Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes Opérations ensemblistes

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes"

Transcription

1 Chpitre 1 Dénombrer et sommer Compter des objets et fire des dditions, voilà bien les deux ctivités les plus élémentires à l bse des mthémtiques. Et pourtnt à y regrder de plus près, ce n est ps si fcile. Déjà pour un ensemble fini, l méthode qui consiste à regrder ses éléments l un près l utre et à les compter (donc à les numéroter) n est pplicble que pour de «petits» ensembles. Le plus souvent on s en sort en fisnt une représenttion de l ensemble à dénombrer à l ide d un utre ensemble plus fmilier. Cette représenttion est ce que l on ppelle une bijection. Elle est d illeurs à l bse du processus de comptge qui consiste simplement à mettre en bijection un ensemble vec un ensemble de nombres entiers. Cette notion de bijection permet d étendre en un certin sens le dénombrement ux ensembles infinis. L extension de l notion de somme d une suite finie de nombres à une suite infinie conduit nturellement à l notion de série que nous réviserons dns ce chpitre. L théorie des probbilités utilise implicitement une notion plus générle, celle de fmille sommble. Il s git de définir l somme, si elle existe, d une fmille de nombres indexée pr un ensemble infini qui n est ps forcément N ou N. Nous présentons cette théorie dns l dernière prtie du chpitre. Dns tout ce qui suit, l nottion {1,..., n} pour n N désigne l ensemble de tous les entiers compris u sens lrge entre 1 et n. L écriture un peu busive «i = 1,..., n» signifie «i {1,..., n}». 1.1 Rppels ensemblistes Opértions ensemblistes Soit Ω un ensemble ; A est un sous-ensemble (ou une prtie) de Ω si tout élément de A est ussi un élément de Ω ( ω A, ω Ω). On note A Ω. On ppelle P(Ω) l ensemble des prties de Ω, ce que l on peut noter 1 P(Ω) = {A; A Ω}. 1. Dns toutes les écritures d ensembles entre ccoldes, nous utilisons le point virgule u sens de «tel que». 1

2 Chpitre 1. Dénombrer et sommer Ainsi les écritures A Ω et A P(Ω) sont deux fçons de dire l même chose 2. Si A et B sont deux prties du même ensemble Ω, on dit que A est incluse dns B (nottion A B) si tout élément de A est ussi élément de B ( ω A, ω B), utrement dit, si l pprtennce à A implique l pprtennce à B : A B signifie ω Ω, (ω A) (ω B). Soit I un ensemble quelconque d indices (fini ou infini) et (A i ) i I une fmille de prties de Ω. On définit son intersection A i et s réunion, A i pr : i I i I A i := {ω Ω; i I, ω A i } et A i = {ω Ω; i I, ω A i }. (1.1) i I i I Remrque 1.1. L réunion et l intersection d une fmille de prties de Ω sont définies de fçon globle, elles s obtiennent d un coup, sns pssge à l limite qund I est infini et sns qu un ordre éventuel sur l ensemble d indices I n it d importnce. Réunion et intersection sont très utiles pour l trduction utomtique des quntificteurs. Si I est un ensemble quelconque d indices, (π i ) une propriété dépendnt de l indice i et A i l ensemble des ω Ω vérifint (π i ), on : {ω Ω; i I, ω vérifie (π i )} = A i, i I {ω Ω; i = i(ω) I, ω vérifie (π i )} = A i. i I Ainsi le quntificteur peut toujours se trduire pr une intersection et le quntificteur pr une réunion. L intersection et l union sont distributives l une pr rpport à l utre, c est à dire B ( ) A i i I = i I (A i B) B ( ) A i i I = i I (A i B). Le complémentire de A (dns Ω) est l ensemble A c := {ω Ω; ω / A}. L opértion pssge u complémentire (qui est une bijection de P(Ω) dns lui-même) vérifie (A c ) c = A, Ω c =, c = Ω et échnge réunions et intersections grâce ux très utiles formules : ( ) c A i = i I i I A c i ( ) c A i = A c i I i I i. On définit le produit crtésien de deux ensembles E et F, noté E F pr : E F := {(x, y); x E, y F }. Attention, dns cette écriture (x, y) ne désigne en ucune fçon un ensemble mis un couple d éléments (l ordre d écriture une importnce). Pour éviter toute confusion, 2. Noter cependnt l différence de sttut de A : dns l première écriture, A est considéré comme un ensemble, dns l deuxième comme un élément d un ensemble d un type un peu prticulier. 2 Ch. Suquet, Cours I.P.E

3 1.1. Rppels ensemblistes on utilise des ccoldes pour l description des ensembles et des prenthèses pour les couples d éléments. On définit de mnière nlogue le produit crtésien d une suite finie d ensembles E 1,..., E n pr E 1 E n := { (x 1,..., x n ); i = 1,..., n, x i E i }. L ensemble E 2 := E E = {(x 1, x 2 ); x 1 E, x 2 E} peut être utilisé pour représenter l ensemble de toutes les pplictions de {1, 2} dns E, le couple (x 1, x 2 ) correspondnt à l ppliction f : {1, 2} E définie pr f(1) = x 1 et f(2) = x 2. Il pourrit de l même fçon, représenter les pplictions d un ensemble à deux éléments dns E (remplcer les chiffres 1 et 2 pr n importe quelle pire de symboles distincts : et 1, et b, etc.). Plus générlement, pour n 2, E n est l ensemble des n-uplets ou listes de longueur n d éléments de E. Dns un n-uplet (x 1,..., x n ), il peut y voir des répétitions. On peut ussi utiliser E n pour représenter toutes les pplictions de l ensemble {1,..., n} (ou de n importe quel ensemble à n éléments) dns E. Soit I un ensemble quelconque, fini ou infini. Pr nlogie vec ce qui précède, l ensemble de toutes les pplictions f : I E ser noté E I. Pr exemple vec E = {, 1} et I = N, on obtient l ensemble {, 1} N de toutes les suites de chiffres binires indexées pr N : {, 1} N = {u = (u i ) i N ; u i = ou 1}. Avec E = R et I = [, 1], on obtient l ensemble R [,1] des fonctions définies sur l intervlle [, 1] et à vleurs dns R Bijections Définition 1.2 (injection). Une ppliction f : E F est dite injective si deux éléments distincts de E ont toujours des imges distinctes dns F : Une formultion équivlente est : x E, x E, (x x ) (f(x) f(x )). x E, x E, (f(x) = f(x )) (x = x ). Une ppliction injective f : E F est ppelée injection de E dns F. Définition 1.3 (surjection). Une ppliction f : E F est dite surjective si tout élément de l ensemble d rrivée u moins un ntécédent pr f : y F, x E, f(x) = y. Une ppliction surjective f : E F est ppelée surjection de E sur F. Définition 1.4 (bijection). Une ppliction f : E F est dite bijective si elle est à l fois injective et surjective, utrement dit si tout élément de l ensemble d rrivée F un unique ntécédent pr f dns l ensemble de déprt E : y F,!x E, f(x) = y. Une ppliction bijective f : E F est ppelée bijection de E sur F. Ch. Suquet, Cours I.P.E

4 Chpitre 1. Dénombrer et sommer Remrque 1.5. Si f : E F est une injection, en restreignnt son ensemble d rrivée à f(e) := {y F ; x E; f(x) = y} l nouvelle ppliction f : E f(e) est une bijection. En effet cette opértion préserve clirement l injectivité et rend f surjective. Définition 1.6 (ppliction réciproque). Soit f : E F une bijection. Tout y F dmet un unique ntécédent x pr f dns E. En posnt f 1 (y) := x, on définit une ppliction f 1 : F E ppelée ppliction réciproque de f ou inverse de f. Cette ppliction f 1 est bijective. Justifiction. Pour vérifier l injectivité de f 1, soient y et y deux éléments de F tels que f 1 (y) = f 1 (y ). Cel signifie qu ils ont le même ntécédent x pr f, donc que y = f(x) et y = f(x), d où y = y. Pour l surjectivité, soit x E quelconque. Posons y = f(x). Alors x est ntécédent de y pr f, donc f 1 (y) = x et insi y est ntécédent de x pr f 1. Tout élément de E donc un ntécédent dns F pr f 1. Autrement dit, f 1 est surjective. Remrque 1.7. Ainsi l existence d une bijection E F équivut à celle d une bijection F E. On dir que E «est en bijection vec» F s il existe une bijection E F (ou F E). Proposition 1.8. Soient f : E F et g : F G deux bijections. Alors g f est une bijection de E sur G. De plus (g f) 1 = f 1 g 1. Preuve. Rppelons que (g f)(x) := g(f(x)) pour tout x E. Pour vérifier l injectivité, soient x et x dns E tels que (g f)(x) = (g f)(x ). Cette églité réécrite g(f(x)) = g(f(x )) implique pr injectivité de g l églité f(x) = f(x ), lquelle implique x = x pr injectivité de f. Pour l surjectivité de g f, soit z G quelconque. Pr surjectivité de g, z u moins un ntécédent y dns F vec g(y) = z. À son tour y F un ntécédent x E pr l surjection f. Finlement y = f(x) et z = g(y), d où z = g(f(x)) = (g f)(x), ce qui montre que z pour ntécédent x pr g f. Comme z étit quelconque, l surjectivité de g f est étblie. Ainsi g f est une bijection de E sur G. En conservnt les nottions on (g f) 1 (z) = x. D utre prt x = f 1 (y) et y = g 1 (z), d où x = f 1 (g 1 (z)) = (f 1 g 1 )(z). On donc pour z quelconque dns G l églité (g f) 1 (z) = x = (f 1 g 1 )(z), d où (g f) 1 = f 1 g Ensembles finis et dénombrement Définition 1.9. Un ensemble E est dit fini s il est vide ou s il est en bijection vec un ensemble {1,..., n} pour un certin entier n 1. Un tel n est lors unique et est ppelé crdinl de E (nottion crd E). Pr convention le crdinl de l ensemble vide est. L cohérence de l définition 1.9 repose sur le lemme suivnt (pourquoi?). Lemme 1.1. Si n et m sont deux entiers distincts, il n existe ps de bijection entre {1,..., n} et {1,..., m}. 4 Ch. Suquet, Cours I.P.E

5 1.2. Ensembles finis et dénombrement Preuve. On peut toujours supposer sns perte de générlité que n < m. Dns le cs où n =, l ensemble {1,..., n} est l ensemble des entiers j tels que 1 j, c est donc l ensemble vide. On prouve le résultt pr récurrence sur n en doptnt comme hypothèse de récurrence : (H n ) m > n, il n existe ps de bijection {1,..., n} {1,..., m}. Initilistion. (H ) est clirement vrie, cr on ne peut définir ucune ppliction sur l ensemble vide donc fortiori ucune bijection. Induction. Supposnt (H n ) vérifiée pour un certin n, déduisons en qu (H n+1 ) l est ussi. Sinon il existerit un entier m > n + 1 et une bijection f : {1,..., n + 1} {1,..., m}. Notons j = f(n+1). Si j m, considérons l trnsposition τ : {1,..., m} {1,..., m} qui échnge j et m et lisse les utres éléments inchngés. C est une bijection et l ppliction composée g = τ f est une bijection {1,..., n + 1} {1,..., m}. Si j = f(n + 1), on prend g = f. Dns les deux cs, g est une bijection {1,..., n + 1} {1,..., m} vérifint g(n+1) = m. L restriction g de g à {1,..., n} est lors une bijection de cet ensemble sur {1,..., m 1} et comme m > n + 1, on bien m 1 > n, ce qui contredit (H n ). Nous venons d étblir l impliction (H n ) (H n+1 ), ce qui chève l récurrence. Remrque Si l ensemble F est en bijection vec un ensemble fini E, lors F est fini et même crdinl que E. En effet en notnt n = crd E, il existe une bijection f : {1,..., n} E et une bijection g : E F. L composée g f rélise lors une bijection de {1,..., n} sur F. Proposition Soient E et F deux ensembles finis. Si E F =, crd(e F ) = crd E + crd F. (1.2) Preuve. Dns le cs où l un des deux ensembles est vide, (1.2) est trivile. On suppose désormis que crd E = n 1 et crd F = m 1. Il existe lors des bijections f : {1,..., n} E, g : {1,..., m} F. On prouve (1.2) en construisnt une bijection h de {1,..., n + m} sur E F. L trnsltion t : {n + 1,..., n + m} {1,..., m}, i i n est une bijection et l ppliction g t rélise une bijection de {n + 1,..., n + m} sur F. Définissons lors h pr { f(i) si i {1,..., n}, h(i) := (g t)(i) si i {n + 1,..., n + m}. Pour vérifier l surjectivité de h, soit z un élément quelconque de E F. Si z E, lors il un ntécédent i dns {1,..., n} pr l surjection f et comme h(i) = f(i) = z, Ch. Suquet, Cours I.P.E

6 Chpitre 1. Dénombrer et sommer i est ussi ntécédent de z pr h. Si z F, il un ntécédent j dns {1,..., m} pr l surjection g et j un ntécédent i dns {n + 1,..., n + m} pr l surjection t. Alors h(i) = g(t(i)) = g(j) = z donc i est ntécédent de z pr h. Pour vérifier l injectivité de h, notons i et i deux éléments distincts de {1,..., n+m}. S ils sont l un dns {1,..., n} et l utre dns {n + 1,..., n + m}, leurs imges h(i) et h(i ) sont l une dns E et l utre dns F qui sont disjoints (E F = ) donc h(i) h(i ). sinon i et i sont tous deux dns {1,..., n} (resp. dns {n+1,..., n+m}) et h(i) h(i ) en rison de l injectivité de f (resp. de g t). Corollire 1.13 (de l proposition 1.12). ) Si E 1,..., E d sont d ensembles finis deux à deux disjoints, E 1 E d est un ensemble fini et ( ) d d crd = crd E i. i=1 E i b) Si E et F sont des ensembles finis quelconques (ps forcément disjoints), E F est fini et crd(e F ) = crd E + crd F crd(e F ). Preuve. Lissée en exercice. Proposition Soient E et F deux ensembles finis. Leur produit crtésien pour crdinl crd(e F ) = crd E crd F. (1.3) Preuve. Le cs où l un des deux ensembles E ou F est vide étnt trivil, on suppose désormis qu ucun des deux n est vide. On fit une récurrence sur n = crd E, en prennt pour hypothèse de récurrence : (H n ) si crd E = n, lors crd(e F ) = n crd F pour tout F fini non vide. Initilistion. Si crd E = 1, E n qu un élément x 1 et l ppliction h : {x 1 } F F, (x 1, y) y est clirement une bijection donc crd({x 1 } F ) = crd F et (H 1 ) est vérifiée. Induction. Supposons (H n ) vrie pour un certin n et soit E un ensemble de crdinl n+1. Il existe une bijection f : {1,..., n+1} E permettnt de numéroter les éléments de E en posnt pour tout i {1,..., n + 1}, x i := f(i). L restriction de f à {1,..., n} est une bijection de {1,..., n} sur son imge E = {x 1,..., x n }. Ainsi E est de crdinl n et E est l union de ses deux sous-ensembles disjoints E et {x n+1 }. On en déduit imméditement que E F est l union des deux produits crtésiens disjoints E F et {x n+1 } F. Pr l proposition 1.12 on lors i=1 crd(e F ) = crd(e F ) + crd({x n+1 } F ). En utilisnt (H n ) et (H 1 ), on obtient lors donc (H n+1 ) est vérifiée. crd(e F ) = n crd F + crd F = (n + 1) crd F, 6 Ch. Suquet, Cours I.P.E

7 1.2. Ensembles finis et dénombrement Remrque On urit pu ussi prouver (1.3) en construisnt explicitement une bijection E F {1,..., nm} (vec crd E = n et crd F = m). Voici une fçon de l construire. On note f : {1,..., n} E, i x i := f(i) et g : {1,..., m} F, j y j := g(j) des numérottions bijectives de E et F. On définit lors h : E F {1,..., nm} en posnt h(x i, y j ) := m(i 1) + j, ou de mnière plus formelle h(x, y) := m(f 1 (x) 1) + g 1 (y) pour tout (x, y) E F. On lisse en exercice l vérifiction de l bijectivité de h. L idée de s construction est simplement de rnger les couples éléments de E F sous l forme d un tbleu où le couple (x i, y j ) se trouve à l intersection de l ligne i et de l colonne j et de numéroter les éléments de ce tbleu en blynt chque ligne de guche à droite de l ligne 1 jusqu à l ligne n. Corollire 1.16 (de l proposition 1.14). Si E 1,..., E d sont d ensembles finis, crd(e 1 E d ) = d crd E i. i=1 Preuve. Une récurrence immédite sur d fournit le résultt. Proposition 1.17 (nombre d pplictions E F et crdinl de P(E)). () Si crd E = n et crd F = p, l ensemble F E des pplictions de E dns F est fini et pour crdinl p n, utrement dit : crd ( F E) = (crd F ) crd E. (b) Comme P(E) est en bijection vec l ensemble {, 1} E des pplictions de E dns {, 1}, crd P(E) = 2 n = 2 crd E. Preuve. Le () se démontre fcilement pr récurrence sur le crdinl de E, en notnt que si on joute un élément x n+1 à E, il y p fçons différentes de prolonger f : E F en ttribunt comme imge à x n+1 l un des éléments de F. L rédction détillée est lissée en exercice. Une bijection nturelle entre P(E) et {, 1} E est l ppliction ϕ qui à toute prtie A de E ssocie s fonction indictrice : ϕ : P(E) {, 1} E A ϕ(a) := 1 A. Rppelons que l indictrice d une prtie A de E est l ppliction { 1 si ω A, 1 A : E {, 1} ω 1 A (ω) := si ω / A. L vérifiction de l bijectivité de ϕ est lissée en exercice Ni l définition de ϕ, ni l preuve de s bijectivité n utilisent l finitude de E. Ainsi P(E) et {, 1} E sont en bijection quel que soit l ensemble E, fini ou infini. Ch. Suquet, Cours I.P.E

8 Chpitre 1. Dénombrer et sommer Définition 1.18 (rrngement). Si E est un ensemble de crdinl n et k un entier tel que 1 k n, on ppelle rrngement de k éléments de E tout k-uplet (x 1, x 2,..., x k ) d éléments tous distincts de E. Un tel rrngement représente une injection de {1,..., k} dns E. Proposition 1.19 (dénombrement des rrngements). Le nombre d rrngements de k éléments de E (1 k n = crd E) est A k n = n(n 1)(n 2) (n k + 1) = n! (n k)!. (1.4) A k n est ussi le nombre d injections d un ensemble I de crdinl k, pr exemple {1,..., k}, dns E. En prticulier pour I = E (et donc k = n), on obtient le nombre de bijections de E dns lui même (ppelées ussi permuttions de E) : nombre de permuttions de E = A n n = n! Preuve. On prouve (1.4) pr récurrence finie sur k, le cs k = 1 étnt évident. Supposons donc (1.4) vrie pour un k < n et montrons qu lors elle est ussi vrie pour k + 1. Une ppliction f : {1,..., k+1} E est déterminée de mnière unique pr l donnée de s restriction f à {1,..., k} et de f(k +1). L ppliction f est injective si et seulement si s restriction f est injective et f(k+1) / f({1,..., k}). Comme le crdinl de f({1,..., k}) est k, cel lisse n k choix possibles pour f(k + 1). On en déduit que A k+1 n = A k n(n k) = n(n 1)(n 2) (n k + 1)(n k), ce qui montre que (1.4) est vérifiée u rng k + 1. Définition 1.2 (combinison). On ppelle combinison de k éléments de E (1 k n = crd E) toute prtie de crdinl k de E. Une combinison tous ses éléments distincts comme un rrngement, mis l ordre d écriture n ps d importnce. Proposition 1.21 (dénombrement des combinisons). Le nombre de combinisons de k éléments de E (1 k n = crd E) est C k n = n(n 1)(n 2) (n k + 1) k(k 1) 1 = n! k!(n k)!. (1.5) Preuve. Notons A k (E) l ensemble de tous les rrngements de k éléments de E. Il est lors clir que l on l décomposition en réunion d ensembles disjoints A k (E) = A k (B). (1.6) B E, crd B=k Autrement dit on prtitionné A k (E) en regroupnt dns une même clsse A k (B) tous les rrngements formés à prtir des éléments d une même prtie B de crdinl k. Il 8 Ch. Suquet, Cours I.P.E

9 1.3. Dénombrbilité y donc utnt de clsses distinctes dns cette décomposition que de prties B de crdinl k dns E, c est-à-dire Cn k clsses. D utre prt chque clsse A k (B) contient utnt d rrngements que de bijections B B (ou permuttions sur B), c est-à-dire k!. Compte-tenu du corollire 1.13 ), on déduit lors de (1.6) que : crd A k (E) = crd A k (B) = Cnk!. k Ainsi A k n = C k nk!, ce qui donne (1.5). B E, crd B=k 1.3 Dénombrbilité On peut comprer les ensembles finis pr leur nombre d éléments. Cette notion n plus de sens pour des ensembles infinis. Nénmoins on peut générliser cette comprison en disnt que deux ensembles ont même crdinl s ils sont en bijection. Ceci permet de comprer les ensembles infinis. Il convient de se méfier de l intuition cournte bsée sur les ensembles finis. Pr exemple si A et B sont finis et A est inclus strictement dns B, lors crd A < crd B et il n existe ps de bijection entre A et B. Ceci n est plus vri pour les ensembles infinis. Pr exemple N est strictement inclus dns N mis est en bijection vec N pr l ppliction f : N N, n n + 1, donc N et N ont même crdinl. Nous nous intéressons mintennt ux ensembles ynt même crdinl que N. Définition Un ensemble est dit dénombrble s il est en bijection vec N. Il est dit u plus dénombrble s il est fini ou dénombrble. Exemple L ensemble 2N des entiers pirs est dénombrble. Pour le voir, il suffit de considérer l ppliction f : N 2N, n 2n qui est clirement une bijection. On vérifie de même que l ensemble des entiers impirs est dénombrble. Exemple L ensemble Z est dénombrble. On peut en effet «numéroter» les entiers reltifs pr les entiers nturels en s inspirnt du tbleu suivnt. Z N Plus formellement, définissons l ppliction f : N Z pr { n+1 si n est impir, 2 n N, f(n) = n si n est pir. 2 Pour vérifier que f est une bijection, montrons que pour tout k Z donné, l éqution f(n) = k une solution unique. Si k >, il ne peut voir d ntécédent pir pr f puisque f envoie l ensemble des entiers pirs dns Z. L éqution f(n) = k se réduit donc dns ce cs à n+1 2 = k qui pour unique solution n = 2k + 1. Si k, il ne peut Ch. Suquet, Cours I.P.E

10 Chpitre 1. Dénombrer et sommer voir d ntécédent impir pr f et l éqution f(n) = k se réduit à n = k qui pour 2 unique solution n = 2k. Ainsi f est bien une bijection puisque tout élément k de Z un ntécédent n unique pr f. L bijection inverse est donnée pr { k Z, f 1 2k + 1 si k >, (k) = 2k si k. Exemple L ensemble N 2 est dénombrble. Cet exemple relève de l proposition 1.3 ci-dessous, mis l vérifiction directe est instructive. Voici une fçon de construire une bijection f : N 2 N. L idée est de fbriquer une numérottion des couples de N 2 pr les entiers en s inspirnt du schém de l figure Un peu de j i Fig. 1.1 Une numérottion des couples (i, j) de N 2 dénombrement nous conduit à proposer l définition 4 (i, j) N 2, f(i, j) := (i + j)(i + j + 1) 2 Preuve. L vérifiction de l bijectivité de f repose sur l remrque suivnte. Définissons l suite (u k ) k N pr k(k + 1) k N, u k :=. 2 Il s git clirement d une suite strictement croissnte d entiers, de premier terme u =. On donc l N,!k = k l N, u k l < u k+1. (1.7) De plus, 4. Justifiction lissée en exercice. + j. si l = f(i, j), k l = i + j et l = u kl + j. (1.8) 1 Ch. Suquet, Cours I.P.E

11 1.3. Dénombrbilité Surjectivité de f. Soit l quelconque dns N et k = k l défini pr (1.7). Posons j = l u k et i = k j. Alors f(i, j) = (i + j)(i + j + 1) 2 + j = k(k + 1) 2 + j = u k + l u k = l. Le couple (i, j) insi défini à prtir de l est donc ntécédent de l pr f et comme l étit quelconque, f est surjective. Injectivité de f. Soient (i, j) et (i, j ) tels que f(i, j) = f(i, j ) et notons l cette vleur commune. D près (1.8), on k l = i + j = i + j et l = u kl + j = u kl + j. On en déduit imméditement que j = j, puis que i = i, d où (i, j) = (i, j ), ce qui étblit l injectivité de f. Lemme Toute prtie infinie de N est dénombrble. Preuve. Soit E une prtie infinie de N. On construit une bijection f de N sur E pr récurrence en utilisnt le fit que toute prtie non vide de N dmet un plus petit élément. On initilise l récurrence en posnt : E := E, f() := min E. Ensuite, pour n 1, si on défini f(k) et E k pour k =,..., n 1, on pose E n := E \ f({,..., n 1}), f(n) := min E n. L ensemble f({,..., n 1}) = {f(),..., f(n 1)} est fini donc E n est non vide puisque E est infini. On peut donc bien construire insi de proche en proche tous les f(n) pour n N. De plus il est clir pr construction que pour tout n 1, f(n 1) < f(n). L ppliction f est donc strictement croissnte, ce qui entrîne son injectivité. Pour voir qu elle est surjective, soit m un élément quelconque de E. Comme m est un entier, il n y qu un nombre fini d entiers strictement inférieurs à m, donc fortiori qu un nombre fini n d éléments de E inférieurs strictement à m (éventuellement ucun). Ainsi m est le (n + 1)-ième plus petit élément de E, d où f(n) = m (comme on commence à, n est le (n + 1)-ième plus petit entier de N). Nous venons de montrer qu un élément quelconque de E u moins un ntécédent pr f, utrement dit que f est surjective. Proposition Toute prtie infinie d un ensemble dénombrble est elle-même dénombrble. Preuve. Soit A une prtie infinie d un ensemble dénombrble B. Il existe lors une bijection g : B N. S restriction g à A est une bijection de A sur g(a). L ensemble g(a) est une prtie infinie de N, cr si elle étit finie, il en serit de même pour A. Pr le lemme 1.26, il existe une bijection f de g(a) sur N. L ppliction f g : A N est une bijection comme composée de deux bijections. L ensemble A est donc dénombrble. Remrque L proposition 1.27 nous permet de crctériser les ensembles u plus dénombrbles comme ceux qui sont en bijection vec une prtie de N, ou encore comme ceux qui s injectent dns N. De même, les ensembles dénombrbles sont les ensembles infinis qui s injectent dns N. Ch. Suquet, Cours I.P.E

12 Chpitre 1. Dénombrer et sommer Remrque Il résulte imméditement de l proposition 1.27 que si l ensemble B contient une prtie infinie A non dénombrble, B est lui même infini non dénombrble. Proposition 1.3. Le produit crtésien d une suite finie d ensembles dénombrbles est dénombrble. Preuve. Notons E 1,..., E n l suite finie d ensembles dénombrbles considérée. Pour i = 1,..., n, nous disposons d une bijection E i N, qui pr composition vec l bijection N N, n n + 1 donne une bijection f i : E i N. Comme E = E 1 E n est clirement un ensemble infini, il nous suffit de construire une injection de E dns N. Pour cel il est commode d utiliser les nombres premiers dont nous notons (p j ) j 1 l suite ordonnée : p 1 = 2, p 2 = 3, p 3 = 5, p 4 = 7, p 5 = 11,... Définissons f : E N, pr x = (x 1,..., x n ) E, f(x) := p f 1(x 1 ) 1... p fn(xn) n = n j=1 p f j(x j ) j. Remrquons que pour tout x E, f(x) 2 f 1(x 1 ) 2. Pour vérifier l injectivité de f, soient x et y dns E tels que f(x) = f(y). En vertu de l unicité de l décomposition en fcteurs premiers d un entier supérieur ou égl à 2, cette églité équivut à : i = 1,..., n, f i (x i ) = f i (y i ). Comme chque f i est injective, ceci entrîne l églité x i = y i pour tout i, d où x = y. Corollire Pour tout entier d 1, N d, Z d sont dénombrbles. L ensemble Q des nombres rtionnels est dénombrble (de même que Q d, d 1). Vérifiction. L dénombrbilité de Q s obtient fcilement en l injectnt dns le produit crtésien d ensembles dénombrbles Z N vi l unicité de l écriture en frction irréductible (vec dénominteur positif) d un rtionnel. Les utres ffirmtions du corollire découlent imméditement de l Proposition 1.3. Proposition L ensemble {, 1} N des suites infinies de ou de 1 n est ps dénombrble. Preuve. Supposons que {, 1} N soit dénombrble, on peut lors numéroter ses éléments pr les entiers, de sorte que {, 1} N = {x n ; n N}, chque x n étnt une suite (x n,k ) k N de chiffres binires. Construisons lors l suite y = (y k ) k N de chiffres binires en posnt : { 1 si x k,k = k N, y k = 1 x k,k = si x k,k = 1. Alors pr construction, l suite y diffère de chque suite x n (u moins pr son n-ième terme). Or y est un élément de {, 1} N, donc l numérottion considérée ne peut être surjective. 12 Ch. Suquet, Cours I.P.E

13 1.3. Dénombrbilité Corollire P(N) n est ps dénombrble. Le segment [, 1] de R n est ps dénombrble. R n est ps dénombrble, C n est ps dénombrble. Un intervlle de R est soit infini non dénombrble, soit réduit à un singleton, soit vide. Preuve. Comme P(N) est en bijection vec {, 1} N pr l ppliction A 1 A, P(N) est infini non dénombrble. D près l remrque 1.29, l non dénombrbilité de R ou de C résulte imméditement de celle de [, 1]. Pour vérifier cette dernière, nous utilisons à nouveu l remrque 1.29 en construisnt une prtie de [, 1] en bijection vec {, 1} N. L première idée qui vient à l esprit pour une telle construction est d utiliser le développement des nombres réels en bse 2. Mis pour éviter les difficultés techniques liées à l existence de développements propre et impropre pour les nombres de l forme k2 n, nous utiliserons plutôt l bse 3 en ne conservnt que les chiffres binires et 1. Définissons donc 5 f : {, 1} N [, 1], u = (u k ) k N f(u) := + k= u k 3 k+1. Comme les u k ne peuvent prendre que les vleurs ou 1, l série à termes positifs définissnt f(u) converge puisque son terme générl vérifie l encdrement u k 3 k 1 3 k 1. S somme f(u) vérifie donc f(u) + k= 1 3 = 1 1 k = 1 2. Ainsi f est bien une ppliction de {, 1} N dns [, 1] et d près l remrque 1.5, il suffit de vérifier son injectivité pour qu elle rélise une bijection de {, 1} N sur son imge A := {f(u); u {, 1} N }. Pr l proposition 1.32, on en déduir l non dénombrbilité de A. Pour montrer l injectivité de f, supposons qu il existe deux suites u u éléments de {, 1} N telles que f(u) = f(u ). Comme u u, l ensemble des entiers k tels que u k u k est non vide et donc un plus petit élément que nous notons j. On insi u k = u k pour tout k < j et u j u j. Quitte à permuter u et u, on ne perd ps de générlité en supposnt que u j = 1 et u j =. L églité f(u) = f(u ) implique lors : 1 3 = + j+1 k=j+1 u k u k 3 k+1. Comme u k u k ne peut prendre que les vleurs 1, ou 1, il est mjoré pr 1, d où : j+1 k=j = 1 1 k+1 3 j = j+1, 5. L lecture de ce qui suit requiert l connissnce des séries dont les principles propriétés sont rppelées section 1.4 ci-près, voir notmment les séries géométriques (exemple 1.45). Ch. Suquet, Cours I.P.E

14 Chpitre 1. Dénombrer et sommer ce qui est impossible. On en déduit que si f(u) = f(u ), nécessirement u = u, ce qui étblit l injectivité de f. Pour vérifier l non dénombrbilité d un intervlle non vide et non réduit à un singleton de R, il suffit de remrquer que cet intervlle u moins deux éléments et b et qu il contient lors [, b]. Il suffit mintennt de construire une bijection [, 1] [, b]. L ppliction f : [, 1] [, b], t t + (1 t)b fit l ffire. Remrque Il est fcile de construire une bijection entre ] 1, 1[ et R, pr exemple x tn(πx/2) et d en déduire une bijection entre R et n importe quel intervlle ouvert non vide. En fit on peut montrer que les ensembles suivnts ont tous même crdinl : {, 1} N, R, C, tout intervlle non vide et non réduit à un singleton de R. On dit qu ils ont l puissnce du continu. Sns ller jusqu à démontrer complètement cette ffirmtion, nous nous contenterons de présenter ci-dessous une construction explicite d une bijection entre {, 1} N et [, 1[. Il est clir que {, 1} N est lui même en bijection vec {, 1} N (pourquoi?). Exemple 1.35 (une bijection entre {, 1} N et [, 1[). Commençons pr un rppel sur le développement en bse 2 des réels de [, 1[, i.e. l existence pour un x [, 1[ d une suite ( k ) k N {, 1} N telle que + k x = 2. (1.9) k k=1 On ppelle nombre dydique de [, 1[, tout x [, 1[ de l forme k2 n vec k N et n N. Un tel dydique dmet une écriture irréductible unique de l forme l2 n vec l impir. Notons l ensemble des dydiques de [, 1[. Si x [, 1[\, il existe une unique suite ( k ) k N {, 1} N vérifint (1.9). De plus cette suite ( k ) k N comporte à l fois une infinité de et une infinité de 1. Si x, il existe deux suites ( k ) k N {, 1} N et ( k ) k N {, 1}N vérifint (1.9). L une ( k ) k N tous ses termes nuls à prtir d un certin rng. C est le développement propre du dydique x. L utre tous ses termes égux à 1 à prtir d un certin rng, c est le développement impropre de x. Nous noterons p(x) le développement propre de x et i(x) son développement impropre. Pr exemple le dydique 3 pour développemment propre 8 (, 1, 1,,,,,... ) cr 3 = Son développement impropre est (, 1,, 1, 1, 1, 1,... ) puisque 1 = + 8 k=4 2 k. Définissons mintennt f : [, 1[ {, 1} N comme suit. Si x [, 1[\, on prend pour f(x) l unique suite ( k ) k N {, 1} N vérifint (1.9). Si x et x, x 1/2, il existe une écriture unique x = l2 n vec l impir. On pose lors ( l ) f = 2 n ( l + 1 ) i ( 2 n l 1 ) p 2 n si l = 1 mod 4, si l = 3 mod Ch. Suquet, Cours I.P.E

15 1.3. Dénombrbilité Pour f() on prend l suite ne comportnt que des et pour f(1/2) l suite ne comportnt que des Fig. 1.2 Arbre binire des dydiques de ], 1[ Le mécnisme de construction de f sur les dydiques utres que et 1/2 peut être décrit de mnière informelle à l ide de l rbre binire de l figure 1.2. Chque individu de cet rbre hérite un développement binire de son scendnt direct et engendre lui même deux enfnts et deux développements binires. L enfnt de guche hérite du développement impropre et celui de droite du développement propre. L compréhension de l définition de f demndnt plus d effort que l vérifiction de s bijectivité, ce dernier point est lissé u lecteur. Proposition Soit J un ensemble u plus dénombrble d indices et pour tout j J, soit A j un ensemble u plus dénombrble. Alors A := j J A j est u plus dénombrble. Preuve. Le cs J = est trivil puisqu lors A =. Si tous les A j sont vides, A l est ussi (quel que soit J). On suppose désormis que J n est ps vide et qu u moins un des A j est non vide. On v montrer que A est u plus dénombrble en construisnt une injection h de A dns N. On peut trduire les hypothèses en écrivnt qu il existe une injection 6 f : J N et que pour tout j tel que A j, il existe une injection g j : A j N. Admettons pour un instnt que l on peut construire une fmille (A j) j J d ensembles deux à deux disjoints tels que pour tout j J, A j A j et que A = j J A j = j J A j. On définit lors l ppliction h : A N comme suit. Si x A, il existe un unique j J tel que x A j. On pose lors : h(x) := p g j(x) f(j), 6. Toute injection d un ensemble dns N peut se trnsformer en injection du même ensemble dns N pr composition vec l bijection N N, n n + 1. Ch. Suquet, Cours I.P.E

16 Chpitre 1. Dénombrer et sommer où p k désigne le k-ième nombre premier. Remrquons que h(x) 2 puisquef(j) 1, l suite (p k ) est croissnte de premier terme p 1 = 2 et g j (x) 1. Pour vérifier l injectivité de h, soient x et y dns A tels que h(x) = h(y). En notnt l l unique indice tel que y A l, cette églité s écrit p g j(x) f(j) = p g l(y) f(l). En rison de l unicité de l décomposition d un entier n 2 en fcteurs premiers, ceci entrîne f(j) = f(l) et g j (x) = g l (y), puis pr injectivité de f, j = l et g j (x) = g j (y). Comme g j est injective, on en déduit que x = y. L injectivité de h est insi étblie. Il reste à justifier l construction de l fmille (A j) j J. On commence pr trnsporter l ordre de N sur J vi l ppliction f en écrivnt pour j, l J, que j l signifie que f(j) f(l). Ceci nous permet de noter les éléments de J en suivnt cet ordre J = {j, j 1,...}, où j j Ensuite on construit A j pr récurrence en posnt A j := A j, B j := A j A j 1 := A j1 (A \ B j ), B j1 := B j A j1 A j 2 := A j2 (A \ B j1 ), B j2 := B j1 A j Les détils de l vérifiction sont lissés u lecteur. Proposition 1.37 (dénombrbilité pr imge surjective). Soient A et B deux ensembles tels qu il existe une surjection f de A sur B. Alors si A est dénombrble, B est u plus dénombrble. Si A est fini, B est fini et crd B crd A. Preuve. Supposons A dénombrble. Définissons sur A l reltion d équivlence x x si f(x) = f(x ). Les clsses d équivlences pour cette reltion rélisent une prtition de A. Dns chque clsse d équivlence, choisissons un représentnt prticulier 7. Soit A l prtie de A formée de tous les représentnts insi choisis. Si x et x sont deux éléments distincts de A, ils sont dns deux clsses c et c disjointes, donc f(x) f(x ). L restriction de f à A est donc injective. Pr illeurs, puisque f est surjective, tout y B u moins un ntécédent x dns A. Si c est l clsse de x, il y dns cette clsse un (unique) élément de A qui lui ussi y pour imge pr f. Donc l restriction de f à A reste surjective et c est finlement une bijection de A sur B. L ensemble B est en bijection vec une prtie A de l ensemble dénombrble A, il est donc u plus dénombrble. Le cs A fini est une dpttion fcile de ce qui précède. 1.4 Rppels sur les séries Dns cette section nous rppelons sns démonstrtions les points essentiels de l théorie des séries numériques vue en deuxième nnée. Nous détillerons seulement l question de l convergence commuttive en rison de son rôle dns l théorie des fmilles sommbles. 7. Pr exemple en fixnt une numérottion de A pr les entiers (k x k ) et en décidnt de prendre dns l clsse c l élément x k d indice k miniml. On évite insi l invoction de l xiome du choix Ch. Suquet, Cours I.P.E

17 1.4. Rppels sur les séries Générlités Définition Soit (u k ) k N une suite de nombres réels ou complexes. Pour tout n N, on ppelle somme prtielle de rng n le nombre S n := n u k. k= Si S n tend vers une limite finie S qund n tend vers +, on dit que l série de terme générl u k converge et pour somme S, ce que l on écrit S = + k= u k := lim S n. n + Dns ce cs, R n := S S n est ppelé reste de rng n de l série. Si S n n ps de limite finie (i.e. tend vers ou + ou n ps de limite du tout), on dit que l série diverge. Remrque Pr un bus d écriture cournt, on désigne l série (convergente ou divergente) pr l nottion «+ k= u k», mis on ne peut fire intervenir cette expression dns des clculs que si elle représente vriment un nombre, i.e. si l série converge. Remrque 1.4. Si les u k sont complexes, posons x k := Re u k et y k := Im u k, S n := Re S n et S n := Im S n. L suite S n converge dns C vers S si et seulement si S n et S n convergent dns R vers respectivement S := Re S et S := Im S. On en déduit imméditement que l série de terme générl complexe u k = x k + iy k converge si et seulement si les séries de terme générl x k et y k convergent dns R et que dns ce cs + k= (x k + iy k ) = + x k + i + k= k= y k. Remrque L définition 1.38 se générlise imméditement u cs où les u k sont éléments d un espce vectoriel normé E, l convergence dns E de S n vers le vecteur S signifint lim n + S S n =. Proposition Si une série converge, son terme générl u n tend vers qund n tend vers l infini. Remrque L réciproque de l proposition 1.42 est fusse. Un contre exemple bien connu est l série hrmonique de terme générl u k = 1/k pour k 1 (et u = ). Remrque L contrposée de l proposition 1.42 s énonce : si u n ne tend ps vers qund n tend vers l infini, lors l série diverge. On prle dns ce cs de divergence grossière de l série. Ch. Suquet, Cours I.P.E

18 Chpitre 1. Dénombrer et sommer Exemple 1.45 (séries géométriques). Soit q un nombre réel ou complexe. L série géométrique stndrd + k= qk converge si et seulement si q < 1. Dns ce cs, s somme est donnée pr + q k = 1 ( q < 1). 1 q k= Cette formule permet de clculer l somme de n importe quelle série géométrique convergente (donc de rison q vérifint q < 1). Il suffit de mettre en fcteur le premier terme. Si (u k ) k N est une suite géométrique de rison q (i.e. u k+1 = qu k pour tout k vec q ne dépendnt ps de k), vérifint q < 1, on pour tout j N, + k=j u k = + k=j + u j q k j = u j q l = l= u j 1 q. Théorème 1.46 (critère de Cuchy). L série à termes réels ou complexes + k= u k converge si et seulement si ε >, N N, n, m N, S n S m < ε. Ce théorème n est que l ppliction du critère de Cuchy à l suite des sommes prtielles S n = n k= u k. Il se générlise imméditement u cs où les termes u k sont des éléments d un espce vectoriel normé complet 8, en remplçnt S n S m < ε pr S n S m < ε. Corollire 1.47 (convergence bsolue). Si l série + k= u k converge, lors l série + k= u k converge ussi. On dit qu elle est bsolument convergente. Le résultt s étend imméditement ux séries à termes dns un espce vectoriel normé complet en remplçnt u k pr u k. On prle lors de convergence normle. Remrque L réciproque du corollire 1.47 est fusse. Un contre exemple bien connu est l série lternée de terme générl u k = ( 1) k /k (k 1) qui converge lors que l série des vleurs bsolues est l série hrmonique qui diverge Séries à termes positifs Si tous les u k sont positifs, (S n ) n N est une suite croissnte cr pour tout n 1, S n S n 1 = u n. Il n y lors que deux cs possibles : ou bien S n une limite finie S dns R +, l série converge et pour somme S ; ou bien S n tend vers + et l série diverge. L divergence d une série à termes positifs équivut donc à l convergence vers + de l suite de ses sommes prtielles. Il est commode dns ce cs de considérer que l série «converge dns R +» et que s somme vut +. Ainsi lorsque les u k sont tous positifs, 8. C est le cs en prticulier pour les séries à vleurs dns R d. Un espce vectoriel normé complet est ppelé espce de Bnch. 18 Ch. Suquet, Cours I.P.E

19 1.4. Rppels sur les séries l écriture + k= u k toujours un sens comme représentnt un élément S de R + : S étnt un réel positif si l série converge u sens de l définition 1.38, S = + sinon. Il importe de bien comprendre que ceci est prticulier ux séries à termes positifs. Une série à termes de signe quelconque 9 peut très bien diverger sns que l suite des sommes prtielles tende vers + ou. Un exemple évident est l série de terme générl u k = ( 1) k. Théorème 1.49 (comprison). On suppose qu il existe un k N tel que pour tout k k, u k v k. Alors ) l convergence 1 de + k= v k implique celle de + k= u k ; b) l divergence de + k= u k implique celle de + k= v k. Prmi les pplictions du théorème de comprison figure l comprison à une série géométrique qui donné nissnce ux règles dites de D Alembert et de Cuchy (bsées respectivement sur l étude du comportement symptotique de u n+1 /u n et de u 1/n n ). Ces règles n ont d utre utilité que de résoudre des exercices d hoc et on peut fcilement s en psser. Théorème 1.5 (règle des équivlents). On suppose que u k et v k sont équivlents 11 qund n tend vers l infini et qu à prtir d un rng k, v k. Alors les séries + k= u k et + k= v k sont de même nture (toutes deux convergentes ou toutes deux divergentes). Attention, l hypothèse d équivlence de u k et v k n implique ps à elle seule que les deux séries soient de même nture si le signe de v k n est ps constnt à prtir d un certin rng. Comme contre exemple on peut proposer u k = ( 1) k k 1/2 et v k = u k +1/k (exercice). Théorème 1.51 (comprison série-intégrle). Soit f continue sur [k, + [, décroissnte et positive sur cet intervlle. L série + k=k f(k) converge si et seulement si n k f(t) dt une limite finie qund n tend vers +. L démonstrtion repose sur l encdrement n > k, n 1 k=k f(k + 1) n k f(t) dt n 1 k=k f(k) illustré pr l figure 1.3. Cet encdrement son intérêt propre pour contrôler le reste d une série à l ide d une intégrle générlisée (ou vice vers). En ppliqunt le théorème 1.51 vec f(t) = t α, α > et k = 1, on obtient l crctéristion de l convergence des séries de Riemnn. 9. Plus précisément une série dont l suite des termes présente une infinité de chngements de signe. 1. L convergence et l divergence dns cet énoncé sont entendues u sens de l définition Ce qui signifie que l on peut écrire u k = c k v k vec lim k + c k = 1. Ch. Suquet, Cours I.P.E

20 Chpitre 1. Dénombrer et sommer y 1 f(k) f(k + 1) k k + 1 t Fig. 1.3 Comprison série-intégrle : f(k + 1) k+1 f(t) dt f(k) k Corollire 1.52 (séries de Riemnn). L série + k=1 1 k α est { convergente pour α > 1, divergente pour < α 1. L série est ussi divergente pour α, puisqu lors son terme générl ne tend ps vers. Corollire 1.53 (séries de Bertrnd). L série + k=2 1 k(ln k) β est { convergente pour β > 1, divergente pour < β 1. Remrque Pour α 1 (ou pour α = 1 et β ), l nture de l série de Bertrnd + k=2 k α (ln k) β s obtient directement pr comprison vec une série de Riemnn Séries à termes de signe non constnt Après voir vu que l convergence de + k= u k implique celle de + k= u k, on peut se demnder s il existe des séries qui convergent sns converger bsolument. Remrquons d bord que si le signe de u k est constnt à prtir d un certin rng k, l étude de l convergence de + k= u k se rmène à celle d une série à termes positifs. En effet, + k= u k et + k=k u k sont de même nture et si u k pour k k, il suffit de considérer + k=k ( u k ). Ainsi pour une série à termes de signe constnt à prtir d un certin rng, l convergence équivut à l convergence bsolue et l divergence ne peut se produire que si S n tend vers + ou vers. Les seules séries susceptibles d être convergentes sns l être bsolument sont donc celles dont le terme générl chnge de signe une infinité de fois. Pr exemple, l série + k=1 ( 1)k /k converge mis ps bsolument. C est une ppliction du théorème des séries lternées. 2 Ch. Suquet, Cours I.P.E

21 1.4. Rppels sur les séries Théorème 1.55 (des séries lternées). Soit (u k ) k N une suite lternée (i.e. pour tout k, u k et u k+1 sont de signes contrires) telle que u k décroisse et tende vers. Alors ) l série + k= u k converge, b) pour tout n N, les sommes prtielles consécutives S n et S n+1 encdrent 12 l somme S et le reste R n = + k=n+1 u k vérifie R n u n+1. Exemple Pour < α 1, l série + k=1 ( 1)k k α converge mis ps bsolument. Pour α > 1 elle est bsolument convergente. Exemple L série + k=1 ( 1)k / ln k converge mis ps bsolument. Remrque Même si une série lternée est bsolument convergente, le b) du théorème reste intéressnt pour le clcul numérique de l somme S Opértions sur les séries L somme des séries de terme générl u k et v k est l série de terme générl (u k + v k ). Le produit de l série de terme générl u k pr l constnte est l série de terme générl u k. Le produit de deux séries ser étudié plus trd à l ide des fmilles sommbles. Proposition Les ffirmtions suivntes sont vérifiées pour des séries à termes réels ou complexes ou dns un espce vectoriel normé. ) L somme de deux séries convergentes + k= u k et + k= v k est une série convergente et + k= (u k + v k ) = + k= u k + b) Le produit de l série convergente + k= u k pr l constnte est une série convergente et + k= u k = c) L somme d une série convergente et d une série divergente est une série divergente. d) L somme de deux séries divergentes peut être convergente ou divergente. Dns une somme d un nombre fini de termes, les propriétés de commuttivité et d ssocitivité de l ddition permettent de chnger l ordre des termes sns chnger l vleur de l somme, de fire des groupements de termes sns chnger l vleur de l somme. 12. Attention, une fois sur deux on ur S n+1 S n. + k= u k. + k= v k. Ch. Suquet, Cours I.P.E

22 Chpitre 1. Dénombrer et sommer Que deviennent ces propriétés pour les séries considérées comme sommes d une infinité de termes? En gros l réponse est : si l série est bsolument convergente, tout se psse bien, sinon on peut voir des situtions très pthologiques. Le seul cs où l on n it ps besoin de convergence bsolue pour retrouver une sitution conforme ux propriétés des sommes d un nombre fini de termes est celui de l sommtion pr pquets de tille finie fixe. Proposition 1.6 (sommtion pr pquets de tille finie fixe). Soit (u n ) n N une suite tendnt vers à l infini. Fixons un entier p 2 et définissons les «pquets de p termes consécutifs» p 1 v j = u jp+i, j N. i= Alors les séries + k= u k et + j= v j sont de même nture et ont même somme lorsqu elles convergent. Remrque Sns l hypothèse de convergence vers de l suite (u n ), le résultt devient grossièrement fux, contre exemple u n = ( 1) n. Remrque Si + k= u k est bsolument convergente, l série des pquets + j= v j l est ussi. L réciproque est fusse, comme on peut le voir en groupnt deux pr deux les termes de l série + k= ( 1)k /(k + 1), obtennt insi l série de terme générl positif v j = (2j + 1) 1 (2j + 2) 2 équivlent à 4j 2. Définition 1.63 (convergence commuttive). L série + k= u k est dite commuttivement convergente et de somme S si pour toute bijection f : N N l série + k= u f(k) converge et pour somme S. Dns ce cs nous pouvons utiliser l nottion S = k N u k u lieu de S = + k= u k, puisque l somme de l série ne dépend ps de l ordre dns lequel on effectue l sommtion. L écriture vec indextion pr «k N» ne présuppose ucun ordre d écriture des termes 13. Théorème L convergence bsolue d une série à termes réels ou complexes, implique s convergence commuttive. Nous llons démontrer le théorème en exminnt successivement les cs des séries à termes positifs, réels et complexes. 13. Pr nlogie vec l écriture i I u i, où I est un ensemble fini d indices. Dns ce cs le résultt de l ddition des u i pour i I ne dépend ps de l ordre des termes et d illeurs l ensemble I n nul besoin ici d être ordonné. 22 Ch. Suquet, Cours I.P.E

23 1.4. Rppels sur les séries Preuve du th. 1.64, cs d une série à termes positifs. Nous tritons d bord le cs d une série à termes positifs pour lquelle l convergence bsolue se réduit à l convergence et signifie que l suite croissnte des sommes prtielles S n une limite finie S dns R +. Soit f une bijection N N. Définissons les deux suites d entiers (p n ) n N et (q n ) n N comme suit. Pour p n nous prenons le plus petit entier p tel que {f(k); k p} recouvre {,..., n}. L existence de tels p et donc de p n découle clirement de l surjectivité de f. Pour q n on prend mx{f(k); k p n }. Autrement dit p n sert à recouvrir {,..., n} de l mnière l plus économique pr les premiers termes de l suite des f(k) et q n sert à «boucher les trous» de l suite d entiers insi formée. On insi n N, {,..., n} {f(k); k p n } {,..., q n }. (1.1) On clirement n p n et n q n donc p n et q n tendent vers l infini vec n. De plus ces deux suites sont croissntes de pr leur construction. Posons S n := n u k, T n := k= n u f(k). k= En rison de l positivité des u k et de (1.1), nous disposons de l encdrement n N, S n T pn S qn. (1.11) Si S n converge vers S, l sous-suite (S qn ) converge ussi vers S et (1.11) implique lors l convergence de (T pn ) vers S. En rison de l positivité des u k, l suite (T n ) est croissnte. Nous venons de voir qu elle une sous-suite qui converge vers S, c est donc toute l suite (T n ) qui converge vers S. Nous venons d étblir que + k= u f(k) converge et pour somme S = + k= u k. Comme l bijection f est quelconque, ceci chève l preuve du théorème 1.64 dns le cs d une série à termes positifs. Remrque Pour étblir (1.11), nous n vons ps utilisé l hypothèse de convergence de l série de terme générl u k, mis seulement l positivité des u k. Pr conséquent (1.11) reste vlble si l série à termes positifs + k= u k diverge. Dns ce cs S n tend vers +, donc ussi T pn et l suite croissnte (T n ) ynt une sous-suite tendnt vers +, c est toute l suite (T n ) qui tend vers l infini. Ainsi on + k= u f(k) = + = + k= u k. Pour l commodité de référence et en rison du rôle essentiel joué pr les séries à termes positifs dns ce cours, nous rssemblons dns l énoncé suivnt les résultts obtenus dns l preuve du théorème 1.64 (cs u k ) et dns l remrque Proposition Si (u k ) k N est une suite de réels positifs, on pour toute bijection f : N N, + k= u k = + k= u f(k), cette églité ynt lieu dns R +. Ainsi si les u k sont positifs, l nottion k N u k est toujours légitime et représente l somme S R + de l série. Ch. Suquet, Cours I.P.E

24 Chpitre 1. Dénombrer et sommer Dns l preuve du théorème 1.64, le cs d une série à termes réels de signe quelconque v se rmener à celui d une série à termes positifs en utilisnt l décomposition d un réel en prtie positive et prtie négtive. Ceci requiert une digression prélble (de l définition 1.67 à l remrque 1.7). Définition 1.67 (prties positive et négtive). Pour tout x réel, s prtie positive notée x + et s prtie négtive notée x sont les réels positifs définis pr x + := mx(, x), x := mx(, x). On lors pour tout x réel x = x + x, (1.12) x = x + + x. (1.13) Pr exemple si x = 3,12, x + = 3,12 et x =, si x = 2,3, x + = et x = 2,3. Il importe de bien noter que l prtie négtive d un réel est un nombre positif ou nul. Voyons d bord comment intervient cette décomposition pour une série bsolument convergente. Lemme Si + k= u k est une série à termes réels bsolument convergente et de somme S, les séries à termes positifs + k= u+ k et + k= u k sont convergentes et on + k= u k = + k= + (u + k u k ) = + u + k u k. (1.14) Preuve. Pr (1.13), on u + k u k et u k u k. Les séries de terme générl u + k et u k sont donc convergentes pr le théorème de comprison. L première églité dns (1.14) résulte lors de (1.12) ppliquée à x = u k. L deuxième églité s obtient pr l proposition 1.59 ) et b). Remrque L réciproque est vrie : si les séries à termes positifs + k= u+ k et + k= u k sont convergentes, l série + k= u k est bsolument convergente et on (1.14) grâce à l proposition Ceci montre que l on ne peut ps se psser de l hypothèse de convergence bsolue dns le lemme Il est d utre prt fcile d exhiber un contre exemple : l série de terme générl u k = ( 1) k /k. Remrque 1.7. L églité «+ k= u+ k = ( + k= u k) +» est grossièrement fusse! Elle n est même ps vrie pour des sommes finies. Comprez (+b) + et + +b + pour = 1 et b = 2 pour vous en convincre. Preuve du th dns le cs d une série à termes réels. Soit + k= u k une série bsolument convergente à termes réels et f une bijection quelconque N N. On utilise l décomposition u f(k) = u + f(k) u f(k). Pr le lemme 1.68, l convergence bsolue de l série de terme générl u k implique l convergence des séries à termes générux positifs u + k et u k. L preuve du théorème 1.64 dns le cs des termes positifs nous fournit lors l k= k= 24 Ch. Suquet, Cours I.P.E

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

1 Langages reconnaissables

1 Langages reconnaissables 8INF713 Informtique théorique Automne 2014 Exercices 1 Lngges reconnissles 1.1 Considérez les deux utomtes suivnts et répondez ux questions suivntes : q 3, q 3 q 4 () A 1 () A 2 Figure 1 () Quel est l

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier.

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier. Chitre 3 : Résidus qudrtiques Dns ce chitre on v essyer d extrire des rcines crrés dns ZnZ. Dns le cors des nombres réels tous les nombres ositifs sont des crrés et les nombres négtifs ne le sont s, dns

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Résumé du cours d analyse de Sup et Spé

Résumé du cours d analyse de Sup et Spé Résumé du cours d nlyse de Sup et Spé 1 Topologie 1.1 Normes, normes équivlentes Une norme sur le K-espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x) 0 (positivité) x E, (N(x) = 0 x

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Cours d Analyse Réelle 4M003

Cours d Analyse Réelle 4M003 Cours d Analyse Réelle 4M003 Jean SAINT RAYMOND Université Pierre et Marie Curie Avant-propos Ce texte a été rédigé pour servir de support écrit à un cours de Master 1 de l Université Pierre-et-Marie Curie.

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

201-NYC SOLUTIONS CHAPITRE 8

201-NYC SOLUTIONS CHAPITRE 8 Chpitre 8 Nombres complexes 7 -NYC SOUTIONS CHAPITRE 8 8. EXERCICES. ) Re() 5, Im() b) Re(), Im() 8 c) Re() 5, Im() d) Re(), Im() e) Re(), Im() f) Re(), Im() 6. ) x + i et x i b) x + i et x i c) x + i

Plus en détail

Théorie des langages Automates finis

Théorie des langages Automates finis Théorie des lngges Automtes finis Elise Bonzon http://we.mi.prisdescrtes.fr/ onzon/ elise.onzon@prisdescrtes.fr 1 / 51 Automtes finis Introduction Formlistion Représenttion et exemples Automtes complets

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Cours d analyse 1ère année. Rhodes Rémi

Cours d analyse 1ère année. Rhodes Rémi Cours d analyse 1ère année Rhodes Rémi 10 décembre 2008 2 Table des matières 1 Propriétés des nombres réels 5 1.1 Sous-ensembles remarquables de R........................ 5 1.2 Relations d ordre..................................

Plus en détail

Cours d Analyse Semestre 1. Stéphane Attal

Cours d Analyse Semestre 1. Stéphane Attal Cours d Analyse Semestre 1 Stéphane Attal 2 Contents 1 Les nombres réels 5 1.1 Les ensembles usuels de nombres................ 5 1.2 Ensembles ordonnés........................ 6 1.3 Le corps des nombres

Plus en détail

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES CHAPITRE SUITES RÉELLES ET COMPLEXES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autres sciences. Nous verrons dans ce cours et les travaux

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Contrôle sur le Cours d'algorithme et de langage C

Contrôle sur le Cours d'algorithme et de langage C Déprtement Génie Electrique Automtique NOM: Prénom: Contrôle sur le Cours d'algorithme et de lngge C G.Gteu et J.Régnier Le 15 Jnvier 2008- Durée 2h Documents de cours utorisé. Le contrôle est constitué

Plus en détail

Ensembles-Applications

Ensembles-Applications Ensembles-Applications Exercice 1 : Soient A = {1,2,3} et B = {0,1,2,3}. Décrire les ensembles A B, A B et A B. Allez à : Correction exercice 1 : Exercice 2 : Soient A = [1,3] et B = [2,4]. Déterminer

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION 6.1 STRUTURES PLES FOREES DE POUTRES RELTIOS ETRE HRGES ET ELEETS DE REDUTIO Les vritions des éléments de réduction,,, lorsqu'on psse d'une section à l'utre, sont liées pr des reltions fondmentles que

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Notes de cours sur les automates (NFP108)

Notes de cours sur les automates (NFP108) Notes de cours sur les utomtes (NFP18) F. Brthélemy 8 décemre 215 Avertissement : ce document est en cours d élortion et susceptile d évoluer. Il est dns un étt provisoire. 1 Introduction Les utomtes finis

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine ARBRES Arbre ordinire : A = (N,P) - N ensemble des nœuds - P reltion binire «prent de» - r N l rcine x N un seul chemin de r vers x r = y o P y P y... P y n = x 0 r n ps de prent x N - { r } x exctement

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

et Transversalité par Pierre Vogel

et Transversalité par Pierre Vogel Université Paris 7 Denis Diderot Institut de Mathématiques de Jussieu Géométrie des Variétés et Transversalité par Pierre Vogel Introduction Ce cours est destiné à l étude des variétés différentiables

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail