Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL"

Transcription

1 Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées est eacte. Aucue justificatio est demadée. Ue boe répose rapporte u poit. Ue mauvaise répose, plusieurs réposes ou l absece de répose à ue questio e rapportet i elèvet aucu poit. Idiquer sur la copie la répose choisie Das les questios. et., o cosidère le complee z =e i π.. Le complee z est égal à : a. 8 b. 8 c. 8i d. 8i. U argumet de z est a. π b. π c. π d. π. O cosidère l équatio différetielle y y =, où y désige ue foctio dérivable sur l esemble des réels. Ue solutio f de cette équatio est la foctio de la variable vérifiat pour tout réel : a. f ()=e b. f ()=e + c. f ()=e d. f ()=e 4. La solutio f de l équatio différetielle y + 4π y = qui vérifie f ()= et f ()= admet comme représetatio graphique : a. b. c. d. EXERCICE 4 poits «E 9, les Fraçais ot e moyee produit 74kg de déchets méagers par habitat.» Source Ademe Le maire d ue commue de 5 7 habitats costata avec déceptio que ses admiistrés avaiet produit toes de déchets e 9. Il décida alors de mettre e place ue ouvelle campage de sesibilisatio au recyclage des papiers, plastiques, verres et métau. Cela permit à la ville d atteidre 4kg de déchets méagers e moyee par habitat e et d espérer réduire esuite cette productio de,5 % par a pedat 5 as.

2 Baccalauréat Scieces et techologies de l idustrie et du développemet durable Scieces et techologies de laboratoire spécialité scieces physiques et chimiques de laboratoire A. P. M. E. P.. La déceptio du maire e 9 est due à ue quatité de déchets méagers supérieure à la moyee atioale. Cette proportio est 48,. Das sa commue, il a été produit e moyee 48kg de déchets méagers par 57 habitat.. O ote d = 4. Pour tout ombre etier aturel o ul, o ote d la quatité (e kg) de déchets méagers produite par habitat de cette ville durat l aée +. a. À u tau d évolutio de,5% correspod u coefficiet multiplicateur de,5 =,985. Nous obteos d e multipliat d par ce coefficiet multiplicateur d où d =,985d. b. Nous déduisos le terme suivat d u élémet de la suite e multipliat celui-ci par le même ombre, par coséquet la suite (d ) est ue suite géométrique de raiso,985 et de premier terme 4. Eprimos d e foctio de. Le terme gééral d ue suite géométrique de premier terme u et de raiso q est u = u q doc ici, d = 4 (,985). calculos la limite de la suite (d ). Ue suite géométrique de raiso q avec < q < est ue suite covergeat vers. lim + d =. c. Détermios la productio e kilogrammes de déchets méagers par habitat das cette ville e 4 si la baisse se poursuit au même rythme. E 4, = calculos d. d = 4 (,985) 8.. O cosidère l algorithme suivat : Les variables sot l etier aturel N et le réel d. Iitialisatio : Affecter à N la valeur Affecter à d la valeur 4 Traitemet : Tat que d > 74 Affecter à N la valeur N+ Affecter à d la valeur, 985d Fi Tat que Sortie : Afficher N la valeur affichée pour N est 5. Ce résultat sigifie qu e 6 (+5) la productio de déchets méagers das la commue sera iférieure ou égale à 74kg, productio moyee produite par les Fraçais e 9. EXERCICE 5 poits Les trois parties de cet eercice peuvet être traitées de maière idépedate. Les résultats serot arrodis à près. Ue etreprise produit e grade quatité des emballages alimetaires de forme cubique e polypropylèe. Elle utilise pour cela la techique du thermoformage, qui cosiste à chauffer ue plaque de plastique puis à la former à l aide d u moule. Lors du refroidissemet, la pièce rétrécit légèremet mais coserve la forme du moule. L objectif de cet eercice est d aalyser la qualité d ue productio de boîtes cubiques. A. Loi ormale Ue boîte est jugée coforme lorsque la mesure de so arête, eprimée e millimètres, appartiet à l itervalle [6,7 ; 7,]. La mesure de l arête d ue boîte est modélisée par ue variable aléatoire C qui suit la loi ormale d espérace 7 et d écart type,4.. À l aide de la calculatrice ous obteos P(6,7 C 7,),968.. La probabilité qu ue boîte prélevée au hasard das la productio soit o coforme est la probabilité de l évéemet cotraire de l évéemet précédet. P(C) =,968 =, B. Loi biomiale L etreprise coditioe ces boîtes par lots de. O prélève au hasard ue boîte das la productio. O ote p la probabilité de l évèemet : «la boîte prélevée au hasard das la productio est o coforme». Polyésie correctio 6 jui 4

3 Baccalauréat Scieces et techologies de l idustrie et du développemet durable Scieces et techologies de laboratoire spécialité scieces physiques et chimiques de laboratoire A. P. M. E. P. O prélève au hasard boîtes das la productio. La productio est assez importate pour que l o puisse assimiler ce prélèvemet à u tirage aléatoire avec remise. O cosidère la variable aléatoire X qui, à u lot de boîtes, associe le ombre de boîtes o coformes qu il cotiet. O admet que X suit ue loi biomiale de paramètres et p, et, qu e moyee chaque lot de boîtes e cotiet 6 o coformes.. Justifios que p =,. E moyee chaque lot de boîtes cotiet 6 boites o coformes. La probabilité 6 d obteir ue boite o coforme est par coséquet d où p =,. Nous avos doc ue loi biomiale de paramètres ( ;,) par coséquet p(x = k)= ( ) k (,) k (,97) k.. Calculos la probabilité qu il y ait au mois deu boîtes o coformes das ce lot de boîtes. Calculos la probabilité de l évéemet cotraire P( X ) p(x = )= ( ) (,97), p(x = )= ( ) (,)(,97),4. Par coséquet p(x )= (,+,4)=,6=,984. C. Itervalle de fluctuatio O rappelle que, pour ue proportio p coue das ue productio, l itervalle de fluctuatio asymptotique à 95 % d ue fréquece calculée sur u échatillo de taille est : [ ] p( p) p( p) I = p,96 ; p+,96 Das le cadre d u foctioemet correct du thermoformage, o admet que la proportio p de boîtes o coformes das la productio est %.. Détermios les bores de l itervalle I pour u échatillo de taille. p( p),(,) p,96,,96,6 p( p),(,) p+,96,,96,54. O cotrôle le bo foctioemet du thermoformage e prélevat au hasard das la productio des échatillos de boîtes. Au cours de l u de ces cotrôles, u techicie a compté boîtes o coformes. ( ) La proportio de boites o coformes das l échatillo est égale à,5. Il e doit pas predre la décisio d effectuer des réglages sur la thermoformeuse puisque cette proportio appartiet à l itervalle de fluctuatio à 95 %. EXERCICE 4 7 poits Soit f la foctio défiie sur ] ; + [ par : f ()=6l + a+ b où a et b sot des costates réelles, ( O appelle C f la courbe représetative de la foctio f das u repère orthogoal O, ı, ) j. Le poit A( ; ) appartiet à C f. C f admet ue tagete horizotale e so poit d abscisse. PARTIE A Sur le graphique ci-dessous, o a tracé C f (trait plei) aisi que les courbes Γ et Ω. L ue de ces deu courbes est la représetatio graphique de la foctio dérivée f de f et l autre représete ue primitive F de f. Polyésie correctio 6 jui 4

4 Baccalauréat Scieces et techologies de l idustrie et du développemet durable Scieces et techologies de laboratoire spécialité scieces physiques et chimiques de laboratoire A. P. M. E. P. Γ C f Ω 8 9. La courbe Ω est la représetatio graphique de F. La foctio f état pas toujours égative, la courbe Γ e peut être la courbe représetative de F car elle est la courbe représetatrice d ue foctio toujours décroissate.. Puisque A appartiet à C f, f ()= et f ()= puisqu e, la tagete est parallèle à l ae des abscisses.. f ()=6 + a. 4. Puisque f ()= e remplaçat par ous obteos 6l + a +b = ou e simplifiat a+ b=. Puisque f ()= e remplaçat par ous obteos 6 + a= ou e simplifiat a+ =. De cette derière lige, ous obteos a= et e reportat das l autre équatio ous obteos b= 4. Par suite e reportat ces valeurs das l epressio défiissat f, ous avos : f () = 6l + 4. PARTIE B Das cette partie, o pourra vérifier la cohérece des résultats obteus avec la courbe C f fourie das la partie A.. Détermios la limite de la foctio f lorsque ted vers. lim f ()= lim 6l +lim( + 4)= +4= L ae des ordoées est asymptote à la courbe représetative de f lorsque ted vers. Motros que pour tout de l itervalle ] ; + [, f ()= ( ). Das la partie précédete, ous avos détermié la foctio dérivée de f. Remplaços a par sa valeur. f ()= 6. E factorisat par, f ()= ( ). Nous avos obteu le résultat attedu. Polyésie correctio 4 6 jui 4

5 Baccalauréat Scieces et techologies de l idustrie et du développemet durable Scieces et techologies de laboratoire spécialité scieces physiques et chimiques de laboratoire A. P. M. E. P.. Étudios le sige de f (). f () est du sige de puisque état strictemet positif, l est égalemet. Sur R > < Par coséquet si ] ; [, f ()> et si ] ; + [, f ()<. Étudios les variatios de la foctio f. Si pour tout I, f ()> alors la foctio f est strictemet croissate sur I. Pour tout ] ; [, f ()> par coséquet f est strictemet croissate sur ce itervalle. Si pour tout I, f ()< alors la foctio f est strictemet décroissate sur I. Pour tout ] ; + [, f ()< par coséquet f est strictemet décroissate sur cet itervalle. + f () + Variatios de f 6l 4. La foctio f admet u maimum e puisque e ce poit la dérivée s aule e chageat de sige. f ()=6l +4= 6l. PARTIE C Soit H la foctio défiie sur ] ; + [ par : H()=6 l.. H est ue primitive de f sur ] ; + [ lorsque H ()= f (). H est ue primitive de f sur ] ; + [.. Calculos la valeur eacte de I = I = e [ f () d = H() H ()=6l + 6 ()=6l + 4= f () e ] e f () d. = H(e) H()=6e le e e (6l ) = 4e e Sur [ ; e], f ()>. I est e uités d aire, l aire du domaie pla délimité par l ae des abscisses, la courbe C f et les droites d équatios = et = e. 4. a. Avec la précisio permise par le graphique, F ()= 8. b. F et H sot des primitives de f par coséquet F () = H(X ) +C. Détermios la costate C. F ()= H()+C = 7 +C = 8 C = 8+ 7 = 9. F ()= 6 l 9 pour tout das l itervalle ] ; + [. Polyésie correctio 5 6 jui 4

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites ANNALES BACCALAURÉAT 03 MATHÉMATIQUES TERMINALE S ANNALES 03 TERMINALE S Suites Foctios 9 3 Probabilités 4 Géométrie 9 8 5 Spécialité 34 6 Cocours 44 Suites - : Amérique du Nord 03, 5 poits, o spécialistes

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a.

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a. Échatilloage 9 Pour repredre cotact Les réposes exactes sot : Répose c. Répose a. Répose c. 3 Répose a. 4 Répose b. Répose c. Activité. La populatio étudiée est la productio d automobiles. Le caractère

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

TECHNIQUE: Distillation

TECHNIQUE: Distillation TECHNIQUE: Distillatio 1 Utilité La distillatio est u procédé permettat la séparatio de différetes substaces liquides à partir d u mélage. Les applicatios usuelles de la distillatio sot : l élimiatio d

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1 ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S 1 1 Suites 1 Foctios 11 3 Probabilités 4 Géométrie 4 33 5 Spécialité 41 6 Cocours 53 1 Suites 1-1 :

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Amérique du Nord. Terminale S mai 2014

Amérique du Nord. Terminale S mai 2014 Termiale S mai 2014 Amérique du Nord 1 Exercice 1 (5 poits) Das cet exercice, tous les résultats demadés serot arrodis à 10 3 près Ue grade eseige de cosmétiques lace ue ouvelle crème hydratate Partie

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Centres étrangers Enseignement spécifique. Corrigé

Centres étrangers Enseignement spécifique. Corrigé EXERCICE 1 Partie A Cetres étragers 13. Eseigemet spécifique. Corrigé 1) La durée de vie moyee d ue vae est l espérace de la variable aléatoire T. O sait que l espérace de la loi expoetielle de paramètre

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

MATHÉMATIQUES. Aux futurs étudiants de SUP du lycée naval.

MATHÉMATIQUES. Aux futurs étudiants de SUP du lycée naval. LYCÉE NAVAL 5-6 SUP MPSI / PCSI MATHÉMATIQUES Au futurs étudiats de SUP du lycée aval Vous veez d être admis au lycée aval e classe de SUP, PCSI ou MPSI, et ous vous e félicitos Pour bie préparer votre

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016 Correctio Baccalauréat STL biotechologies Polyésie 13 jui 2016 EXERCICE 1 4 poits Das cet exercice, o s itéresse au taux de cholestérol LDL de la populatio d adultes d u pays. O ote X la variable aléatoire

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE TP O. Page /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O. Ce documet compred : - ue fiche descriptive du sujet destiée à l examiateur : Page /5 - ue fiche descriptive

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

ENSEIGNEMENT DE SPÉCIALITÉ

ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

Classes de première générale et technologique STATISTIQUES ET PROBABILITÉS

Classes de première générale et technologique STATISTIQUES ET PROBABILITÉS Classes de première géérale et techologique STATISTIQUES ET PROBABILITÉS Sommaire I. Itroductio...4 II. Statistique descriptive, aalyse de doées...4 III. Variables aléatoires discrètes...6 IV. Utilisatio

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

Séquence 1. Suites numériques

Séquence 1. Suites numériques Séquece Suites umériques Objectifs de la séquece Recoaître des situatios faisat iterveir des suites géométriques ou des suites arithmético-géométriques. Modéliser ces situatios par des suites géométriques

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail