CHAPITRE IV: ONDES DE CHOCS DROITES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE IV: ONDES DE CHOCS DROITES"

Transcription

1 CHAPITRE IV: ONDES DE CHOCS DROITES Nous avons souligné au chapitre II, ainsi qu au chapitre III, que pour les écoulements à grande vitesse le modèle continu ne permettait pas de décrire la totalité des gammes de fonctionnement. Il existe donc des zones où l écoulement peut varier très rapidement afin de s adapter aux contraintes, c est à dire des discontinuités. Expérimentalement, aux grandes vitesses, les visualisations optiques mettent en évidence des variations de l indice de réfraction du milieu qui est relié à la masse volumique locale. Ainsi, comme le montre la figure 1), une variation sur une longueur très courte témoigne d une variation brutale de la masse volumique et de l existence au sein de l écoulement d une discontinuité. Nous allons consacrer ce chapitre à l étude des discontinuités et de leur classi- Figure 1: Visualisation d un choc droit à la sortie d une tuyère de Laval. fication. Nous supposerons l écoulement adiabatique et sans efforts extérieurs. Nous supposerons en outre l écoulement stationnaire. 1 Ondes de chocs et surfaces de glissement. 1.1 Ecriture des équations de saut Comme le montrent différentes visualisations figures 1) et 4), il est raisonnable d assimiler les surfaces de discontinuités à des surfaces infiniment minces. Considérons une surface de discontinuité représentée sur la figure ) Σt) de vitesse propre W, orientée par la normale N séparant alors le domaine de l écoulement en deux sous domaines comme vu au Chapitre I figure1)). Cette surface est supposée purement géométrique, elle n est le siège d aucune réaction chimique, ne possède pas de tension superficielle on dira qu elle est inerte. On appelle t la tangente à la surface de discontinuité. Nous supposons le fluide parfait de part et d autre de Σt). On dira que la surface de discontinuité est stationnaire si W = 0. On indicera par 1 toutes les quantités juste avant la surface de Discontinuité et par juste après. Les équations de saut associées à la conservation de la masse, de la quantité de mouvement et de l énergie ont été rappelées au chapitre I, équations 37), 41) et 47). Explicitons ces équations de saut avec les notations indiquées plus haut et dans le cadre de l approximation du fluide parfait. On notera u n et u t les composantes de la vitesse dans le repère N, t): ρ 1 u 1n W ) = ρ u n W ) = ṁ 1) où ṁ est une constante représentant le débit massique traversant Σ et pouvant être positive, négative ou nulle. La projection de l équation de saut de quantité de mouvement respectivement 34

2 1 t N W Σt) Figure : Surface de discontinuité. sur N et t donne: ρ 1 u 1n u 1n W ) + = ρ u n u n W ) + p ) Enfin l équation de saut de l énergie donne: ρ 1 u 1t u 1n W ) = ρ u t u n W ) 3) ṁe 1 + u 1 ) + u 1n = ṁe + u ) + p u n 4) Il apparaît clairement compte tenu de 1) que deux cas sont à considérer, ṁ = 0 ou ṁ Définition des surfaces de glissement ṁ = 0 La surface de discontinuité n est alors pas traversée par de la matière, on a ρ 1 u 1n W ) = ρ u n W ) = 0 u 1n = W = u n 5) Dans ce cas ) devient = p 6) L équation 3) ne permet pas de conclure quoi que ce soit sur les vitesses tangentielles à la traversée de la surface de discontinuité. L équation 4) est redondante avec 6). Une surface de discontinuité non traversée par la matière est appelée surface de glissement ou de contact. Un exemple typique est la surface du jet de sortie d une tuyère. La surface de glissement est stationnaire, elle sépare l air au repos des gaz brûlés, elle est représentée par des pointillés sur la figure 3). Les fluides glissent l un sur l autre avec des vitesses tangentielles arbitraires et la pression est la même de part et d autre de la surface de glissement 6) ce qui avait été exploité auparavant au chapitre II pour discuter de l influence de la pression de sortie. gaz brûlés atmosphère p atm p s Figure 3: Visualisation d un jet à la sortie d une tuyère. A la traversée d une surface de glissement ou de contact la pression se conserve ainsi que les vitesses normales, les vitesses tangentielles sont quelconques, la surface n est pas traversée par de la matière. 35

3 Figure 4: Simulation en soufflerie de l entrée dans l atmosphère martienne du futur orbiteur de la mission retour d échantillons martien, ONERA 1.3 Les ondes de choc ṁ 0 Considérons le cas où ṁ 0 la surface de discontinuité Σt) est traversée par de la matière, le débit massique à la traversée de Σ n étant pas nul. On appelle onde de choc, une surface de discontinuité traversée par de la matière. Les équations ), 3), 4) deviennent alors: ṁ u 1n + = ṁ u n + p 7) u 1t = u t 8) Enfin l équation de saut de l énergie donne en tenant compte de ce qui précède, du fait que u = u n + u t et du fait que h = e + p ρ : h 1 + u 1n W ) = h + u n W ) 9) Les ondes de choc correspondent physiquement à des zones de l écoulement où les différentes quantités subissent de fortes variations sur des distances de l ordre du libre parcours moyen λ cf Chapitre I). Dans cette région, les gradients étant forts, malgré une viscosité faible, les effets dus à la viscosité ne peuvent plus être négligés, cela conduit à des irréversibilités de sorte qu à la traversée d un choc l entropie ne peut qu augmenter. L équation de saut associée à l entropie a été rappelée au chapitre I, équation 56). Nous supposerons l écoulement adiabatique. Cette équation s écrit en utilisant la définition de ṁ donnée en 1): ṁ s s 1 ) > 0 10) Il est clair que dans le cas d une surface de glissement on ne peut rien conclure sur l entropie. Par contre pour une onde de choc, on voit que l on obtient si ṁ > 0 la surface de discontinuité est alors traversée de 1) vers )): s s 1 ) > 0 11) Si ṁ < 0, la matière traverse la surface de discontinuité de ) vers 1) on a s 1 > s, ce qui indique que la région avant le choc est la région ) et la région après le choc la région 1). Les chocs peuvent avoir des géométries très différentes, ils peuvent être perpendiculaires à l écoulement amont, 36

4 Figure 1), courbes Figure 4) attachés ou non à l obstacle. Dans ce chapitre nous nous limiterons aux chocs perpendiculaires à l écoulement amont, ou choc droit. Dans ce cas la vitesse amont est uniquement dirigée selon la normale et nous la noterons u 1. Compte tenu de 8), on en déduit que comme u 1t = 0, alors u t = 0; par conséquent à l issu du choc l écoulement est également perpendiculaire au choc comme représenté sur la figure 5). Le choc droit N u 1 u 1 Σ Figure 5: Le choc droit. On supposera pour simplifier l énoncé que le choc est stationnaire et par conséquent W est nul. Dans le cas inverse, il faut remplacer u 1 par v 1 = u 1 W et u par v = u W dans tout ce qui suit et les résultats sont inchangés. Pour comprendre ce qui se passe lors de la traversée d un choc droit, nous allons considérer le cas du gaz parfait polytropique. Il est possible de démontrer les résultats suivants dans le cas d une loi de comportement très générale, le lecteur se reportera au chapitre IX de Fluid Mechanics de Landau et Lipshitz. Dans le cas d un choc droit stationnaire, les équations de saut deviennent: ρ 1 u 1 = ρ u 1) ρ 1 u 1 + = ρ u + p 13) h 1 + u 1 = h + u 14) s > s 1 15) p = ρrt 16) Afin d aller plus loin nous allons supposer que le fluide peut être modélisé par le modèle du gaz parfait polytropique. On rappelle que pour un gaz parfait polytropique dh = C p dt avec C p constante, on a alors h = C p T + q f où q f est appelé l enthalpie de formation, et q f ne dépend que du fluide. D autre part lorsque le gaz est parfait et polytropique on a la vitesse du son définie par c = γrt. L équation 14) s écrit : C p + M 1 c 1 C p + M 1 γr = C p T + M c = C p T + M γrt 37 17) 18)

5 T = C p + 1 γrm 1 C p + 1 γrm Or nous avons vu au chapitre I que R = C p C v, on obtient alors: T = + γ 1)M 1 + γ 1)M 19) 0) L équation 1) s écrit: Compte tenu de 0), on déduit de 1): ρ 1 M 1 γrt1 = ρ M γrt 1) ρ 1 ρ = M M 1 + γ 1)M 1 + γ 1)M ) 1 ) L équation 13) s écrit: + γ M 1 = p + γp M 3) p = 1 + γm γm 4) La loi d état permet d obtenir une équation ne faisant intervenir que M 1 et M. En effet on a : Compte tenu de 0) et de ), on obtient l équation suivante: p = Rρ T Rρ 1 5) ) ) M1 1 + γ 1 M1 ) 1 + γm = M 1 + γ 1 M ) γm 6) Cette équation est une équation du second degré pour M, elle admet la solution triviale M = M 1, la seconde solution vaut: On peut donc déduire de 0), ) et 4): T = M = + γ 1) M 1 1 γ + γm 1 + γ 1)M 1 ) 1 γ + γm 1 ) γ + 1) M 1 7) 8) ρ 1 ρ = u u 1 = γ 1 γ γ + 1)M 1 9) p = 1 γ + γm γ Pour un gaz parfait polytropique, nous avons vu au chapitre I équation ) que la variation d entropie entre deux états caractérisés par les variables d état, ρ 1 ) et T, ρ ) pouvait s expliciter sous la forme: ) ) 1 γ T ρ s = s s 1 = C v ln 31) et ce qu il y ait ou non irréversibilité dans le système. En effet s est une fonction d état ne dépendant pas du chemin suivi pour la calculer. Par contre le choc est un processus irréversible, il faut donc rajouter un principe d évolution, rappelé plus haut: l entropie augmente à la traversée du choc. ρ 1 30) 38

6 Ainsi, l on a s > 0. Une étude de fonction pénible mais sans difficulté, permet de montrer que l écoulement 11) amont est alors supersonique : M 1 > 1 3) On en déduit de même compte tenu de 7) que l écoulement à l aval du choc est subsonique M < 1 33) Comme γ est supérieur à 1, on peut déduire de 8), 9), 30) le sens de varaition de la pression, de la masse volumique et de la température à la traversée du choc droit: p > 1 ρ 1 ρ < 1 u u 1 < 1 T > 1 34) En annexe nous avons indiqué à titre informatif les tables donnant M, ainsi que les divers rapports intervenant dans 35) en fonction du nombre de Mach aval. Un choc droit ne peut avoir lieu que dans un écoulement supersonique. Le choc droit fait passer l écoulement d un régime supersonique à un régime subsonique. 3 Saut des conditions génératrices A la traversée du choc, le fluide n est pas modifié mais par contre l écoulement a été radicalement perturbé par le choc de sorte que les conditions génératrices sont différentes en amont et en aval. Les conditions génératrices ont été définies au chapitre II. En aval du choc, l écoulement étant un écoulement de fluide parfait, adaibatique, il est isentropique. Après le choc, il l est également. Dans le chapitre I, nous avons exprimé le bilan local d enthalpie spécifique totale H au chapitre I 50). Le fluide étant parfait, adiabatique et sans effort extérieur on a dh dt = 0. On a donc h + 1 u constant sur une trajectoire. On a donc: h + 1 u = C p T 0 35) Ainsi, on a en appelant T 01 et T 0 les températures génératrices dans le milieu 1 et : h u 1 = C p T 01 = d après 14) = h + 1 u = C p T 0 36) Ainsi la température génératrice n est pas modifiée par la traversée du choc. Létude faite dans le cas d un écoulement adiabatique, stationnaire de fluide parfait dans le cas polytropique peut se généraliser avant et après le choc en imaginant une tuyère fictive délimitée par deux lignes de courant. Ainsi les résultats restent valables et on a : et: = 1 + γ 1 p = 1 + γ 1 p 0 On connait le rapport p / d après 30), ainsi: M 1 M ) γ 1 γ ) γ 1 γ 37) 38) p 0 = p 0 p p 39) 39

7 On a finalement le rapport p 0, que l on a tracé ci-dessous: Nous verrons au chapitre V, p M Figure 6: Rapport des pressions génératrices l importance des pressions génératrices pour évaluer l importance du rendement d un moteur d avion. 40

Thermodynamique de l atmosphère

Thermodynamique de l atmosphère Thermodynamique de l atmosphère 1 Introduction Notion de parcelle d air L atmosphère est composée d un ensemble de molécules. Pour la description de la plupart des phénomènes étudiés, le suivi des comportements

Plus en détail

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques S3 PMCP 2015/2016 D de thermodynamique n 5 Conséquences des deux principes Machines thermiques Potentiels thermodynamiques 1 Cycle avec une seule source de chaleur. Soit un système pouvant, pendant un

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides 1 Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides I Premier principe de la thermodynamique pour un système ouvert Certains systèmes échangent avec l extérieur, outre

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 004 EPREUVE SPECIFIQUE FILIERE MP PYSIQUE Durée : 4 heures Les calculatrices sont autorisées. N : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de

Plus en détail

MÉCANIQUE DES FLUIDES

MÉCANIQUE DES FLUIDES spé y 2003-2004 DS n 3 rapport MÉCANIQUE DES FLUIDES Rapport du jury CENTRALE 2002 Partie I. Caractérisation d un écoulement I A Ordres de grandeurs I A 1 - Parfois confusion

Plus en détail

AÉRODYNAMIQUE COMPRESSIBLE. Petites classes et éléments de cours

AÉRODYNAMIQUE COMPRESSIBLE. Petites classes et éléments de cours AÉRODYNAMIQUE COMPRESSIBLE ET FLUIDES HÉTÉROGÈNES Petites classes et éléments de cours Photo : http://www.enseeiht.fr/travaux/ Olivier THUAL, INPT et X/Mécanique 3 juillet 004 Table des matières Ondes

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES

CONCOURS COMMUNS POLYTECHNIQUES CONCOURS COMMUNS POLYTECHNIQUES la liaison étant supposée parfaite. Le rouleau n est entraîné en rotation par un moteur extérieur non figuré, sa vitesse de rotation est ω > constante au cours du temps.

Plus en détail

G.P. DS 07 6 février 2008

G.P. DS 07 6 février 2008 DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 4 heures Sujet Modulateur optique... 2 I.Interférence à deux ondes...2 II.Étude d une séparatrice...2 III.Interférométre de Mach-Zehnder...

Plus en détail

Durée du TP : 3h30 1. RAPPELS. La densité d un corps, notée d, s'exprime suivant la relation suivante : corps. d ref

Durée du TP : 3h30 1. RAPPELS. La densité d un corps, notée d, s'exprime suivant la relation suivante : corps. d ref TP N 2 : MECANIQUE DES FLUIDES Durée du TP : 3h30 1. RAPPELS La densité d un corps, notée d, s'exprime suivant la relation suivante : corps d ref avec corps la masse volumique du corps considéré et ref

Plus en détail

Partie II TEMPERATURES DANS LE REACTEUR

Partie II TEMPERATURES DANS LE REACTEUR Spé y 2001-2002 Devoir n 2 THERMODYNAMIQUE Ce problème étudie quelques aspects des phénomènes intervenants dans une centrale nucléaire de type Réacteur à Eau Pressurisée (ou PWR en anglais) qui est le

Plus en détail

TP-cours n 7 : Câble coaxial

TP-cours n 7 : Câble coaxial TP-cours n 7 : Câble coaial Matériel disponible : Câble coaial enroulé de 100m, GBF Centrad, adaptateurs BNC-banane, boite à décade de résistances. I Équation de propagation dans le câble coaial I.1 Introduction

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

15 Notions sur les turbomachines

15 Notions sur les turbomachines 16 avril 2004 429 15 Au cours des chapitres précédents, on a maintes fois considéré des machines au sein desquelles s opérait un échange de travail avec le milieu extérieur (compresseurs, turbines). Parmi

Plus en détail

III.1 Quelques rappels théoriques sur les interférences à 2 ondes.

III.1 Quelques rappels théoriques sur les interférences à 2 ondes. III TP 3 : Intérférences à deux ondes dans le domaine hyperfréquence. 22 Introduction Le but de ce TP est d étudier le phénomène d interférences dans le domaine des ondes hyperfréquences 2. Il s agit donc

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

PHYSIQUE II. Partie I - Formation des bulles. une solution aqueuse diluée de dioxyde de carbone, contenant n l

PHYSIQUE II. Partie I - Formation des bulles. une solution aqueuse diluée de dioxyde de carbone, contenant n l PHYSIQUE II Les bulles du champagne sont constituées de dioxyde de carbone. Elles naissent à la surface du verre (partie I). Après une phase de croissance sur place, elles se détachent et montent dans

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

Introduction à la description des systèmes thermodynamiques

Introduction à la description des systèmes thermodynamiques Introduction à la description des systèmes thermodynamiques 1. Définitions et généralités : La Thermodynamique est l étude des échanges d énergie ou de matière. La thermodynamique ne délimite a priori

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

1 Problème I : Evaluation du Mach amont par Tube de Pitot

1 Problème I : Evaluation du Mach amont par Tube de Pitot ECOULEMENTS COMPRESSIBLES ET SUPERSONIQUES Contrôle de connaissance Marc Massot Durée 3 heures (Les notes de cours et les documents distribués en cours sont autorisés ainsi que l usage de calculatrices).

Plus en détail

UE 303 - Thermodynamique - 2010/2011

UE 303 - Thermodynamique - 2010/2011 UE 303 - Thermodynamique - 2010/2011 Contrôle Continu du 03/11/2010. Durée: 2h00mn Exercice 1 : On suppose que l atmosphère est un gaz réel en équilibre dans le champ de pesanteur. L équation d état de

Plus en détail

CHAPITRE 10 LES GAZ PARFAITS

CHAPITRE 10 LES GAZ PARFAITS 1 CHAPIRE 10 LES GAZ PARFAIS I PROPRIEES HERMODYNAMIQUES DES GAZ PARFAIS 1 Définition Dans un gaz parfait il n'y a aucune interaction entre les molécules. 2 Equation d'état L'équation d'état permet d'écrire

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Chapitre VII ANALYSE THERMODYNAMIQUE DES CYCLES THÉORIQUES. LE CYCLE BEAU DE ROCHAS

Chapitre VII ANALYSE THERMODYNAMIQUE DES CYCLES THÉORIQUES. LE CYCLE BEAU DE ROCHAS Chapitre VII ANALYSE THERMODYNAMIQUE DES CYCLES THÉORIQUES. LE CYCLE BEAU DE ROCHAS Remarque préliminaire sur l analyse thermodynamique du fonctionnement d un moteur Pour aborder l analyse thermodynamique

Plus en détail

Thermodynamique des gaz parfaits

Thermodynamique des gaz parfaits Chapitre 24 Sciences Physiques - BTS Thermodynamique des gaz parfaits 1 Le modèle du gaz parfait 1.1 Définition On appelle gaz parfait un ensemble de molécules sans interaction entre elles en dehors des

Plus en détail

Un modèle simple de formation d étoiles

Un modèle simple de formation d étoiles Un modèle simple de formation d étoiles [Exercice classique] Un modèle simple d étoile consiste à supposer que celle-ci est constituée d une masse M d atomes d hydrogène, adoptant une configuration sphérique

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures ***

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures *** SESSION 003 PCP1006 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures L'utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants Une feuille de papier millimétré devra

Plus en détail

Modélisation et paramétrage des turbocompresseurs et turbines 289

Modélisation et paramétrage des turbocompresseurs et turbines 289 Modélisation et paramétrage des turbocompresseurs et turbines 289 En les exprimant en variables réduites dans les repères (ϕ, ψ), et(ϕ, Λ), le facteur de puissance étant représentatif de l'efficacité,

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

Physique. chassis aimant. Figure 1

Physique. chassis aimant. Figure 1 Physique TSI 4 heures Calculatrices autorisées 2013 Les résultats numériques seront donnés avec un nombre de chiffres significatifs compatible avec celui utilisé pour les données. On s intéresse ici à

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

T.P. COMPRESSEUR. T.P. Machines Thermiques : Compresseur / Page : 1/8

T.P. COMPRESSEUR. T.P. Machines Thermiques : Compresseur / Page : 1/8 T.P. COMPRESSEUR T.P. Machines Thermiques : Compresseur / Page : /8 But du T.P. : Tester les performances d un compresseur à piston bi-étagé à refroidissement intermédiaire. Introduction : Les compresseurs

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Cours SGE «Modélisation de la pollution atmosphérique» Dynamique

Cours SGE «Modélisation de la pollution atmosphérique» Dynamique Cours SGE «Modélisation de la pollution atmosphérique» Dynamique Christian Seigneur Cerea Plan Structure verticale de l atmosphère Atmosphère libre et couche limite atmosphérique Transport et dispersion

Plus en détail

Analyse mathématique et numérique de la dynamique des fluides compressibles

Analyse mathématique et numérique de la dynamique des fluides compressibles Analyse mathématique et numérique de la dynamique des fluides compressibles Sylvie Benzoni-Gavage 1 6 février 2004 1 benzoni@maply.univ-lyon1.fr http://maply.univ-lyon1.fr/ benzoni 2 Table des matières

Plus en détail

Modélisation Physique et Numérique : TD02

Modélisation Physique et Numérique : TD02 Modélisation Physique et Numérique : TD0 Introduction Vos rapports doivent être envoyer, de préférence en format pdf, par email à vilotte@ipgp.ussieu.fr ou pfavre@ipgp.ussieu.fr. Les groupes ne doivent

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

PROBLÈME 1 : Étude de l'eau en physique

PROBLÈME 1 : Étude de l'eau en physique Banque «Agro» A - 0304 PHYSIQUE Durée : 3 h 30 L usage d une calculatrice est autorisé pour cette épreuve L usage d abaques et de tables est interdit pour cette épreuve Les trois problèmes sont indépendants

Plus en détail

Devoir Surveillé n 2

Devoir Surveillé n 2 Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

Un sujet pour l épreuve B (modélisation et informatique)

Un sujet pour l épreuve B (modélisation et informatique) Un sujet pour l épreuve B modélisation et informatique) Présentation Le texte proposé ci-après est conçu pour l épreuve B, portant plus particulièrement sur la modélisation et l informatique l épreuve

Plus en détail

Mécanique des milieux continus solides et fluides. Correction du test 1 & compléments

Mécanique des milieux continus solides et fluides. Correction du test 1 & compléments Mécanique des milieux continus solides et fluides Correction du test 1 & compléments Emmanuel Plaut Jean-Philippe Chateau, Yann Gunzburger, Rachid Rahouadj Yoann Cheny, Rainier Hraiz & Mathieu Jenny Informations

Plus en détail

Exercices sur les écoulements compressibles

Exercices sur les écoulements compressibles Exercices sur les écoulements compressibles IUT - GTE - Marseille 2012-13 1 Exercice 1 Calculer la température et la pression d arrêt sur le bord d attaque de l aile d un avion volant à Mach Ma = 0.98

Plus en détail

Corps remorqué dans l eau

Corps remorqué dans l eau ACCUEIL Corps remorqué dans l eau Frédéric Elie, août 2007 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures,

Plus en détail

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques (605) GESTION DE STOCK À DEMANDE ALÉATOIRE Résumé : Chaque mois, le gérant d un magasin doit

Plus en détail

Chapitre 5. Le monopole

Chapitre 5. Le monopole Chapitre 5. Le monopole 5.1. Présentation. Une entreprise est dite en situation de monopole lorsqu elle est l unique offreur sur le marché d un bien, si le nombre de demandeurs sur le marché est grand

Plus en détail

CHAPITRE V: ONDES DE CHOCS OBLIQUES

CHAPITRE V: ONDES DE CHOCS OBLIQUES CHAPITRE V: ONDES DE CHOCS OBLIQUES Lorsqu on place un obstacle fixe dans un écoulement de gaz en régime supersonique, l arrêt non isentropique du fluide se caractérise par l apparition d une onde de choc.

Plus en détail

TD Thermodynamique. Diffusion de particules

TD Thermodynamique. Diffusion de particules TPC2 TD Thermodynamique Diffusion de particules Exercice n o 1 : Diffusion du CO 2 On observe la diffusion du CO 2 dans l air, en régime stationnaire, à l intérieur d un tube de longueur L = 0, 25 m et

Plus en détail

Accompagnement personnalisé

Accompagnement personnalisé 1 Les fractions Accompagnement personnalisé O. Lader Propriété 1.1. Simplification dans une fraction : a x b x = a b Exemples. 4 6 = 3 = 3, 15 5 = 3 5, 1x x = 1 x. Propriété 1.. Pour tous nombres a, b,

Plus en détail

Thermodynamique Chapitre 6 : Les machines thermiques

Thermodynamique Chapitre 6 : Les machines thermiques Lycée François Arago Perpignan M.P.S.I. 2012-2013 Thermodynamique Chapitre 6 : Les machines thermiques Nous arrivons à ce qui a véritablement motivé la fondation de la thermodynamique : l étude des machines

Plus en détail

LES 2 PRINCIPES DE LA THERMODYNAMIQUE

LES 2 PRINCIPES DE LA THERMODYNAMIQUE PSI Brizeux Ch. T1 : Les deux principes de la thermodynamique 1 C H A P I T R E 1 LES 2 PRINCIPES DE LA THERMODYNAMIQUE APPLICATIONS 1. LES FONDEMENTS DE LA THERMODYNAMIQUE 1.1. La variable température

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

1. Gaz parfait et transformations thermodynamiques

1. Gaz parfait et transformations thermodynamiques 1. Gaz parfait et transformations thermodynamiques Pour l'air : r = R / M = 0,871 kj / (kg.k), avec M masse molaire c p =1,005 kj/kg K, c v = 0,718 kj/kg K = 1.93 kg / m 3 à 0 C et à 1013 mbars Pour un

Plus en détail

Lois de l électrocinétique

Lois de l électrocinétique Retour au menu! Lois de l électrocinétique 1 Courant électrique 1.1 Notion de courant n conducteur est un matériau contenant des charges libres capables de se déplacer. Dans les électrolytes les charges

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

TRAVAUX DIRIGÉS DE O 3

TRAVAUX DIRIGÉS DE O 3 TRVUX DIRIGÉS DE O 3 Exercice : Constructions graphiques Pour chacune des figures, déterminer la position de l objet ou de son image par la lentille mince. Les points situés sur l axe optique sont les

Plus en détail

Epreuve de Physique I-B Durée 4 h

Epreuve de Physique I-B Durée 4 h * Banque filière PT * BANQUE PT - EPREUVE I-B. Epreuve de Physique I-B Durée 4 h Etude d'une micropompe électrostatique Indications générales : On donnera tous les résultats avec leur unité. Les candidats

Plus en détail

Suspension arrière de la Voxan 1000 V2 ROADSTER

Suspension arrière de la Voxan 1000 V2 ROADSTER Partie 1 Suspension arrière de la Voxan 1000 V2 ROADSTER On utilise pour cela un modèle simplifié plan. 1.1. Colorié le document 1 pour faire apparaître les différentes classes d équivalence. 1.2. Réaliser

Plus en détail

TD16 Machine synchrone et MCC

TD16 Machine synchrone et MCC TD16 Machine synchrone et MCC 161 Machine synchrone simpliste A Travaux Dirigés Un aimant cylindrique allongé peut tourner autour de l'axe passant par son centre et perpendiculaire à son moment magnétique.

Plus en détail

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE 1 Définitions Considérons un corps porté à une température T. Ce corps émet de l'énergie par sa surface sous forme de rayonnement thermique, c estàdire

Plus en détail

Devoir de Sciences Physiques n 1 pour le 09-09-2015

Devoir de Sciences Physiques n 1 pour le 09-09-2015 1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre Fonctions linéaires et fonctions affines Cours Objectifs du chapitre Connaitre le sens de variation d une fonction affine. Connaitre le signe d une fonction affine. 1 Introduction Activité 2 Fonctions

Plus en détail

Daniel Bernoulli 1700 1782

Daniel Bernoulli 1700 1782 Capacités C1 mesurer la pression à l aide d un manomètre ; C2 calculer une pression et la convertir en bar ou en pascal ; C3 vérifier expérimentalement la loi de Boyle-Mariotte (pv = n RT ); C4 calculer

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 PHYSIQUE-CHIMIE Série S DURÉE DE L ÉPREUVE : 3 h 30 COEFFICIENT : 6 L usage de la calculatrice EST autorisé Ce sujet ne nécessite pas de feuille de papier millimétré Ce

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations 4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Puits quantiques et super-réseaux semi-conducteurs 1

Puits quantiques et super-réseaux semi-conducteurs 1 1 Mines Deuxième année Physique de la matière condensée et des nano-objets TD8-2011 Puits quantiques et super-réseaux semi-conducteurs 1 Résumé Dans ce TD nous allons aborder la physique des puits quantiques

Plus en détail

10 Cycles frigorifiques

10 Cycles frigorifiques 14 mars 2003 Introduction 277 10 10.1 Introduction Dans la section 9.1, on a considéré des machines thermiques constituées de quatre processus distincts, mettant en œuvre soit des dispositifs à circulation

Plus en détail

CH2 : Les mécanismes de transmission du mouvement

CH2 : Les mécanismes de transmission du mouvement BTS électrotechnique 2 ème année - Sciences physiques appliquées CH2 : Les mécanismes de transmission du mouvement Motorisation des systèmes. Problématique : En tant que technicien supérieur il vous revient

Plus en détail

3D Compléments de cours. Guy GREISEN

3D Compléments de cours. Guy GREISEN 3D Compléments de cours Guy GREISEN 14 septembre 2009 3D 3 Table des matières 1 SECOND DEGRÉ 6 1.1 Introduction................................................ 6 1.2 Formule générale.............................................

Plus en détail

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot

Master de Formation des Formateurs Groupe Modélisation. Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Master de Formation des Formateurs Groupe Modélisation Séance du 19 septembre 2003 Modélisation du trafic routier François Sauvageot Position du problème Modéliser le trafic routier c est tenter de prédire

Plus en détail

PHYSIQUE - MATHÉMATIQUES

PHYSIQUE - MATHÉMATIQUES SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE - MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche à alimentation autonome, sans imprimante et sans document d accompagnement

Plus en détail

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr.

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr. COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015 Pr. Aziz OUADOUD Table des matières 1 Introduction 3 1.1 Définitions générales.......................

Plus en détail

Chapitre 5 Les lois de la mécanique et ses outils

Chapitre 5 Les lois de la mécanique et ses outils DERNIÈRE IMPRESSION LE 1 er août 2013 à 12:49 Chapitre 5 Les lois de la écanique et ses outils Table des atières 1 Les référentiels et repères 2 2 Les grandeurs de l évolution 2 2.1 Le vecteur de position..........................

Plus en détail

Florian De Vuyst ENS de Cachan 2013-2014

Florian De Vuyst ENS de Cachan 2013-2014 Master Modélisation et Simulation M2S M6 Simulation et méthodes numériques Florian De Vuyst ENS de Cachan 2013-2014 Travaux pratiques, feuille 6. Méthode de volumes finis Résolution de l équation de convection

Plus en détail

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS Remarques préliminaires : Ce court document n a nullement la prétention de présenter la question de la recherche d extrema liés avec toute la rigueur qui lui serait

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Propagation d une onde dans un câble coaxial.

Propagation d une onde dans un câble coaxial. 1 Présentation Propagation d une onde dans un câble coaxial. Comme nous l avons vu précédemment, c est la circulation des électrons dans un conducteur qui est à la base des lois régissant l étude des circuits

Plus en détail

Air humide : corrigé

Air humide : corrigé Air humide : corrigé 1 Prise en mains du diagramme Notations : w = humidité absolue, ψ = humidité relative, P w = pression partielle de vapeur d eau, P s w = pression de saturation de l eau Placer le point

Plus en détail

Etude de la période d un pendule simple

Etude de la période d un pendule simple Etude de la période d un pendule simple Préparation à l Agrégation de Physique ENS Cachan June 3, Figure 1: Photographie du dispositif expérimental pour étudier la variation de la période d un pendule

Plus en détail

1 Réflexion et réfraction

1 Réflexion et réfraction 1 Réflexion et réfraction 1.1 Rappel sur la propagation dans les milieux linéaires isotropes Equations de Maxwell dans les milieux Dans un milieu diélectrique sans charges libres (ni courants libres) les

Plus en détail

VIII FLEXION PLANE. 1. Flexion plane simple

VIII FLEXION PLANE. 1. Flexion plane simple VIII FLEXION PLANE Parmi les différentes sollicitations simples étudiées en RD, la flexion plane tient un rôle prépondérant car elle est fréquente dans les mécanismes et les problèmes de poutres. 1. Flexion

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE mini INTERROS de Prépas & Deug MPSI-PCSI-PTSI SUP-SPÉ Thermodynamique MP-MP*-PC-PC*-PT-PT* Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE pages 1. Introduction à la thermodynamique.......................

Plus en détail

Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique

Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique (1) (2) (3) (4) (5) (6) Classe de TS Partie D-chap 16 Chapitre 16 : L atome et la mécanique de Newton : Ouverture au monde quantique Connaissances et savoir-faire exigibles : Connaître les expressions

Plus en détail

- PROBLEME D OPTIQUE 1 -

- PROBLEME D OPTIQUE 1 - - 1 - ENONCE : «Appareil photographique» I. OBJECTIF STANAR On assimile l objectif d un appareil photographique à une lentille mince convergente () de centre O et de distance focale image f. a distance

Plus en détail

LA OTIO DU TRAVAIL E SCIE CES PHYSIQUES

LA OTIO DU TRAVAIL E SCIE CES PHYSIQUES L OTIO DU TRVIL E SCIE CES PHYSIQUES Par nne artini 1. Travail et énergie Dans la vie courante, il y a des termes qui sont souvent utilisés et dont la signification fait penser à celle donnée aux concepts

Plus en détail

Sujet Centrale 2012 Physique Option MP

Sujet Centrale 2012 Physique Option MP I Le Satellite Jason 2 IA1) IA - Etude l orbite Sujet Centrale 2012 Physique Option MP Cf cours : IA2) a) Le référentiel géocentrique est le référentiel de centre Terre en translation par rapport au référentiel

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 2 heures Sujet Lampe à incandescence et bilans thermiques...2 I.Lampe à incandescence en régime permanent...2 A.Détermination de la température

Plus en détail

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction

Baccalauréat STG Mercatique Polynésie 8 juin 2012 Correction Baccalauréat SG Mercatique Polynésie 8 juin 2012 Correction La calculatrice (conforme à la circulaire N o 99-186 du 16-11-99) est autorisée. EXERCICE 1 4 points Cet exercice est un questionnaire à choix

Plus en détail

1 Rappels sur les champs électriques

1 Rappels sur les champs électriques Rappels sur les champs électriques. Cadre de l étude On considère un diélectrique homogène ie ayant les mêmes propriétés dans tout le volume). On note E le champ électrique global et D le champ excitation

Plus en détail