 17 juin 2014

Baccalauréat STMG Polynésie 17 juin 2014 Baccalauréat STMG Polynésie 17 juin 2014 Durée : 3 heures EXERCICE 1 Cet exercice est un Q.C.M. 4 points Pour chaque question posée, quatre réponses sont proposées parmi lesquelles une seule est correcte.

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction Baccalauréat SG Mercatique Polynésie 8 juin 2012 Correction La calculatrice (conforme à la circulaire N o 99-186 du 16-11-99) est autorisée. EXERCICE 1 4 points Cet exercice est un questionnaire à choix

Plus en détail

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion Baccalauréat ST Pondichéry 17 avril 015 Sciences et technologies du management et de la gestion Correction EXERCICE 1 6 points Le tableau ci-dessous, extrait d une feuille de calcul, donne le revenu disponible

Plus en détail

Exercice 1 Partie A Soit f la fonction définie, sur R, par :

Exercice 1 Partie A Soit f la fonction définie, sur R, par : Exercice Partie A Soit f la fonction définie, sur R, par : f (x)= ex e x +. On ( appelle (C ) sa courbe représentative dans le plan muni d un repère orthonormal O, ı, ) j ( unité graphique : cm).. a. Déterminer

Plus en détail

Suites Géométriques et Arithmético-Géométriques

Suites Géométriques et Arithmético-Géométriques Suites Géométriques et Arithmético-Géométriques Table des matières 1 suites géométriques 2 1.1 exploitation dans une situation donnée........................... 2 1.1.1 activités..........................................

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Couper en deux, encore et encore : la dichotomie

Couper en deux, encore et encore : la dichotomie Couper en deux, encore et encore : la dichotomie I : Jeu du nombre inconnu Un élève volontaire choisit un nombre entier compris entre 0 et 56. Un autre élève cherche à deviner ce nombre, en adoptant la

Plus en détail

Comptabilité. 1. France, juin 2006. PARTIE I : Etude de l évolution des charges de la société

Comptabilité. 1. France, juin 2006. PARTIE I : Etude de l évolution des charges de la société Baccalauréat Professionnel Comptabilité 1. France, juin 2006 1 2. France, septembre 2005 4 3. France, juin 2005 6 4. France, septembre 2004 8 5. France, juin 2004 11 6. France, juin 2003 14 7. France,

Plus en détail

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières Chapitre 4 Fonctions affines et équations du 1 er degré. TABLE DES MATIÈRES page -1 Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières I Exercices I-1 1................................................

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 010 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Échantillonnage : couleur des yeux au Canada Contexte pédagogique Objectifs Obtenir un intervalle de

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

Séance n 14 : Cette séance se divise en 3 exercices :

Séance n 14 : Cette séance se divise en 3 exercices : Séance n 14 : La séance n 14 est une séance de révisions. Cette séance de révisions est une séance de contrôle. Celle-ci doit en effet vous permettre de savoir si les notions vues dans la seconde partie

Plus en détail

Fonctions de référence

Fonctions de référence CLASSE : 2nde Durée approximative : 1 H DS 2N3 Correction Fonctions de référence EXERCICE 1 : / 4 points Difficulté : L'alcoolémie est le taux d'alcool présent dans le sang. Elle se mesure généralement

Plus en détail

On hachurera la partie du plan qui ne convient pas sans aucune justification.

On hachurera la partie du plan qui ne convient pas sans aucune justification. Exercice 1 (7 points) : PARTIE I En annexe 1, à rendre avec la copie, on a construit dans un repère orthonormal les droites D et D d équations respectives D : x + y = 6 et D : x + 2y = 8. Déterminer graphiquement

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

BACCALAUREAT TECHNOLOGIQUE

BACCALAUREAT TECHNOLOGIQUE BACCALAUREAT TECHNOLOGIQUE SESSION 2013 Epreuve : MATHEMATIQUES Série : Sciences et Technologies de la Santé et du Social (ST2S) Durée de l épreuve : 2 heures Coefficient : 3 L usage de la calculatrice

Plus en détail

Inde, avril 2014, exercice 1

Inde, avril 2014, exercice 1 Sujet 1 Inde, avril 2014, exercice 1 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1 La durée de vie, exprimée en années, d un moteur pour automatiser

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2010 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 7 pages numérotées de 1 à 7 dont une page en annexe à rendre avec la copie. L

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Baccalauréat ES Antilles Guyane juin 2009

Baccalauréat ES Antilles Guyane juin 2009 Baccalauréat ES Antilles uyane juin 2009 EXERCICE PARTIE A : aucune justification n est demandée 4 points Cette partie est un questionnaire à choix multiples. Pour chacune des questions, trois réponses

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

Baccalauréat S Amérique du Nord 2 juin 2015

Baccalauréat S Amérique du Nord 2 juin 2015 Durée : 4 heures Baccalauréat S Amérique du Nord 2 juin 2015 Exercice 1 Commun à tous les candidats 5 points Dans l espace, on considère ( une pyramide SABCE à base carrée ABCE de centre O. Soit D le point

Plus en détail

Fonctions numériques, exercices

Fonctions numériques, exercices Première L Fonctions numériques, exercices 1. Amérique du Sud, novembre 2002, 9 points 1 2. Amérique du Nord, juin 2004, 8 points 2 3. Antilles, juin 2004, 8 points 3 4. Pondichéry, avril 2002, 8 points

Plus en détail

Séquence 5. Sommaire. Pré-requis Généralités sur les suites numériques TICE Synthèse du cours Exercices d approfondissement.

Séquence 5. Sommaire. Pré-requis Généralités sur les suites numériques TICE Synthèse du cours Exercices d approfondissement. Séquence 5 Sommaire Pré-requis Généralités sur les suites numériques TICE Synthèse du cours Exercices d approfondissement 1 1 Pré-requis Suite chronologique Exemple 1 Le tableau suivant indique la population

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Probabilités conditionelles

Probabilités conditionelles Probabilités conditionelles Exercice 1 Cet exercice est un questionnaire à choix multiples constitué de six questions ; chacune comporte trois réponses, une seule est exacte On notera sur la copie uniquement

Plus en détail